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The identification of coal and gangue 
and the prediction of the degree of coal metamorphism based 

on the EDXRD principle and the PSO-SVM model

Introduction

Nowadays, coal is the world’s main energy source and raw coal needs to be washed and 
processed after mining in order to be used. The separation of coal from gangue is an essen-
tial part of the coal production process, as gangue is an inevitable waste product of the coal 
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mining process. Waste rock removal is the basis for the production of clean energy from 
coal, and the reduction of waste rock particle can reduce PM2.5 emissions (Cao et al. 2020; 
Alfarzaeai et al. 2020). Continuous attention is paid to the quality of coal and environmental 
protection nowadays; with conventional coal and gangue sorting technologies, there exists 
a large labor force, non-automation, water waste and pollution of the environment and other 
shortcomings which cannot meet the development of green mines and coal mine intelligence 
(Sun et al. 2019). New coal and gangue sorting technology has rapidly appeared and fruitful 
results have been achieved.

Dry ray coal-separation technology has entered a rapid development stage since the 21st 
century with the development of dual-energy X-ray based coal and gangue separation de-
vices by RWTH Aachen University in Germany, the University of Witwatersrand in South 
Africa, and the Federal University of Rio de Janeiro in Brazil on their own or in cooperation 
with companies (Robben et al. 2019; Von Ketelhodt et al. 2010). Research on X-ray coal and 
gangue separation has been carried out by a number of universities since 2010, focusing on 
the identification of coal and gangue as well as the optimization of the separation system and 
the extraction of X-ray image recognition features in conjunction with the improvement of 
the recognition algorithm (Kuerten 2017; Wang 2021). In 2015, the successful application of 
the Deep Face project in face recognition and the emergence of Alpha Go Zero proved that 
deep learning algorithms are a cut above the rest in image recognition (Ranjan et al. 2017; 
Silver et al. 2016). This technique has also been applied to coal and gangue image detec-
tion by researchers, mainly from coal and gangue image feature fusion (Singh et al. 2006), 
network light-weighting (Xu et al. 2020), and light source type transformation (Zhang et al. 
2022). Nonetheless, the application of coal and gangue identification methods based on ma-
chine vision is severely restricted by a series of objective conditions such as downhole dust, 
noise, light and space. The rapid development of spectral technology and sensor technology 
in recent years has set off a boom in the infrared spectral identification of coal and gangue. 
Song et al. (Song et al. 2017) found that coal and gangue had “different bodies with the 
same spectrum” in the visible-near-infrared band and proposed a coal and gangue classifica-
tion method based on visible-near-infrared and thermal infrared spectral conjoint analysis. 
Achievements of the above experimental research for the solution of coal and gangue iden-
tification are of guiding significance. As a result of these studies, the identification of coal 
and gangue has been studied, but the refined identification of coal types has been neglected.

Stored in China from lignite with a low degree of metamorphism to anthracite with a high 
degree of metamorphism, characterizing the degree of metamorphism, whereby the coal 
tends to approach graphite, is the basis for an in-depth study of coal refinement identification. 
According to the degree of metamorphism, coals are mainly divided into the following three 
types: low-deteriorated coal, such as, lignite, long-flame coal and gas coal, the vitrinite of 
which means random reflectance (Rran) is less than 0.6%; medium-deteriorated coal, such 
as, gas-fat coal, fat coal, coking coal, for which Rran is 0.6~2.0%; high-deteriorated coal, 
such as lean coal, poor coal, anthracite coal, with Rran larger than 2.0% (Energy/2000/12). 
Methods for characterizing the metamorphism degree of coal currently includes optical  
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microscopy, microscope photometer, electron microscopy, Raman and infrared spectrosco-
py, and X-ray analysis (Bassett et al. 2006; Xin et al. 2014). Of these strategies, the X-ray dif-
fraction method is a more ideal method to determine the metamorphism degree of coal as the 
information obtained directly reflects the microstructural information of coal in comparison  
with several other methods (Wang et al. 1998; Saikia et al. 2008). Ju et al and Xiang et al.  
(Ju et al. 2014; Xiang et al. 2016) studied the microcrystalline structure in coal and the carbon 
structure characteristics of coals with different degrees of metamorphism using XRD. The 
more consistent view was that as the metamorphism degree of coal increased, the aliphatic 
structure in coal decreased and the aromatic structure increased, and the structure of coal 
gradually tended to be graphitized (Luo et al. 2004; Barnakov et al. 2016). Based on this con-
clusion, Qian et al. (Qian et al. 2017) used XRD to analyze the layer spacing (d002) and stack-
ing height (L002) of the aromatic structural units of coal dust, and then determined the degree 
to which the crystal structure converged to graphite before and after the coal dust explosion 
by the changes in d002 and L002. The above studies, known as the ADXRD technique, have 
investigated the degree of coal deterioration, but the ADXRD technique is unable to meet the 
real-time requirements of item detection. With advantages such as simple system structure, 
no need for angular scanning structure and high work efficiency compared to ADXRD, the 
EDXRD technique is widely used for the real-time detection of items (Luggar et al. 1998). 
A proposal was made by Tongji University in 2019 to apply “energy dispersive X-ray dif-
fraction” to the field of security inspection to achieve the accurate investigation of luggage 
and courier boxes (Chen et al. 2019). Nevertheless, applications of EDXRD technology in the 
field of coal and gangue identification have rarely been reported.

