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Abstract
Vibration analysis for conditional preventive maintenance is an essential tool for the industry. The vibration
signals sensored, collected and analyzed can provide information about the state of an induction motor.
Appropriate processing of these vibratory signals leads to define a normal or abnormal state of the whole
rotating machinery, or in particular, one of its components. The main objective of this paper is to propose
a method for automatic monitoring of bearing components condition of an induction motor. The proposed
method is based on two approaches with one based on signal processing using the Hilbert spectral envelope
and the other approach uses machine learning based on random forests. The Hilbert spectral envelope allows
the extraction of frequency characteristics that are considered as new features entering the classifier. The
frequencies chosen as features are determined from a proportional variation of their amplitudes with the
variation of the load torque and the fault diameter. Furthermore, a random forest-based classifier can validate
the effectiveness of extracted frequency characteristics as novel features to deal with bearing fault detection
while automatically locating the faulty component with a classification rate of 99.94%. The results obtained
with the proposed method have been validated experimentally using a test rig.
Keywords: Induction motor, bearing, fault, outer race, inner race, ENV, RF.
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1. Introduction

Induction motors take an important place in the production industries. Proper dealing with
malfunctions of these motors can satisfy the compromise between the production and the main-
tenance cost. Statistical studies show that most of the faults in induction motors are related to
bearings with an occurrence of 40–50%. Predicting rolling component faults dramatically reduces
maintenance costs such as motor shutdown and spare parts consumption. The monitoring of bear-
ings is a very important aspect of reliability and safety of operation of induction motors; it is
based mainly on the extraction of information revealing the degradation conditions encountered.
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Several physical quantities were used such as flux, torque, speed, temperature, stator current, oil
analysis and vibration analysis to monitor the condition of the bearings [1, 2].

Vibration analysis is the most widely used technique for monitoring and diagnosing bearing
faults. Vibration analysis is performed at three levels: supervision, diagnosis and monitoring.
Supervision uses the so-called global indicators which characterize the modification of the rolling
behavior. Second, the diagnosis is based on signal processing tools in order to locate and identify
faults. Then, monitoring, consists in observing the damage status of each of the defective items [3].

Signal processing-based fault diagnosis methods have recently been most commonly used in
the field of fault detection. Among these methods, there are two most popular analysis methods,
namely,Power Spectral Density (PSD) and spectralEnvelope (ENV), where PSD-based analysis is
the best-known [4,5]. The ENV method uses the high resonant frequency of the bearing to extract
the information necessary to determine the presence of the defect and highlights this information
in a frequency range normally observed in vibration analysis 𝑖.𝑒., 0 ≤ 𝑓 ≤ 1500 Hz [6].

To automate the diagnosis, the localization of the fault after its detection must take place.
Machine learning methods offer classification of different faults while ensuring better fault local-
ization. Implementation of machine learning in addition to signal processing leads to automatic
fault monitoring [7]. Among the machine learning methods, the following methods are the most
widely used: artificial neural network, multi-layer perceptron, naïve-bays, k-nearest neighbors
and random forests. In this regard, several researchers have proven the effectiveness of Random
Forests (RF) giving a high classification rate [8]. RF is composed (as the term “forest” indicates)
of a set of binary decision trees in which randomness has been introduced. These trees are distin-
guished from each other by the subsample of data on which they are trained. These subsamples are
drawn at random (hence the term “random”) from a dataset [9]. The technique of RF modifies the
bagging method applied here to trees by adding a criterion of decorrelation between these trees.
The idea behind this method is to reduce the correlation without overly increasing the variance.
The principle consists in choosing at random a subset of variables which will be considered at
each level of choice as the best node of the tree [10].

Concerning the bearing fault diagnosis, several scientific works have been published for the
detection and localization of defects in bearing components.

In [10], the authors propose a novel method for the inter-shaft bearing faults diagnosis
using acoustic emission signals. Multiple information entropies are used to serve as features
training the RF model. The method is validated with an accuracy of 93.75%. However, the
faults are simulated and are not experimentally realized in the bearings. This fact can reduce the
effectiveness of the method. Otherwise, acoustic emission signals contain a lot of mechanical
noise due to a complicated signal transmission path. Thus, a de-noising method must be used as
pre-processing in order to filter and reduce the noise when applying the multi-domain entropy
method.

