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Abstract: Rainfall forecast information is important for the planning and management of water resources and 
agricultural activities. Turksvygbult rainfall near the Magoebaskloof Dam (South Africa) has never been modelled and 
forecasted. Hence, the objective of this study was to forecast its monthly rainfall using the SARIMA model. GReTL and 
automatic XLSTAT software were used for forecasting. The trend of the long-term rainfall time series (TS) was tested 
by Mann–Kendall and its stationarity was proved by various unit root tests. The TS data from Oct 1976 to Sept 2015 
were used for model training and the remaining data (Oct 2015 to Sept 2018) for validation. Then, all TS (Oct 1976 to 
Sept 2018) were used for out of sample forecasting. Several SARIMA models were identified using correlograms that 
were derived from seasonally differentiated TS. Model parameters were derived by the maximum likelihood method. 
Residual correlogram and Ljung–Box Q tests were used to check the forecast accuracy. Based on minimum Akaike 
information criteria (AI) value of 5642.69, SARIMA (2, 0, 3) (3, 1, 3)12 model was developed using GReTL as the best of 
all models. SARIMA (1, 0, 1) (3, 1, 3)12, with minimum AI value of 5647.79, was the second-best model among GReTl 
models. This second model was also the first best automatically selected model by XLSTAT. In conclusion, these two 
best models can be used by managers for rainfall forecasting and management of water resources and agriculture, and 
thereby it can contribute to economic growth in the study area. Hence, the developed SARIMA forecasting procedure 
can be used for forecasting of rainfall and other time series in different areas.  
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INTRODUCTION 

Limited availability and unreliable rainfall have affected crop 
production and threatened food security especially in arid and 
semi-arid areas in the world. Crop production is sensitive to 
extreme climatic and weather conditions among several factors of 
production. Thus, the information on future occurrence and 
reliability of the agrometeorological characteristics is important 
for planning irrigated and rainfed agriculture. Agrometeorologi-
cal conditions are modelled and predicted using their historical 
time series data as the past patterns in the time series data are 
believed to manifest themselves in the future [BOX, JENKINS 1976]. 

In areas where only one kind of meteorological record is 
available, a univariate BOX and JENKINS methodology [BOX, JENKINS 

1976] are commonly used for analysis and forecasting of time 
series. Autoregressive integrated moving average (ARIMA) 
models have become a major tool in agrometeorological and 
hydrological applications to understand the characteristics of the 
precipitation, temperature, river flows, and so on. Seasonal 
ARIMA (SARIMA) models are important to model and forecast 
time series that show a periodic or non-stationary behaviour both 
within and across seasons [BOX et al. 2015; BOX, JENKINS 1976; 
BROCKWELL et al. 2002]. 

Several forecasting studies were conducted using SARIMA 
models in different areas. MURAT et al. [2018] used ARIMA and 
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regression models for forecasting daily rainfall and temperature 
time series in Europe. SARIMA models were used to forecast 
rainfall [ARUMUGAM, SARANYA 2018; PAPALASKARIS et al. 2016; 
TAKELE, GEBRETSIDIK 2015]. 

Sarima models have been used for different forecasting 
applications such as temperature [CHEN et al. 2018], river flow in 
South Africa [TADESSE, DINKA 2017; TADESSE et al. 2017], malaria 
prevalence in Ghana [ANOKYE et al. 2018], reservoir inflow at the 
Koga Dam, Ethiopia [TADESSE, DINKA 2017], and annual rainfall 
and maximum temperature over the Tordzie watershed in Ghana 
[NYATUAME, AGODZO 2018]. A wavelet-SARIMA-ANN hybrid 
model has been used to forecast precipitation in Iran [SHAFAEI 

et al. 2016]. 
However, forecasting models developed for one area may 

not be used for the other areas due to a peculiar characteristic of 
rainfall and river flow time series. Although many rainfall 
forecasting studies are conducted in different areas of the world, 
the rainfall at the Turksvygbult area near the Magoebaskloof 
Dam has never been modelled and forecasted. The Magoebask-
loof Dam in South Africa was designed to supply water for 
irrigation and domestic uses in the surrounding area. Hence, 
information on future rainfall characteristics is vital for the 
optimal operation of the dam and planning of irrigated and 
rainfed agriculture in the area. 

Therefore, this study aimed to inspect statistical character-
istics of the monthly rainfall time series and select the best 
forecasting model that could be used to plan reservoir water 
release policy, irrigation, and rainfed agricultural activities. 
Moreover, this study evaluated the rainfall forecast accuracy of 
automatic XLSTAT time series forecasting software and expert- 
based non-automatic GReTL software. 

