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Inverse Solution to the Vertical Plate Cooling by Radiation and Convection in Air

The inverse solution to the heat flux identification during the vertical plate cooling in air has been presented. The developed 
solution allowed to separate the energy absorbed by the chamber due to radiation from the convection heat losses to air. The uncer-
tainty tests were carried out and the accuracy of the solution has been estimated at a level of 1%-5% depending on the boundary 
condition model. The inverse solution was obtained for the temperature measurements in the vertical plate. The stainless-steel 
plate was heated to 950°C and then cooled in the chamber in air only to about 30°C. The identified heat transfer coefficient was 
compared with the Churchill and Chu model. The solution has allowed to separate the radiation heat losses and to determine the 
Nusselt number values that stay in good agreement with the Churchill and Chu model for a nearly steady-state air flow for the plate 
temperature below 100°C. 
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1. Introduction 

Cooling in air is one of the essential processes that take 
place during the steel making processes. It occurs during the 
hot forging, rolling or continuous casting processes. To simulate 
such processes the heat transfer boundary conditions should 
be known, which are a part of the complex models determin-
ing properties of products [1]. The cooling of steel products in 
air from high temperatures reaching of 1200°C involves two 
mechanism of heat transfer: radiation and convection which 
depend on the surface temperature. The parameter that influences 
on the radiation heat transfer is the emissivity of steel surface 
that depends on the oxide type and structure [2,3]. The problem 
is less important in the case of stainless steels because during 
heating its surface is covered with stable Cr2O3 oxides which 
protect steel from further oxidation to the temperature reaching 
1100°C [2]. In the case of carbon steels, the problem is more 
complex because on the surfaces different type of oxides are 
firmed (FeO, Fe3O4 and Fe2O3), which are not stable. It changes 
steel emissivity during the cooling process with temperature and 
time [3]. Thus, the determination of the radiation and convection 
heat losses become more complicated. For that reason, the bound-
ary condition determination and implementation in practices is 
still under development.

The numerical simulations of technological processes in-
cluding air cooling require the heat transfer boundary conditions 
which are a part of more complex models determining properties 
of products [1]. In the literature on the subject, various models 
are available from the simplest ones giving constant values of the 
heat transfer coefficient ranging from 10 W/(m2∙K) Puschmann 
et al. [4] to 20 W/(m2∙K) Bai et al. [5] to more complex, which 
define convection heat losses based on the Nusselt-Rayleigh 
relation [6]-[8]. Another kind of models are the ones defining 
the effective heat transfer coefficient, Malinowski et al. [9] 
or Devadas et al. [10]. These types of models include the con-
vection heat losses in the emissivity coefficient and because of 
that the effective emissivity coefficient can be higher than one. 
Unfortunately, such models have limited implementations to 
a particular grade of steel and a type of air flow. Much more 
possibilities provide models allowing to separate heat losses into 
the convection and radiation part. However, such modes require 
knowledge about the surface emissivity and the convection heat 
transfer coefficient (HTC). The convection HTC models were 
developed based on experimental studies. The formulas defining 
the Nusselt number Nu differ in form or in the coefficients result-
ing from the approximation of the experimental data. One of the 
first Nusselt-Rayleigh (Nu-Ra) relationship have been proposed 
by Eckert and Jackson [11] and McAdams [12]. Depending on 
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the type of flow and the fluid properties the coefficients in the 
Nu-Ra formula can differ significantly. Shaub et al. [13] have 
performed experiments on the copper plate 2 m tall heated 
to a maximum temperature of 90°C. The plate was polished to 
minimize emissivity. The experimental data were corrected for 
the radiation heat losses. The Ra number was in the range from 
106 to 1010. The results have been compared to the Churchill 
and Chu model valid for laminar and turbulent flows charac-
terized by the Ra number ranging from 10–1 to 1012 [14]. The 
experiments performed by Shaub et al. [13] have shown a mean 
absolute deviation of 8.1% to the Churchill and Chu model for 
the isothermal case. For the unsteady experiments, an increase 
of 22% in the heat transfer was observed in comparison to the 
quasi-stationary approach. It is an important observation for 
modelling the transient cooling processes which has indicated 
that implementation of the empirical Nu-Ra correlation not nec-
essarily leads to satisfactory results for product cooling in the 
metal industry. It is caused by the fact, that during the product 
cooling from high temperatures unsteady heat transfer takes 
place and the convection heat losses can be essentially higher. 
The model defining the effective Nusselt number as a sum of 
the convection and radiation heat losses was proposed by Kang 
Cao et al. [15]. However, the same problem of the limited ap-
plicability exists too. 