The authors in [11] analyze vibration signals using the fast Fourier transform and the Hilbert
transform to obtain the envelope signals. Then, to automate the bearing faults detection process,
three types of neural networks were tested and compared in terms of the network architecture and
the number of parameters of the learning process. The detector based on the Hilbert Transform
increases the stability and has an accuracy varying between 95% and 100%.

A condition monitoring method for detecting different fault severities in the outer race of
bearings is proposed in [12]. Different physical magnitudes, notably vibrations and stator current,
are represented in both time and frequency domains. In this regard, hybrid features are extracted
leading to a high-performance signal characterization. However, a feature reduction technique
is necessary used to keep the informative features while reducing the dimensionality. A neural
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network-based machine learning technique correctly identifies the fault severity in the outer race
of a bearing with an accuracy of 98.7%.

In [13], the authors present a literature survey of the works dealing with bearing fault detection
from 2012 to 2019. This study indicates the effectiveness of different machine and deep learning
techniques in the bearing fault monitoring. Furthermore, a comparative study is carried out
between three classification techniques for the bearing fault detection, namely; random forests,
an artificial neural network, and an autoencoder. This later gives the highest accuracy of 91%
compared to the two other techniques.

In this paper, the proposal of a bearing condition monitoring method is supported by the use
of the Hilbert-based signal processing technique. Vibration signals are analyzed in order to avoid
the pre-processing step. Statistical frequency-domain features are preferred due to their simplicity
of calculation and their significance in fault characterization. In fact, an important aspect related
to changes of the load and the fault diameter is proposed for the features extraction which is
obtained from the spectral envelope to characterize the acquired vibration signals.

Furthermore, although the analysis of fault-related frequency components produced by bearing
failures leads to detecting the faults, additional knowledge and experience is necessary to classify
the faults. Random forests-based machine learning is incorporated to achieve automatic fault
diagnosis. Thereby, the effectiveness of this proposal is proved since different bearing conditions
are effectively diagnosed and identified using the benchmarked dataset provided by Case Western
Reserve University (CWRU). The assessed conditions comprise a healthy condition and different
faulty conditions with a damage of 0.1778 mm and 0.5334 mm for the inner race, outer race and
rolling element while the motor drives no-load, then drives three different loads.

The rest of the paper is organized as follows: in Section 2, we briefly discuss the characteristic
frequencies of a faulty bearing. The third Section 3 represents the test rig and the data set used in
this paper. In the next section, we detail the method of fault detection while localizing the faulty
components in a bearing, then the criteria evaluation of the method is presented. In section 5, we
justify the preference of the method using a comparison of the method proposed in this paper
with previously completed works in terms of performance. Finally, Section 6 closes the paper
with a conclusion.

2. Brief on the frequencies characterizing the bearing faults

The rolling bearing structure is shown in Fig. 1 and the frequencies characterizing the faults
are determined from the geometry of the bearing shown in Fig. 2.

Fig. 1. Diagram of the construction of a rolling
bearing [11].

Fig. 2. Geometric characteristic of a bearing.
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With 𝑛𝑏 – the number of rolling components, 𝐷 – the intermediate diameter, 𝑑 – the diameter
of the rolling components, 𝛼 – the contact angle, 𝑓𝑟 – the rotation frequency is defined as follows:

𝑓𝑟 =
𝑛

60
, (1)

where 𝑛 is rotation speed of the induction motor.
The vibratory signature of a fault affecting a bearing outer race is a comb of lines whose pitch

corresponds to the frequency characterizing the fault in the vibration spectrum. Each component
of this comb is associated with a pair of side bands spaced apart by the frequency of rotation. Its
characteristic frequency is given by the following equation [14]:

𝑓𝑜𝑟 =
𝑛𝑏

2
𝑓𝑟

[
1 − 𝑑

𝐷
cos𝛼

]
. (2)