By combining the advantages of the ADXRD technique in characterizing the metamor-
phism degree of coal and the real-time nature of the EDXRD technique in detecting the 
items, this paper investigates coal and gangue identification and the prediction of the coal 
metamorphism degree based on the X-ray diffraction principle. Major coal varieties as well 
as gangue in the Huainan mining area were studied in this paper and both ADXRD and 
EDXRD patterns of the samples were collected. Differences in the physical phase informa-
tion contained in the EDXRD patterns of coal and gangue are analyzed to extract the iden-
tification features of coal and gangue and to achieve the identification of coal and gangue 
by the PSO-SVM model. Then, the ADXRD technique for characterizing the metamor-
phism degree of coal was converted into the EDXRD technique, which was embedded in the  
PSO-SVM identification model to achieve the model’s prediction of the metamorphism de-
gree of coal for the purpose of the initial screening of coal types.

1. Materials

The coal used in this study was all mined from the main mining seam 11# of the Pan 
San Mine in the Huainan Coal field, and the detailed parameters are shown in Table 1. The 
instruments used for the proximate analysis, the vitrinite mean random reflectance and the 
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elemental analysis of the coal samples were SX2-10-12N, HD Microphotometer and Elemen-
tar Vario EL III, respectively, and the results are as shown in Table 2.

The suffix “ad” means that when the coal quality is analyzed, the coal is in a state of air 
drying.

Proximate analysis:
�� Mad: moisture in coal when it is dry in the air.
�� Aad: ash content, is the remains of minerals in coal that have been burned and de-

composed under air drying.
�� Vad: volatile, is calculated from the dry matter of coal (excluding water), and the 

calculation formula is shown in Equation (1).

	 1 100
m

Vad Mad
m

= ⋅ − � (1)

Where m is the quality of test samples, and its unit is grams; m1 is the reduced mass of 
coal after heating, and its unit is grams.

Vdaf: volatiles without ash, this is the volatile calculated after deducting moisture and 
ash. The calculation formula is shown in Equation (2).

Table 1.	 The detailed parameters of samples

Tabela 1. 	 Szczegółowe parametry próbek

Number of coal 
seam

Name of working 
surface Mining depth (m) Coal type

11–2
1 231(1) –625 ~ 759 1/3 coking coal

2 121(1) –780 ~ –818 gas coal

Table 2. 	 Proximate analysis and elemental analysis of the coal samples

Tabela 2. 	 Analiza bezpośrednia i analiza elementarna próbek węgla

Coal type
Proximate analysis (wt%) Vitrinite Mean Random Reflectance 

Mad Aad Vadf Vad FCad Rran (%)

1/3 coking coal 0.8 19.2 34.8 27.8 52.2 0.61

Gas coal 1.0 40.0 38.9 22.9 36.1 0.54

Coal type
Elemental analysis (wt%)

Cad Had Oad Nad St, ad

1/3 coking coal 57.3 2.6 18.7 0.5 0.2

Gas coal 54.0 3.9   9.9 0.7 0.4
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100

100
VadVdaf

Mad Aad
= ⋅

− −
� (2)

�� FCad: Fixed carbon in coal. The calculation formula is shown in Equation (3).