To model temperature changes inside the solid body, 
a boundary condition describing two heat transfer mechanisms 
occurring on the surface of this body need to be provided. It is 
a complex boundary condition including convection and radia-
tion heat transfer. In the paper a model allows to determine the 
heat losses resulting from free convection on a cooled vertical 
plate in the temperature range characteristic for metallurgical 
processes is presented. The model was developed based on the 
inverse solution, which allowed for separation of heat losses due 
to radiation and determination of the value of Nu number. Such 
a solution has not been yet used for cooling in air. The separation 
of these two heat transfer mechanisms allows the application of 
the convective boundary condition, regardless of the thermal 
properties of the surface, i.e. the emissivity, and the influence 
of the environmental condition on the transfer of thermal energy 
resulting from radiation. The boundary conditions determined 
in this way are of particular importance in case of modelling the 
assumed production processes of metallurgical products.

2. Experimental setup

The determination of the heat flux or HTC at the boundary 
surface is possible based on the temperature measurements of 
a cooled object. The plate made of EN 1.4724 steel was heated 
in the electrical furnace to 950°C. The plate was cooled after 
heating in the vertical position in the chamber as was shown in 
Fig. 1. The plate thickness was h = 12 mm, height l = 145 mm 
and length b = 245 mm. The plate temperature was measured 
by 9 thermocouples inserted to a depth of 2 mm. The location 
of thermocouples has been illustrated in Fig. 1. The coordinates 
of the thermocouple tips have been given in TABLE 1.

Table 1
The location of the thermocouple’s tips in the plate

Coordinate T1 T2 T3 T4 T5 T6 T7 T8 T9

x1, mm 4 4 4 4 4 4 4 4 4
x2, mm 0 45 90 0 45 90 0 45 90
x3, mm 30 30 30 72.5 72.5 72.5 115 115 115

Fig. 1. The location of thermocouples 2 mm below the plate surface

The scheme of the experimental setup has been shown in 
Fig. 2. The experimental stand consists of an electrical furnace, 

Fig. 2. Scheme of the plate heating and cooling setup
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a cooling chamber, and a data acquisition system. Measurements 
were recorded at a frequency of 1 Hz by a data acquisition system 
equipped with a noise reduction filter. The furnace temperature was 
automatically controlled. The measurement system allows collect-
ing data concerning the furnace temperature, the air and chamber 
temperatures and the plate temperature at selected points. The plate 
was heated to about 950°C and kept in the furnace approximately 
30 minutes to equalize the plate temperature. After that, the plate 
was moved automatically into the cooling chamber. This process 
and the furnace door closing were required about 5 seconds. For 
the temperature measurements the K type thermocouples 1 mm 
in diameter were employed. The accuracy of the thermocouples 
was ±0.4% of the measured temperature. The maximum error 
of the thermocouple at temperature of 1000°C was about ±4°C. 
In addition to that an error of ±2°C could result from the gauge 
accuracy connecting thermocouples to the data acquisition sys-
tem. Thus, based on the accuracy specified by the producers the 
maximum error of the measured temperature was about 4.5°C.

The plate temperature variations during cooling in the 
chamber in air only have been given in Fig. 3. The plate tem-
perature at the thermocouple locations was similar, however 
some differences were observed. The plate temperature after 
heating was not even and varied from 947.3°C at T1 to 956.3°C 
at T9 thermocouple. The difference partly resulted from uneven 
heating and to some extend from the temperature measure-
ment errors. After 1000 s of cooling the plate temperature has 
dropped to 264.1°C at T3 and to 294.4°C at T7 thermocouple. 
The temperature difference resulted mainly from uneven cool-
ing, developed over the plate surface. At the end of cooling after 
7000 s the plate temperature has dropped to 32.6°C at T3 and 
to 33.4°C at T4 thermocouple. At the end of cooling the plate 
temperature was the highest at the center and the lowest at the 
corner of the plate. Thus, the plate temperature distribution can 
be considered as typical for this type of cooling.