The vibratory signature of a fault affecting the inner race of a bearing is a comb of lines
whose pitch corresponds to the frequency characterizing the fault in the vibration spectrum. This
frequency is modulated by the frequency of rotation of the shaft (side bands around the fault line).
Its characteristic frequency is given by [15]:

𝑓𝑖𝑟 =
𝑛𝑏

2
𝑓𝑟

[
1 + 𝑑

𝐷
cos𝛼

]
. (3)

The vibration signature of a defect affecting the rolling element is a comb of lines. Each
component of this comb is associated with several pairs of sidebands spaced at the frequency of
the cage defined by the equation (4). The characteristic frequency of the rolling element fault is
given by the equation (5) [15]:

𝑓𝑐 =
𝑓𝑟

2

(
1 ± 𝑑

𝐷
cos𝛼

)
, (4)

𝑓𝑟𝑒 =
𝐷

𝑑
𝑓𝑟

[
1 −

(
𝑑

𝐷
cos𝛼

)2
]
. (5)

3. Test rig and data set

The vibration data sets can be obtained from CWRU [16]. A test rig permits extracting the
vibration signals from the bearings, as Fig. 3, shows. The equipment is made up of an electric
motor, a torque transducer, a dynamometer, and the tested bearings. An electric motor with a power
of 1.5 kW drives a load through a shaft connected by a coupling. On this shaft, a torque transducer
and encoder are built-up to ensure speed and torque data measurements. Then, accelerometers are
combined with the motor housing with a magnetic base in order to provide the vibration signals.

In order to apply different motor loads (0–12.3 Nm), an embedded electronic control unit
was used with a dynamometer known as absorbing dynamometer. This latter behaves like a load
driven by the induction motor. The amount of the applied torque is proportional to the motor load
that has been handled by variable frequency drive using the control unit. Thus, increasing the
motor load leads to increasing the torque with simultaneous reduction of shaft speed. The motor
load of 0 Nm represents the condition of no-load.

The vibration data sets gather about 20 normal and faulty cases of bearings. Among them,
four cases are issued under normal conditions, while the rest of the data sets are collected from
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Fig. 3. Experimental test rig.

faulty bearings with 0.1778 mm minor fault and 0.5334 mm severe fault. The faults addressed
herein are those of the inner race, outer race and rolling. Defects in the outer race, ball and inner
race are introduced into the bearing by electroerosion (EDM – Electrical Discharge Machining).
The EDM technique is a process for treating hard metals or mechanical components that could not
be penetrated with traditional processes. The defect then corresponds to a circular hole; its size
is thus defined by the diameter. The defect diameter of 0.1778 mm corresponds to an incipient
defect and the defect diameter of 0.5334 mm is a deep defect.

Experimentally, accelerometers used to measure the data sets are connected to the motor drive
end based on a magnetic base. Accelerometers were placed at the 12 o’clock position at both
the drive end and the fan end of the motor housing. During some experiments, an accelerometer
was attached to the motor supporting base plate as well. Vibration signals were collected using
a 16 channel DAT recorder, and were post processed in MATLAB environment. The data sets
are sampled at a rate of 12000 samples/s [16]. During each test, the average speed measured
represents the provided rotational speed.

4. Bearing fault detection and localization method

4.1. Fault detection based on the Hilbert envelope analysis

A localized defect in a bearing results in the presence of a periodic pulse in the time signal that
can be used for diagnostics. The Hilbert Envelope analysis of is a technique for early detection
of shock-type faults. It is based on the Hilbert transform which is widely used for diagnosis of
rotating machinery.

The Hilbert transform of a signal 𝑥(𝑡) is defined by the following equation [17]:

𝑥(𝑡) = 1
𝜋

∫ (
𝑥(𝜏)
𝑡 − 𝜏

)
d 𝑡, (6)

where 𝑥(𝑡) is the imaginary part of the analytical signal, 𝑧(𝑡) which is defined as follows [18]:

𝑧(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡) = 𝑥(𝑡) + 𝑗𝐻 [𝑥(𝑡)] = 𝐴(𝑡)𝑒 𝑗 𝜑 (𝑡) , (7)

where 𝐻 [𝑥(𝑡)] is the Hilbert transform of 𝑥(𝑡).
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The envelope of signal 𝐴(𝑡) is represented by the modulus of the analytical signal 𝐴(𝑡) =