	 100 ( )FCad Mad Aad Vad= − + + � (3)

Elemental analysis:
�� Cad: represents the carbon content of the coal.
�� Had: represents the hydrogen content of the coal.
�� Oad: represents the oxygen content of the coal.
�� Nad: represents the nitrogen content of the coal.
�� St,ad: total sulfur, represents the total sulfur content of coal, including organic sulfur 

and inorganic sulfur.

2. Experimental principles and methods

2.1. EDXRD pattern acquisition

The test was supported by Shanghai Microspectrum Chemical Technology Service Co., 
Ltd. Figure 1 shows the working principle of EDXRD, the X-ray is generated by an X-ray tube, 
which penetrates the sample and then diffracts. The diffracted X-ray enters the detector, which 
is processed by the data analyzer to obtain the EDXRD pattern. The operating angle θ is fixed, 
and the formula of the EDXRD principle can be expressed as (Cook et al. 2007):

	

2 sin
2

hcE
d θ 

 
 

= � (4)

E is the X-ray energy, h and c are Planck’s constant and lightspeed, respectively, d is the 
interplanar spacing, and θ is the operating angle.

Fig. 1. Schematic diagram of the EDXRD

Rys. 1. Schemat ideowy EDXRD
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A tungsten target X-ray tube was used to generate the X-ray energy spectrum with 
an operating voltage and current of 80 kV and 10 mA, respectively, and the detector was 
a CdTe energy spectrum detector with a crystal area of 25 mm2 and an energy resolution of 
0.6 keV at 60 KeV. The operating angle was 5° and the energy resolution of the system was 
ΔE/E = 0.0355. 

2.2. ADXRD pattern acquisition

The Smartlab SE X-ray diffractometer from Rigaku Corporation was used for this test 
to analyze the phase composition of the samples. Figure 2 shows the working principle of 
ADXRD – X-rays with single energy irradiate the object that is to be measured. The detector 
scans around the object at a certain angular velocity, and when the angle satisfies Bragg’s 
diffraction law, as shown in Equation 5, an ADXRD pattern about the diffraction angle and 
the intensity of the diffracted light is obtained (Zhu et al. 1987).

	 2 sind nθ = λ � (5)

ªª θ	 –	 angle between an incoming ray and a reflected crystal surface,
d	 –	 interplanar distance,
n	 –	 diffraction order,
λ	 –	 wavelength of X-ray.

The anode target is Cu Kɑ target, the X-ray tube voltage is 40 kV, the working current is 
150 mA, the scanning speed is 10°/min, and the scanning range (2θ) is 20°~55°. 

2.3. PSO-SVM Recognition model

Classification or regression prediction models generally adopt SVM, neural networks, 
decision trees, clustering, and other modeling methods in the case of small data sets (Wang 
et al. 2021), of which SVM has a better classification effect. In this paper, the Libsvm-Faruto 

Fig. 2. Schematic diagram of the ADXRD

Rys. 2. Schemat ideowy ADXRD
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Ultimate software package was adopted to achieve coal and gangue classification, which can 
solve multi-classification problems, regression problems, and distribution estimation prob-
lems (Zhang et al. 2020). Libsvm-Faruto Ultimate, written by Faruto and Li yang, is a tool-
box with implementations for support vector machines based on libsvm (Chang et al. 2011). 
For the SVM model, choosing a suitable kernel is imperative to the success of the learning 
process. Since the Gaussian radial basis function has a strong ability to deal with different 
characteristic parameters and nonlinear class relations (Guo et al. 2021), the gaussian radial 
basis function is adopted as the kernel function in this paper. The hyperplane discriminant 
function and kernel function of SVM classification established in this paper are expressed 
as follows:

	
( ) sgn ( , )i i i

i SV
f x y a K x x b

∈

 
= + 

  
∑

� (6)

	 2

2( , ) exp
2

i
i

x x
K x x

g

 − = −
 
 

� (7)

ªª sgn		  –	 symbolic function, 
SV			  –	 set of support vector points,
K(xi, x)	 –	 kernel function,
g			   –	 width of the Gaussian meridional basis kernel function.