During cooling the air and chamber temperatures were 
recorded and have been shown in Fig. 4. The air temperature Ta 
outside the chamber was about 20.5°C. The chamber walls tem-
perature was recorded at 3 points. The Tw point was located at the 
wall parallel to the plate surface approximately in the center of the 
wall. The points Td1 and Td2 were located at the wall separating 
the cooling chamber from the electrical furnace. The point Td1 
was located below the plate and the point Td2 above the plate. 
The chamber temperature was varied during the plate cooling. At 
the beginning of cooling the chamber temperature was 20.5°C. 
The chamber walls collected heat from the plate and after 700 s 
the chamber walls temperature was the highest. At the point Tw 
temperature of 37°C was reached. The highest wall temperature 
of 52.5°C was recorded above the plate at the Td2 point. Below 
the plate the wall temperature was slightly lower and 46.5°C at 
the Td1 point was reached. 

The temperature measurement errors resulting from using 
thermocouples were simulated with the finite element method 
(FEM). In the FEM model the thermocouple structure and the 
thermophysical properties of the thermocouple were simplified. 
The thermocouple was modeled as a square bar 1 mm in the cross 
section inserted to a depth of 2 mm. Four elements with the linear 
shape functions were employed in the thermocouple’s cross sec-
tion. The properties of the material simulating the thermocouple 
were chosen similar to the silicon dioxide [16]. The thermocouple 
conductivity of 1.4 W/(m·K), density of 2200 kg/m3 and a spe-
cific heat of 750 J/(kg·K) were assumed. Only a part of the plate 
surrounding the thermocouple T5 was considered. 

A square of a side 30 mm was simulated. In the heat conduc-
tion model 20 elements were employed in the thickness of the 
plate. The element size at the cooled surface was only 0.25 mm. 
In the x2 and x3 directions 16 elements were employed. The 
thermophysical properties of EN 1.4724 steel employed in the 
heat conduction model have been shown in Fig. 5 and Fig. 6. 

Fig. 3. The plate temperature variations during cooling in the chamber 
after heating in the electrical furnace to 950°C Fig. 4. The chamber temperature variations during the plate cooling
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Thermal conductivity, specific heat and density have been taken 
from Goldsmith et al. [17]. The radiation and convection heat loss 
at the plate surface was modeled using the effective heat transfer 
coefficient. The effective heat transfer coefficient of 100 W/
(m2 ∙K) was specified. It has given the heat flux at the plate 
surface comparable to that expected at the beginning of plate 
cooling. At the sides of the modeled part of the plate zero heat 
fluxes were specified for the simplification of the heat conduction 
model. The assumed simplifications of boundary conditions and 
the thermocouple properties and shape could result in some over 
estimation of the thermocouple influence on the plate tempera-
ture. The simulations have shown that the maximum difference 
in temperature of the plate with and without thermocouple was 
only 0.7°C. Thus, the cumulated error resulting from the thermo-
couple accuracy, the gauge accuracy and the inclusion created 
by the thermocouple was about 4.55°C.

3. The inverse method formulation

In the inverse solution for the heat transfer boundary con-
dition identification, the plate temperature has been computed 
from the equation

 
1 1 2 2 3 3

1T T T T
c x x x x x x

  
 

           
                    

 	(1)

where: 
	 T	 –	 Temperature, K;
	x1, x2, x3	 –	 Cartesian coordinates, m;
	 ρ	 –	D ensity, kg/m3;
	 λ	 –	 heat transfer coefficient, W/(m·K);
	 c	 –	S pecific heat, J/(kg∙K).

The algorithm and the FEM solver developed by Ma-
linowski et al. [18] was employed to solve Eq. (1). In the FEM 

solution to Eq. (1) 320 elements with the linear shape functions 
were employed. The FEM mesh in the x2-x3 plane has been 
shown in Fig. 7. In the thickness of the plate 4 elements were 
employed. Since the vertical plate was symmetrically cooled 
from both sides only a half of the plate thickness and length 
was considered in the FEM model. The FEM mesh showed 
in Fig. 7 has been selected based on preliminary plate cooling 
simulations. The plate temperature was modeled using FEM-RE 
mesh with 1890 elements and the time increment 1s. It allowed 
to determine the plate temperature at the thermocouple’s loca-
tions with high accuracy. However, the computation time (CPU) 
per one simulation was 6.75 s on a PC computer equipped with 
Intel Core i9-10920X CPU @ 3.50 GHz processor, Table 2. 
Since one inverse solution involving the model V requires about 
10000 plate temperature simulations, the CPU time should be 
reduced if possible. First, the number of elements in x1 direction 
has been reduced from 7 to 4 (FEM-R1 mesh). Reduction of the 
elements number and size did not cause any noticeable error to 
the temperature field, TABLE 2. Next, the mesh size in x2 and 
x3 direction has been reduced. An increase of a maximum ele-
ment size from 10 to 15 mm (FEM-R2 mesh) resulted in a minor 
temperature errors with a maximum deviation of about ±0.6 K. 
Finally, a minimum element size in x2 and x3 direction has been 
increased to 15mm and 10mm (FEM-R3 mesh), respectively. 
The maximum temperature errors increased to –0.64/+1.17 K. 
Since the temperature measurements error was about 4.55 K it 
can be concluded that the reduced FEM-R3 mesh is sufficient 
for the inverse solution to the plate cooling in air. The FEM-R3 
mesh allowed to reduce the CPU time to 9 hours for one inverse 
solution with the boundary condition model V. The average 
temperature error (ATE) has been calculated as a square root of 
the error norm (5).