[𝑥(𝑡)]. The phase and instantaneous frequency of the signal are given by the following equa-
tions [19, 20]:

𝜑(𝑡) = arctan
[
𝑥(𝑡)
𝑥(𝑡)

]
, (8)

𝜔(𝑡) = d𝜑(𝑡)
d 𝑡

. (9)

In practice, the envelope method requires a series of processing of raw time signal before
obtaining the result. These steps are summarized as follows:

– Step 01: Filtering the raw signal to remove unwanted components,
– Step 02: Applying the Hilbert transform to calculate the envelope,
– Step 03: Calculating the envelope spectrum, then extracting information about the fault.

Table 1 shows the dimensions and parameters of 6205-2RSJEM-SKF 𝑖.𝑒., a typical bearing.

Table 1. Parameters of the bearing 6205-2RSJEM-SKF.

Parameters Values

Bearing type 6205-2RSJEM-SKF

Inner race diameter 25 mm

Outer race diameter 52 mm

Intermediate diameter 39 mm

Ball diameter 8 mm

Number of balls 9

Contact angle 0 rad

The theoretical fault frequencies used the two equations (1) and (2) for the example of the
motor with no-load under fault diameter of 0.1778 mm are summarized in Table 2.

Table 2. Calculated theoretical frequencies.

Rotation frequency Outer race frequency Rolling element frequency Inner race frequency

29.95 Hz 107.12 Hz 139.86 Hz 162.42 Hz

Fig. 4 shows the vibratory signatures and the spectral envelope analysis for the following
cases: healthy bearing, bearing with an outer race fault, bearing with a rolling element fault and
a bearing with an inner race fault for the example of the motor with no-load under fault diameter
of 0.1778 mm. The ENV in Fig. 4a shows clearly the frequency of rotation 𝑓𝑟 = 30 Hz and
its harmonic 2 𝑓𝑟 . One can see that there are no frequencies of faults. This confirms that the
bearing is in healthy condition. The envelope spectrum of the vibratory signal of the bearing
under outer race fault is shown in Fig. 4b. For the rotation speed of 1797 RPM, the ENV
shows the following frequency peaks: 𝑓𝑜𝑟 = 108 Hz, 𝑓𝑜𝑟 − 𝑓𝑟 = 78 Hz, 𝑓𝑜𝑟 + 𝑓𝑟 = 138 Hz,
2 𝑓𝑜𝑟 = 216 Hz, 2 𝑓𝑜𝑟 − 𝑓𝑟 = 185 Hz, 3 𝑓𝑜𝑟 = 324 Hz and 3 𝑓𝑜𝑟 − 𝑓𝑟 = 293 Hz. These frequencies
are very close to those calculated theoretically for the fault of the outer race. Thus, a defect is
definitely present in the outer race. When a rolling element fault occurs in bearing, the envelope
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spectrum of the vibratory signal is as shown in Fig. 4c represents the following frequency peaks:
𝑓𝑟𝑒 = 140.09 Hz, 3 𝑓𝑟𝑒 = 420.27 Hz and 4 𝑓𝑟𝑒 = 560.36 Hz. These frequencies are very close to
those calculated theoretically for the fault of the rolling element. Accordingly, a defect the rolling
element is present. Likewise, Fig. 4d represents the envelope spectrum of the vibratory signal
when the bearing has an inner race fault. Also, for the speed of rotation of 1797 rpm, the following
frequency peaks appear: 𝑓𝑖𝑟 = 162 Hz, 𝑓𝑖𝑟 − 2 𝑓𝑟 = 102 Hz, 𝑓𝑖𝑟 + 2 𝑓𝑟 = 222 Hz, 2 𝑓𝑖𝑟 = 324 Hz
and 2 𝑓𝑖𝑟 + 2 𝑓𝑟 = 384 Hz. These frequencies are very close to those calculated for the fault of the
inner race. This clearly indicates the presence of a fault in the inner race.

a)

b)

c)

d)