STUDY METHODS 

STUDY AREA 

South Africa is a relatively arid country with an even spatial 
rainfall distribution with two-thirds of the country receiving less 
than 500 mm of annual rainfall [KING, PIENAAR 2011]. Rainfall 
occurs mainly in summer months in most of the areas. The 
Turksvygbult rainfall station is located near the Magoebaskloof 
Dam in the Limpopo province, South Africa. The Magoebaskloof 
Dam is located on the Politsi River, a major tributary of the Groot 
Letaba River. According to HAUMANN [2006], the dam storage 
capacity is 5.5∙106 m3 and yield 4.92∙106 m3∙y–1. The Magoebask-
loof Dam was commissioned in 1971. It is owned and operated by 
the Department of Water Affairs. The dam was originally 
intended to supply water for irrigation purposes only, however, 
the need arose later for domestic and industrial water in Politsi, 
Duiwelsskloof, and Ga-Kgapane. Water allocation from the dam 
totals 13.1∙106 m3∙y–1 of which 11.044∙106 m3∙y–1 is for agriculture 
and 2.034∙106 m3∙y–1 for domestic uses. 

DATA ACQUISITION AND ARRANGEMENT 

The Turksvygbult rainfall data were collected from the Depart-
ment of Water and Sanitation, South Africa. The rainfall was 
modelled and forecasted using the Gnu Regression, Econo-
metrics, and Time-series Library (GRETL) software [BAIOCCHI, 
DISTASO 2003], and the automatic forecasting Addinsoft XLSTAT 

version 2019.1 software. The rainfall has had 504 monthly 
observations from October 1976 to September 2018. The time- 
series data from October 1976 to September 2015 were used for 
model training. The rest observations from October 2015 to 
September 2018 were used for model validation. Then, all 
observations from 1976 to 2018 were used to forecast four years 
of rainfall from October 2018 to September 2022. 

SARIMA MODELLING 

SARIMA (p, d, q)(P, D, Q) model with seasonal and non-seasonal 
components of (p, d, q) and (P, D, Q), respectively may be 
described as shown in Equation (1) [BOX, JENKINS 1976]. 
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where: θ(B) and φ(B) = polynomials of order q and p, respectively; 
Θ(BS) and Φ(BS) = polynomials in B of degrees Q and P, 
respectively; Yt = rainfall at time t; εt = independently distributed 
random variable at time t; P and p = orders of the non-seasonal 
autoregression; Q and q = orders of seasonal autoregression; 
D and d = numbers of difference terms for seasonal and non- 
seasonal components. This methodology has the following steps 
[BOX et al. 2008; BOX, JENKINS 1976]. 

Identification of the model and parameter estimation 

Before model identification, the stationarity of the rainfall time 
series was evaluated by Mann–Kendall trend test (MK) [KENDALL 

1975], Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [KWIATKOWS-

KI et al. 1992] at 0.5 significance level (α = 0.05), autocorrelation 
function (ACF) and partial autocorrelation functions (PACF) 
[SINGH et al. 2011]. Additionally, the unit root test was performed 
according to DICKEY and FULLER (DF) [1979], PHILLIPS and PERRON 

(PP) [1988]. Initially, few SARIMA (p, d, q) (P, D, Q)12 models 
were identified from the ACF and PACF diagram of the 
seasonally differenced rainfall time series [CRYER, CHAN 2008; 
HIPEL et al. 1977; SALAS et al. 1980]. Then their model parameters 
were estimated based on maximum likelihood [HAMILTON 1994]. 

Diagnostic checking and forecasting 

Autocorrelations of model forecast residuals were diagnosed by 
Ljung, Box Q tests [LJUNG, BOX 1978] in terms of ACF and PACF 
plots. The performance of the model forecasts were evaluated in 
terms of three criteria: Akaike information [AKAIKE 1974], 
Schwarz–Bayes [SCHWARZ 1978], and Hannan–Quinn [HANNAN, 
QUINN 1979]. 

RESULTS AND DISCUSSION 

DESCRIPTIVE STATISTICS OF THE TIME SERIES 

The minimum and maximum Turksvybult monthly rainfall for 
504 rainfall observations were 0.0 and 1555.7 mm, respectively. 
The mean monthly rainfall was 113.8 with a standard deviation of 
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150.7 mm, which shows the high variability of the monthly 
rainfall in the study area. However, its average annual rainfall was 
1365.4 mm which was above 500 mm of annual rainfall received 
in most areas of South Africa as it was described in section “The 
study area”. 