Compared with Libsvm, Libsvm-Faruto adds more functions, such as grid search, genet-
ic algorithm (GA) and particle swarm optimization (PSO) algorithms to optimize the penalty 

Fig. 3. The specific algorithm flow of PSO-SVM

Rys. 3. Specyficzny przebieg algorytmu PSO-SVM
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parameter (c) and kernel function parameter (g). The particle swarm optimization (PSO) al-
gorithm is a global optimization algorithm for evolutionary computation techniques, which 
has advantages in terms of parameter selection and convergence speed (Shrivastava et al. 
2015). The PSO algorithm is used in the paper to seek the optimal combination of parameters 
c and g. The specific algorithm flow is shown in Figure 3.

3. Results and discussion

3.1. ADXRD and EDXRD pattern analysis of gas coal,  
1/3 coking coal and gangue

Figure 4 shows the ADXRD and EDXRD patterns of gangue, gas coal and 1/3 coking 
coal. Gangue (as shown in Figure 4a) shows distinctive peaks around A = 21, 27 and 50°, 
corresponding to 100, 101 and 112 diffraction peaks of SiO2, respectively. A = 25° is the 
diffraction peak of kaolinite, indicating that the physical phase of the gangue is mainly SiO2 
with a small amount of kaolinite. The diffraction peaks at around A = 25° of gas coal and 
1/3 coking coal (shown in Figures 4b and c) correspond to the 002 diffraction peak of graph-
ite which reflects the degree of parallel orientation of the aromatic structural units in coal, 
namely, the vertical order degree of aromatic structural units (Xiang et al. 2016).

As Figure 5 shows, gangue has obvious diffraction peaks at around E = 35 KeV and 
44  KeV (Figure 5a), gas coal has obvious diffraction peaks at around E = 40 KeV and 
43 KeV (Figure 5b), and 1/3 coking coal has broad diffraction peaks at around E = 40 KeV  

Fig. 4. The ADXRD patterns of gangue (a), gas coal (b) and 1/3 coking coal (c)

Rys. 4. Modele ADXRD skały płonnej (a), węgla gazowego (b) i 1/3 węgla koksowego (c)
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(Figure 5c). Based on equations (4) and (5), the interplanar spacing d corresponding to the 
positions of diffraction peaks in the EDXRD and ADXRD patterns of gangue, gas coal, and  
1/3 coking coal can be calculated, the results of which are shown in Table 3. As can be seen 
from Table 3, in the EDXRD pattern of gas coal, the diffraction peaks at E ≈ 40 KeV and 

Fig. 5. The EDXRD patterns of gangue (a), gas coal (b) and 1/3 coking coal (c)

Rys. 5. Wzorce EDXRD skały płonnej (a), węgla gazowego (b) i 1/3 węgla koksowego (c)

Table 3. 	 The Position diffraction peaks and corresponding plane spacing d in EDXRD and ADXRD patterns  
	 of gangue, gas coal and 1/3 coking coal

Tabela 3. 	 Piki dyfrakcji położenia i odpowiadające im odstępy między płaszczyznami d we wzorcach EDXRD  
	 i ADXRD skały płonnej, węgla gazowego i 1/3 węgla koksowego

Item
EDXRD ADXRD

diffraction peak Position (KeV) d (nm) diffraction peak Position (°) d (nm)

Gangue
34.6 0.40 21.0 0.42

44.0 0.32 26.8 0.33

Gas coal
40.3 0.35 25.2 0.35

42.8 0.33 26.9 0.33

1/3 Coking coal 40.0 0.35 25.1 0.35
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43 KeV correspond to the interplanar spacing d values of 0.35 nm and 0.33 nm, respectively, 
in the ADXRD pattern of gas coal, the diffraction peaks at around A = 21° and 27° corre-
sponds to the interplanar spacing d values of 0.35 nm and 0.33 nm, according to the results 
of gas coal’s ADXRD pattern, the diffraction peaks of gas coal at E ≈ 40 KeV and 43 KeV 
represent the (002) crystal plane of graphite and (101) crystal plane of SiO2, respectively. 
Similarly, in the EDXRD pattern of gangue, the diffraction peaks at E ≈ 35 KeV and 44 KeV 
correspond to the (100) and (101) crystal planes of quartz, respectively. In the EDXRD  
pattern of 1/3 coking coal, the diffraction peak at E ≈ 40 KeV represents the (002) crystal 
plane of graphite.