Fig. 4. Vibratory signatures and spectral envelope analysis: a) healthy bearing; b) bearing with an outer race fault;
c) bearing with a rolling element fault; d) bearing with an inner race fault.
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4.2. Localization of the defected component based on RF

The RF classification algorithm is given by the following steps [21]:
Step 01: Collect the training sample set and extract features for each sample to form a sample
feature set with a total of 𝑁 samples with each sample having 𝐿 feature attributes;
Step 02: Perform independent repeated sampling in the sample feature set 𝑆, select 𝑛 samples as
1 sample set, repeat 𝐾 times, and obtain 𝐾 sample sets;
Step 03: Randomly select 𝑙 from all 𝐿 feature attributes in each sample set, and then obtain 𝐾
sample sets with l feature attributes;
Step 04: Take 1 feature attribute as input to the decision tree, so 𝐾 sample sets can generate 𝐾
decision trees to form an RF;
Step 05: Diagnose the test samples with the generated decision tree and use integrated voting
calculation to obtain the diagnosis and recognition results of the RF according to the recognition
results of all decision trees.

4.3. New feature extraction method

In order to extract the features from the characteristic frequency peaks given by the ENV of
the different healthy and faulty cases, the amplitudes of these frequencies are analyzed then for
four different loads (0 Nm, 4 Nm, 8 Nm and 12.3 Nm) and under different fault diameters (0 mm,
0.1778 mm, 0.3556 mm and 0.5334 mm). Several instances of amplitudes of selected harmonics
are shown in Fig. 5 for the examples of 0 Nm load with varying fault diameter (Fig. 5a) and the
examples of a severe diameter fault while changing the load torque (Fig. 5b).

a) b)

Fig. 5. Selected harmonic amplitudes of characteristic frequencies obtained using ENV for (a) different fault diameters
with no-load; (b) different load torques under 0.5334 mm fault diameter.

Detailed analysis allowed checking how the load torque and fault diameter affected the
harmonic amplitudes of characteristic frequencies. From Fig. 5, the selected harmonics are char-
acterized by certain accordance with the change in the load torque and fault diameter value.
A significant increase in amplitude is observed when the fault diameter increases as shown in
Fig. 5a. Moreover, once the load torque value increases as shown in Fig. 5b, the selected har-
monics are characterized by an increase in amplitude. This condition is fulfilled by the following
frequencies: 𝑓𝑟 , 2 𝑓𝑟 , 𝑓𝑖𝑟 , 2 𝑓𝑖𝑟 , 3 𝑓𝑖𝑟 , 𝑓𝑟𝑒, 3 𝑓𝑟𝑒, 4 𝑓𝑟𝑒, 𝑓𝑜𝑟 , 2 𝑓𝑜𝑟 and 3 𝑓𝑜𝑟 . This leads to these fre-
quencies being considered as new features that will be used to train the machine learning system
based on RF.

340



Metrol. Meas. Syst.,Vol. 29 (2022), No. 2, pp. 333–346
DOI: 10.24425/mms.2022.140038

4.4. Random forests training system

To complete the diagnosis process for bearing faults, the RF-based machine learning is used
to localize the fault (outer race fault, rolling element fault and inner race fault). The structure of
the RF model and its schematic diagram are shown in Fig. 6.

Fig. 6. Schematic diagram of RF.

To train the machine learning technique based on RF, the dataset is divided into a training
subset containing 80% (48 signals) of the data and a testing subset containing 20% (12 Signals)
of the data. This ratio is selected empirically based on a literature check according to the results
in [22], the split ratio 80:20 is observed as a more accurate split when using RF, in particular for
bearing fault classification [23].

4.5. Evaluation criteria

The performance of fault classification can be assessed in terms of accuracy, sensitivity,
specificity, precision and g-mean.

The accuracy is the percentage of examples that are correctly classified. It is defined as
follows [24]:

Acc =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. (10)

The sensitivity is the ability to get a positive result when a fault occurs. It is defined as
follows [24]:

Sens =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (11)

The specificity is the ability of getting a negative result once the fault is absent. It is defined
as follows [24]:

Spec =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (12)

The precision is the ratio of predicted positive examples which are really positive. It is defined
as follows [24]:

Prec =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (13)

341

https://doi.org/10.24425/mms.2022.140038


B.D.E. Cherif, S. Seninete, M. Defdaf: A NOVEL, MACHINE LEARNING-BASED FEATURE EXTRACTION METHOD . . .