The high variable rainfall characteristic is challenging for 
managers while planning water resources management or 
agricultural activities in the study area. Therefore, it necessitates 
modelling and forecasting of rainfall to provide managers with 
accurate information on future occurrence and amount of 
rainfall. 

STATIONARITY OF THE TIME SERIES 

Graphical observation 

One of the techniques for determining whether a rainfall time 
series is stationary or not is a visual observation of the rainfall 
time series. The plot of the Turksvygbult rainfall time series is 
shown in Figure 1. The seasonality of the rainfall time series can 
be seen from the periodic (cyclic) peaks and lows for wet and dry 
seasons, respectively. Based on this graphical observation, the 
time series was not seasonally stationary. Hence, it is necessary to 
avoid the periodic component of the time series by seasonal 
differencing before using it for modelling and forecasting. 

Besides, from the visual observation of Figure 1, no increasing 
or decreasing trend of the rainfall time series was seen. In 
addition to graphical observations, statistical methods of 
stationarity and trend evaluation results were shown in Table 1. 

Statistical methods 

From Table 1, the absolute values of the observed (computed)  for 
Dickey and Fuller (DF) and Phillips–Perron (PP) tests were 
greater than their critical values at 0.5 significance level (α = 0.05). 
This proved the absence of a unit root. In another words, the time 
series is stationary and shows no upward or downward trends. 
Similarly, the computed/observed p-values for DF and PP tests 
are lower than the significance level. This means the time 
series has no unit root and therefore it was stationary at its level 
or at original (untransformed) time-series data. A different way of 
interpreting the stationarity is Kwiatkowski–Phillips–Schmidt– 
Shin (KPSS) trend test. The KPSS trend test proved the 
stationarity of the time series since its computed p-value of 
0.493 was greater than α = 0.05. 

Like the KPSS test, the non-seasonal Mann–Kendall (MK) 
trend test showed the absence of a trend in the rainfall time series 
as its p-value of 0.074 (Tab. 1) was greater than α = 0.05. 
Furthermore, the seasonal MK test for 12 months of seasonality 
(S = 12) showed the absence of trend due to seasonality as the 

Fig. 1. Time series plot of the Turksvygbult rainfall from 1976 to 2018; source: own study 

Table 1. The unit root and Mann–Kendall trend tests 

Unit root and stationarity tests Mann-Kendall trend test 

parameter DF PP KPSS parameter Mann–Kendall seasonal Mann– 
Kendall 

(observed value) –10.159 –9.869 0.056 Kendall’s –0.053 –0.071 

(critical value) –3.428 –1.941 0.148 Sen’s slope –0.027 –0.219 

p-value <0.0001 <0.0001 0.493 p-value  0.074 0.058 

α 0.05 0.05 0.05 α 0.05 0.05 

Remark stationary stationary stationary Remark no trend no trend  

Explanations: DF = Dickey and Fuller, PP = Phillips–Perron, KPSS = Kwiatkowski–Phillips–Schmidt–Shin. 
Source: own study. 
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p-value of 0.058 was greater than α = 0.05. These statistical MK 
tests proved the appropriateness of graphical evaluation made in 
section “Graphical observation” for the absence of a trend in the 
rainfall time series. Negative signs of the Sen’s slope estimator at 
MK tests (Tab. 1) were an indicator of a slightly decreasing trend 
of rainfall time series due to climate change though it was not 
statistically significant. The decrease in trend was greater for the 
seasonal component of a time series with a Sen’s slope of –0.219 
as compared to that of a non-seasonal component with a Sen’s 
slope of –0.027. All three statistical tests (DF, PP, KPPS, and MK) 
proved the stationarity and the absence of a significant trend in 
the rainfall time series. 

IDENTIFICATION OF MODELS 

The ACF and PACF plots of the measured rainfall time series 
(original data) have been shown in Figure 2. The seasonality of 
the time series is evidenced obviously from the sinusoidal graph 
of the ACF and the significant spikes detected at intervals of 12 
months. This supports the evidence from the graphical method in 
section “Graphical observation” for the availability of seasonality 
in the rainfall time series. Therefore, seasonal differencing (D = 1) 
was made to make the time series seasonally stationary. As it was 
well explained in the section mentioned, the time series was 
stationary and had no significant trend, hence there was no need 
for differencing the non-seasonal component. Therefore, the non- 
seasonal differencing was made zero (d = 0). 

Hence, SARIMA (p, 0, q) (P, 1, Q)12 models were suggested 
for model identification. Initial, parameter p, q, P and Q of these 
models were determined based on the characteristics of ACF and 
PACF plots of seasonally differenced time series (Fig. 3). 