3.2. Prediction of the degree of coal metamorphism

Coal is not crystalline, but a fraction of ordered carbon is present within it, and this is 
formed by stacking several aromatic structural units in the coal at different degrees of par-
allelism, called microcrystals. Analysis by X-ray diffraction can reveal the orderliness of the 
arrangement of carbon atoms in coal (Jiang et al. 1998; Saikia 2010) leading to an analysis of 
the metamorphism degree of coal.

The degree of metamorphism of coal, which can be expressed by the degree of graphiti-
zation, was proposed by two scientists, Mering and Marie, in conjunction with Franklin’s 
carbon structure model, and can be expressed in a simplified form as:

	 G = (0.3340 – d002) / (0.3340 – 0.3354)� (8)

ªª G		  –	 the graphitization degree of coal-series cryptocrystalline graphite,
0.3340	–	 the carbon interlayer spacing of a disordered structure,
0.3354	–	 the interlayer spacing of complete graphitized carbon,
d(002)	 –	 the interplanar spacing corresponding to the (002) diffraction peak  

			   of the graphite in the ADXRD pattern.

According to Section 4.1, the ADXRD pattern of 1/3 coking coal and gas coal shows 
that the diffraction peak at around A = 25° represents the (002) crystal plane and d(002) can 
be calculated according to Equation (5). In the EDXRD patterns of 1/3 coking coal and gas 
coal, the diffraction peak at around E = 40 KeV represents the (002) crystal plane and d(002) 
can be calculated according to Equation (4). The graphitization values of 1/3 coking coal and 
gas coal in Figure 4 and 5 calculated by the ADXRD technique and the EDXRD technique 
are shown in Table 4. A graphitization error of no more than 5% can be seen from Table 4 
for both techniques; therefore, the EDXRD technique predicts the graphitization of coal with 
improved efficiency and no loss of accuracy.
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Table 4. 	 The graphitization degree of 1/3 coking coal and gas coal calculated b ADXRD and EDXRD

Tabela 4. 	 Obliczony stopień grafityzacji 1/3 węgla koksowego i gazowego b ADXRD i EDXRD

ADXRD
 Item

A (°) d(002) (nm) G (%)

1/3 Coking coal 25.12 0.3545 14.64

Gas coal 25.2 0.3534 13.86

EDXRD
Item

E/KeV d(002) (nm) G (%)

1/3 Coking coal 39.97 0.3558 15.57

Gas coal 40.33 0.3527 13.36

3.3. Identification of coal and gangue and the prediction  
of the metamorphism degree of coal based on the EDXRD principle

In this investigation, 122 EDXRD patterns were used as data sets for the coal and gangue 
identification model, including thirty pieces of 1/3 coking coal, thirty-two pieces of gas 
coal and sixty pieces of gangue. As can be seen from Section 4.1, the difference of EDXRD 
patterns of samples is mainly affected by phase type. Therefore, The EDXRD pattern-rec-
ognition features are extracted mainly for the main diffraction peaks representing the phase 
of the samples. The identification characteristics of some samples are shown in Figure 6 and 
given a label of 1 for 1/3 of coking coal and gas coal and 2 for gangue. Figure 6a, b and c 
are the identification characteristics of gangue, gas coal and 1/3 coking coal, respectively.  

Fig. 6. The identification characteristics of gangue (a), gas coal (b), 1/3 coking coal (c)

Rys. 6. Charakterystyki identyfikacyjne skały płonnej (a), węgla gazowego (b), węgla koksowego 1/3 (c)
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The diffraction peak of coal (E ≈ 40 KeV) represents (002) crystal plane, and the diffraction 
peak of gangue (E ≈ 35 KeV, 44 KeV) represents (100) crystal plane and (101) represents 
crystal plane of quartz.

The data set was randomly sorted, and the training set and test set were divided at a ratio 
of 2:1. The PSO-SVM recognition model was established in accordance with Section 3.3.  
The optimal hyper-parameter combination of the recognition model was c = –100 and  
g = –0.01. The recognition accuracy of the training set and the test set were 100% and 
97.56%, respectively. Figure 7 shows the actual classification and predicted classification for 
the test set, as can be seen from which, the recognition accuracy of this model for gangue is 
100%, and there is a misrecognition for coal. The metamorphism degree of the coal in the 
PSO-SVM model output test set is shown in Table 5. A rough prediction of the coal type 