The G-mean is the geometric mean of sensitivity and precision. It is defined as follows [24]:

G-mean =
√

Sens × Prec , (14)

where 𝑇𝑃: True positive; 𝑇𝑁 : True negative; 𝐹𝑃: False positive and 𝐹𝑁 : False negative.
Figure 7 shows the accuracy as a function of the trees number. It also shows that 28 is the

optimal value for the trees number of RF, with an accuracy equal to 99.94%. From this result it
can be concluded that the implementation of RF-based machine learning technique improves the
efficiency of localizing the defective bearing component. The difference in the behavior of RF
based on the ENV technique can be seen in the result shown in Fig. 7. The output of RF based on
ENV gives a good result, as far as the expected output is achieved. This considerably increases
the stability and the average accuracy of detection and localization, as shown in Fig. 8.

Fig. 7. Accuracy as a function of trees number. Fig. 8. Waveforms of output values of RF based on ENV.

Table 3 summarizes the evaluation criteria of RF-based machine learning technique.

Table 3. Evaluation criteria of the RF.

Technique Accuracy Sensitivity Specificity Precision G-mean

RF 0.9994 0.9870 0.9586 0.9892 0.9881

Although the database is limited, the sensitivity shows a very high rate of 98.70%. This
indicates a very high capacity to obtain a true positive result while the bearing is faulty. In
addition, the specificity tends towards a very high rate of 95.86%, in other words, the probability
of obtaining a negative result when the bearing is healthy, is very common. Moreover, the classifier
is very precise with a rate of 98.92%, hence the ability to predict a true positive result from all
cases predicted positive by the classifier is very high. Otherwise, the G-Mean rate is an indication
of a good or bad performance in the classification of the positive cases even if the negative
cases are correctly classified as such. Herein, the G-mean value has a high rate of 98.91% that
denotes well classified positive cases. Finally, the accuracy or the rate of correctly classified cases
equal is to 99.94%. These performance measurement results prove the classifier’s capacities and
effectiveness.

5. A comparison of the proposed method with other works

A comparison of the method proposed with other recent works, in terms of accuracy, is
presented in Table 4.
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Table 4. Accuracy comparison among the different methods.

Methods Classification Accuracy (%)

Linear discriminant analysis – Neural Network [25] 98.7

Multi-domain entropy – RF [10] 94.4

Principal component analysis – long short-term memory – RF [26] 96.04

Multigrained scanning – Cascade forest [27] 96.99–98.54

Genetic algorithm – RF [28] 99.5

ENV – RF 99,94

6. Conclusions

In this paper, an automatic diagnosis method for the detection and localization of the outer race
fault and inner race fault of bearing of an induction motor is discussed. This proposed diagnosis
method using the combination of the Hilbert transform based on the spectral envelope is applied
to extract new features for training the random forest-based machine learning. The Hilbert spectral
envelope is used to detect the frequencies that characterize both outer race and inner race faults.
Then some frequencies are characterized by certain regularity with the change of the torque value
and the fault diameter which leads to extracting new features. The RF machine learning technique
shows excellent performance with accuracy equal to 99.94%, in locating defect components in the
bearing. The proposed diagnosis method is more efficient and sensitive in detecting and localizing
the bearing defect compared with some other recent methods. The various results obtained are
validated by several experimental tests carried out at CWRU in order to evaluate the effectiveness
of the ENV-RF diagnosis method based on the novel feature extraction method presented in this
paper.

RF has several important advantages that should be taken into account, 𝑖.𝑒., simpler archi-
tecture, shorter learning time and therefore lower computational complexity, including lower
requirements on the power of processors during practical implementation. RF still is able to
meet these requirements and is much less time-consuming in training and simpler in practical
implementation than the more popular deep-learning networks. Also, a further extension of this
method is being carried out for other types of induction motor faults.
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