From Figure 3, the ACF of the seasonally differenced time 
series has significant spikes at the 1st lag and cuts off after the 2nd 

lag for the non-seasonal component. For the seasonal component 
of the time series at S = 12, ACF has a significant spike at lag 12th 

and then cuts off after lag 24th. Similarly, PACF of the seasonally 
differenced series has significant spikes at 1st lag for the non- 
seasonal and significant spikes at 12th and 24th and 36th lags for 
seasonal components. Hence, one for each autoregressive (AR) 
and seasonal moving average (SMA) parameters for the non- 
seasonal component, and three for seasonal autoregressive (SAR) 
and two for seasonal moving average (SMA) parameters were 
suggested as SARIMA (1, 0, 1) (3, 1, 2) model. However, by 
adding one parameter for AR and SMA, SARIMA (2, 0, 1) (3, 1, 
3)12 was identified as an initial model. 

However, as model identification involves much trial and 
error, several SARIMA models within ranges of three-parameter 
model components were evaluated using GReTl and automatic 
XLSTAT forecasting software. Finally, the top best three models 
from both software solutions are selected and presented in 
Table 2. The minimum value of Akaike information (AI) (bolded 
value of 5642.69), SARIMA (2, 0, 3) (3, 1, 3)12 was found to 
perform best in forecasting mean monthly rainfall at the 
Turksvygbult station using the GReTL software. 

The XLSTAT automatically selected SARIMA (1, 0, 1) 
(3, 1, 3)12 as the best rainfall forecasting model among many 
SARIMA models based on Akaike information criteria (AIC). 
This automatically selected the SARIMA model which was the 
second-best model identified by GReTL. As shown in Table 3, the 
GReTL software forecasted this model at minimum AI and SB 
criteria as compared to that of XLSTAT. This implies that 
GReTL has the higher forecast accuracy than automatic 
forecasting by the XLSTAT software. 

The GReTL forecasted the SARIMA (2, 0, 3) (3, 1, 3)12 

model which was also the best of all automatic XLSTAT 
forecasting models in terms of minimum AI value. Besides, the 

Fig. 2. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of the rainfall time series 
for original data; source: own study 
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pattern of the out of sample rainfall forecast looks like that of 
measured values, as shown in Figure 4. This shows the model was 
able to capture the stochastic component in the forecasted 
monthly rainfall values. Forecast graphs from the XLSTAT 
software (Fig. 5) have a little bit uniform pattern as the result of 
almost equal values of rainfall forecast and nearly equal 
prediction errors (residuals). This shows that the SARIMA 
models developed using the XLSTAT software were not very 
good in retaining the stochastic components in the forecasted 
rainfall. However, as XLSTAT software automatically selects the 
best forecasting model among several models, it is simple in use 
by planners with little experience of time series modelling and 
forecasting procedures. XLSTAT forecast values are close to the 
long year mean rainfall values and hence, the forecast values can 
be used for initial planning purposes. 

PARAMETERS OF THE SELECTED SARIMA  
(2, 0, 3) (3, 1, 3)12 MODEL 

Parameters of the selected model are shown in Table 3. All 
parameter values of this model are significant and, hence, can be 
included in the model for forecasting. The four years out of 

Table 2. Performance evaluations of the alternative models 

ARIMA models Automatic XLSTAT forecasting GReTL forecasting 

p d q P D Q AI AIc SB rank AI HB SB rank 

1 0 1 3 1 3 5684.40 5685.00 5729.76 1 5647.79 5660.77 5258.68 2 

3 0 2 1 1 2 5689.83 5691.28 5735.18 2 5950.69 5965.44 5988.20 3 

2 0 3 3 1 3 5692.96 5693.91 5750.67 3 5642.69 5662.16 5692.11 1  

Explanations:  and p = orders of the non-seasonal autoregression; Q and q = orders of seasonal autoregression; D and d = numbers of difference terms 
for seasonal and non-seasonal components, AI = Akaike information, AIc = Akaike information corrected, SB = Schwarz Bayes, and HQ = Hannan– 
Quinn criteria, and the bolded are the minimum AI values. 
Source: own study. 