Fig. 7. Actual and predicted classification for test set

Rys. 7. Aktualna i przewidywana klasyfikacja zbioru testowego

Table 5. 	 The metamorphism degree of coal in test set

Tabela 5. 	 Stopień metamorfizmu węgla w zestawie testowym

Sample No. G (%) Sample No. G (%) Sample No. G (%)

1 12.93   8 10.57 15   8.07

2   7.86   9   8.14 16   8.36

3 11.21 10 12.36 17 11.07

4 12.71 11   6.36 15   7.79

5 11.07 12   7.50 19 10.07

6 13.00 13 10.57 20 10.43

7 13.29 14 11.07 21   9.93
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can be made based on the degree of metamorphism G. As the maximum value of G is 13%, 
a rough estimate of the degree of metamorphic weakness of the coal as a whole can be made, 
which is consistent with the industrial analysis results of coal samples in Section 2.

3.4. Experimental validation

Sixty EDXRD patterns of coal and gangue were randomly collected and the diffrac-
tion peaks of the main phases were extracted as identification features using PSO-SVM 
as the classification model and the final classification results were experimentally ob-
served as shown in Table 6. Following experimental verification, the accuracy of coal 
and gangue identification based on the X-ray diffraction principle was 96.66%; further-
more, the metamorphism of coal was predicted while the target was identified, as shown  
in Table 7.

Table 6. 	 Recognition Results of Validation Set

Tabela 6. 	 Wyniki rozpoznawania zestawu walidacyjnego

Recognition model Number of 
validation set

Recognition 
accuracy

Misidentification/ 
/coal

Misidentification/ 
/gangue

PSO-SVM 60 96.66% 2/30 0/30

Tabel 7. 	 The degree of metamorphism of coal in the validation set

Tabela 7. 	 Stopień metamorfizmu węgla w zbiorze walidacyjnym

Sample No. G (%) Sample No. G (%) Sample No. G (%)

  1   5.78 11 13.14 21   9.36

  2   6.79 12   6.71 22   5.36

  3   7.86 13   6.00 23   6.79

  4   5.71 14   7.64 24 10.71

  5   5.64 15   6.93 25   7.29

  6 11.36 16 13.14 26   7.07

  7   7.43 17 10.00 27   6.43

  8 10.00 18 11.50 28   7.64

  9   8.21 19   9.21

10   8.86 20   5.36
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Conclusions

This paper proposed the identification of coal and gangue as well as the prediction of 
the degree of coal metamorphism based on the X-ray diffraction theory, and the following 
conclusions were obtained.
1.	 The correlation between the ADXRD patterns of 1/3 coking coal, gas coal and gangue 

and the EDXRD patterns are analyzed in this paper. In the EDXRD pattern of 1/3 coking 
coal, the diffraction peak at E ≈ 40 KeV corresponded to the diffraction peak at A ≈ 25° 
in the ADXRD pattern, representing the (002) crystal plane of graphite. In the EDXRD 
patterns of gas coal, the diffraction peaks at E ≈ 40 KeV and 43 KeV corresponded to 
the diffraction peaks at A ≈ 25 and 27° in the ADXRD patterns, representing the (002) 
crystal plane of graphite and (101) crystal plane of quartz, respectively. In the EDXRD 
pattern of gangue, the diffraction peaks at E ≈ 35 KeV and 44 KeV corresponded to the 
diffraction peaks at A ≈ 21 and 27° in the ADXRD pattern, representing the (100) and 
(101) crystal planes of SiO2, respectively.

2.	 The error in calculating the graphitization of 1/3 coking coal and gas coal using the 
ADXRD technique is no more than 5% compared to the EDXRD technique. Therefore, 
the EDXRD technique predicts the graphitization of coal with increased efficiency and 
no loss of accuracy.

3.	 Major diffraction peaks representing the physical phase of the samples were used as iden-
tification features of the PSO-SVM model, with 96.66% accuracy of coal and gangue 
identification in the validation set. The metamorphism degree of coal G output from the 
PSO-SVM model could roughly estimate the metamorphism degree of weakness of the 
coal used in this paper, which is consistent with the results of the proximate analysis of 
coal samples in Section 2.
The results of this paper will lay a technical foundation for optimizing the energy struc-

ture and improving the energy-utilization rate, with important theoretical significance and 
value for engineering applications.
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The identification of coal and gangue and the prediction of the degree 
of coal metamorphism based on the EDXRD principle and the PSO-SVM model
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A b s t r a c t

In order to improve the utilization rate of coal resources, it is necessary to classify coal and gangue, 
but the classification of coal is particularly important. Nevertheless, the current coal and gangue sort-

http://doi.org/10.1038/nature16961
http://doi.org/10.1179/174328506X109130
http://doi.org/10.3964/j.issn.1000-0593%282017%2902-0416-07
http://doi.org/10.1080/19392699.2019.1590346
http://doi.org/10.1080/00387019608007136
http://doi.org/10.1080/00387010.2013.833940
http://doi.org/10.3390/min8020049
http://doi.org/10.1016/j.powtec.2020.07.040
http://doi.org/10.1016/j.powtec.2020.07.040


129Zhao et al. 2022 / Gospodarka Surowcami Mineralnymi – Mineral Resources Management 38(2), 113–129

ing technology mainly focus on the identification of coal and gangue, and no in-depth research has 
been carried out on the identification of coal species. Accordingly, in order to preliminary screen 
coal types, this paper proposed a method to predict the coal metamorphic degree while identifying 
coal and gangue based on Energy Dispersive X-Ray Diffraction (EDXRD) principle with 1/3 cok-
ing coal, gas coal, and gangue from Huainan mine, China as the research object. Differences in the 
phase composition of 1/3 coking coal, gas coal, and gangue were analyzed by combining the EDXRD 
patterns with the Angle Dispersive X-Ray Diffraction (ADXRD) patterns. The calculation method 
for characterizing the metamorphism degree of coal by EDXRD patterns was investigated, and then 
a PSO-SVM model for the classification of coal and gangue and the prediction of coal metamorphism 
degree was developed. Based on the results, it is shown that by embedding the calculation method of 
coal metamorphism degree into the coal and gangue identification model, the PSO-SVM model can 
identify coal and gangue and also output the metamorphism degree of coal, which in turn achieves the 
purpose of preliminary screening of coal types. As such, the method provides a new way of thinking 
and theoretical reference for coal and gangue identification.

Identyfikacja węgla i skały płonnej oraz prognozowanie stopnia 
metamorfizmu węgla w oparciu o zasadę EDXRD i model PSO-SVM

S ł o w a  k l u c z o w e

identyfikacja węgla i skały płonnej, dyfrakcja rentgenowska, dyspersja energii, 
stopień metamorfizmu, PSO-SVM

S t r e s z c z e n i e

W celu poprawy stopnia wykorzystania zasobów węgla konieczna jest klasyfikacja węgla i skały 
płonnej, ale to klasyfikacja węgla jest szczególnie ważna. Niemniej jednak obecna technologia se-
paracji węgla i skały płonnej koncentruje się głównie na identyfikacji węgla i skały płonnej, ale nie 
przeprowadzono dogłębnych badań dotyczących identyfikacji gatunków węgla. W związku z  tym, 
w celu wstępnego przesiewu rodzajów węgla, w niniejszym artykule zaproponowano metodę prze-
widywania stopnia metamorfizmu węgla przy identyfikacji węgla i skały płonnej w oparciu o zasadę 
dyfrakcji rentgenowskiej z dyspersją energii (EDXRD) z 1/3 węglem koksującym, węglem gazowym 
i skałą płonną z kopalni Huainan w Chinach jako obiektem badawczym. Różnice w składzie fazowym  
1/3 węgla koksowego, węgla gazowego i  skały płonnej analizowano przez połączenie wzorców 
EDXRD z  wzorcami dyfrakcji rentgenowskiej z  dyspersją kątową (ADXRD). Zbadano metodę 
obliczeniową charakteryzującą stopień metamorfizmu węgla za pomocą wzorców EDXRD, a nas- 
tępnie opracowano model PSO-SVM do klasyfikacji węgla i skały płonnej oraz przewidywania stop-
nia metamorfizmu węgla. Na podstawie uzyskanych wyników wykazano, że poprzez wbudowanie 
metody obliczania stopnia metamorfizmu węgla w model identyfikacji węgla i skały płonnej, model  
PSO-SVM może identyfikować węgiel i skałę płonną, a także wyprowadzać stopień metamorfizmu 
węgla, co z kolei spełnia cel wstępnego przesiewania rodzajów węgla. Jako taka, metoda ta zapewnia 
nowy sposób myślenia i teoretyczne odniesienie do identyfikacji węgla i skał płonnych.
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