Fig. 3. Autocorrelation function (ACF) and partial autocorrelation function (PACF) plots of seasonally differenced 
rainfall time series; source; own study 

Table 3. Significant parameters of SARIMA (2, 0, 3) (3, 1, 3)12 
model 

Para- 
meter Coefficient SD z p-value Signifi- 

cance 

φ1 0.888457 0.0856824 10.37 3.42e–025 *** 

φ2 −0.816589 0.0736300 −11.09 1.40e–028 *** 

Φ1 −0.969379 0.0811488 −11.95 6.84e–033 *** 

Φ2 −0.483461 0.0912276 −5.300 1.16e–07 *** 

Φ3 −0.130332 0.0432574 −3.013 0.0026 *** 

θ1 −0.573597 0.0893199 −6.422 1.35e–010 *** 

θ2 0.580649 0.0756998 7.670 1.71e–014 *** 

θ3 0.292143 0.0510679 5.721 1.06e–08 *** 

Θ1 0.153259 0.0890021 1.722 0.0851 * 

Θ2 −0.492000 0.0659440 −7.461 8.60e–014 *** 

Θ3 −0.457309 0.0992678 −4.607 4.09e–06 ***  

Explanations: SD = standard deviation, z = z-statistic, p-value = probability 
value, the *, **, *** = levels of significance, p ≤ 0.05, p ≤ 0.01, p ≤ 0.001, φ, 
Φ, θ, Θ as in Eq. (1). 
Source: own study. 
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sample forecast (2018 to 2022) and in-sample forecasts (2012 to 
2018) of the SARIMA (2, 0, 3) (3, 1, 3)12 model are shown in 
Figure 4. 

DIAGNOSIS OF FORECAST ACCURACY 

In a good SARIMA model, the forecast error or residuals should 
follow assumptions for the stationarity in the time series model. 
In other words, residuals should be white noise or independent. 
To prove this assumption, the autocorrelation of residuals was 
checked from the plots of residual ACF and PACF (Fig. 6). No 

significant correlation was found among the residuals as all of 
them were within the confidence limits of 95% which were close 
to zero. This shows that the residuals were independent or white 
noise and their distributions are normal. Moreover, the absence 
of the autocorrelation of residuals was statistically proved by 
Ljung–Box Q’ test. The Ljung–Box Q’ test value of 4.779 at a p- 
value of 0.3107 was greater than 0.05 significance level (α = 0.05). 
Hence, both graphical and statistical diagnosis showed the 
absence of the residual correlation and proved the highest 
forecast accuracy of the selected SARIMA (2, 0, 3) (3, 1, 3)12 

model. 

Fig. 4. SARIMA (2, 0, 3) (3, 1, 3)12 model forecast of rainfall from 2019 to 2022 using GReTL software; source; 
own study 

Fig. 5. SARIMA (1, 0, 1) (3, 1, 3)12 forecast of rainfall using automatic XLSTAT software; source; own study 
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CONCLUSIONS 

The Turksvygbult rainfall was modelled and forecasted using 
seasonal autoregressive integrated moving average (SARIMA) 
models. The GReTL and automatic forecasting XLSTAT software 
solutions were used for modelling and forecasting the rainfall 
time series. Different statistical and graphical techniques of trend 
tests revealed the absence of significant long-term monthly 
rainfall changes in the study area. Among several models, the 
SARIMA (2, 0, 3) × (3, 1, 3)12 model, which was developed using 
the GReTL software, has shown a minimum Akaike information 
criteria value of 5642.69. The residuals of this model were found 
to be white noise (independent) and thereby proved the highest 
forecast accuracy of the model. Besides, the forecast values of this 
model retained the stochasticity of the rainfall time series as 
compared to that of automatic XLSTAT forecast models. A similar 
pattern of the forecasted graph with that of the recorded rainfall 
data was good evidence for the availability of stochastic 
components in the forecasted time series. This helps to capture 
the rainfall variability in the study area. 

The XLSTAT software automatically selected SARIMA (1, 0, 
1) (3, 1, 3)12 among several models. The advantage of the 
automatic XLSTAT forecasting is its simplicity. Hence it can be 
used by those who have little expertise in time series modelling 
and forecasting. The XLSTAT rainfall forecast values can be used 
for the initial planning of water resources and agricultural 
activities. 

In conclusion, both SARIMA (2, 0, 1) (3, 1, 3)12 and 
SARIMA (1, 0, 1) (3, 1, 3)12 models can be used for rainfall 
modelling and forecasting at the Turksvygbult area. The rainfall 
forecast values of this model can be used for planning and 
management of water harvesting structures, rainfed and irrigated 
agriculture, and the reservoir water operations for domestic and 

other uses, thereby improve economic growth in the study area. 
Moreover, the developed SARIMA modelling and selection 
procedures can be used in other areas for forecasting rainfall 
and other time series. 
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