The heat flux at the plate surfaces has been approximated 
using the convection HTC and the plate surface emissivity εz(T) 

Fig. 5. Specific heat and thermal conductivity as the functions of tem-
perature for EN 1.4724 steel Fig. 6. Density as the function of temperature for EN 1.4724 steel
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	 (2)

The first term in Eq. (2) describes the radiation heat losses 
to the chamber walls. The radiation heat transfer was modelled 
in enclosure consisting of a small convex object (plate) sur-
rounded by a large concave surface (chamber). It was assumed 
that the surfaces are gray, diffuse, and opaque. The derivation 
of the radiation model assumed in Eq. (2) can be found in 
[19]. The radiation model was derived under the assumption 
that a small object temperature as well as the enclosure tem-
perature is constant. In Eq. (2) the chamber temperature Tk is 
constant at a particular time τ. The chamber surface temperature  
Tk (τ) = Tw (τ) was specified based on the thermocouple indication 
placed in the chamber wall parallel to the plate surface, Fig. 4. 
Moreover, at a particular time τ the plate temperature is nearly 
constant, Fig. 3. The cooling chamber was made of a stainless 
steel and had the surface of Sk = 4.33 m2. The sample surface 
was Ss = 0.08 m2. Since the plate surface was only 1.8% of the 
chamber surface it was assumed that a radiation heat exchange 
in the chamber can be described by a model derived for a small 
object in a large enclosure [19]. 

 The chamber emissivity εk = 0.2 was assumed in the bound-
ary condition model. The chamber emissivity was determined 
comparing the chamber temperature measurements given by 
the thermal camera with Tw thermocouple. The initial condition 
was specified based on measurements of the plate temperature 
after heating.

The plate temperature at a particular time τ varies slightly in 
x2 and x3 directions, Fig. 3. It has been assumed that the convec-
tion HTC can be approximated by a second-degree polynomials 
with a sufficient accuracy. For that, the convection HTC over 
the vertical plate surface has been approximated using only one 
surface element with the parabolic shape functions Ni

      
8 4

2 3 2 3 1
1 1

, , ,con i j ij
i j

x x N G   
 

     	 (3)

Fig. 7. Finite element mesh FEM-R3, location of the thermocouples 
and nodes of the surface element employed in the boundary condition 
model V

In Eq. (3) ξ2, ξ3 are natural coordinates of the surface ele-
ment on the interval (–1, 1). The parabolic shape functions Ni can 
be found in [20]. The first term in Eq. (3) describes the convection 
HTC distribution over the plate surface at a particular time τ. But 
the HTC varies in time as well. For that, the HTC distribution in 
time at nodes of the surface elements has been interpolated with 
the cubic shape functions Gj [20]. The coordinate ξ1 in Eq. (3) 
denotes the dimensionless time

 1 2
1

2 1

2  


 
 




 	 (4)

In Fig. 7 the division of the plate into FEM linear elements 
and the surface element covering the vertical plate surface have 
been presented. In the case of one surface element the HTC varia-
tions at 8 nodes must be determined to describe the HTC distribu-
tion over the plate surface as well as in time. The time of cooling 
was divided into KT intervals. The unknown ∝ij coefficients were 
grouped in a vector pi of a length NHTC = 8· (KT · 3 + 1). The 

Table 2

Summary of FEM tests results

Parameter Unit
FEM mesh 

FEM-RE FEM-R1 FEM-R2 FEM-R3
CPU time s 6.75 1.45 1.09 0.7

ATE to FEM-RE K — 0.008 0.044 0.064
Maximum temperature errors K — –0.02/+0.08 –0.64/+0.60 –0.64/+1.17

Min./Max. element size in x1 direction mm 0.5/1.0 1.0/2.0 1.0/2.0 1.0/2.0
Min./Max. element size in x2 direction mm 0.5/10 0.5/10 0.5/15 15/15
Min./Max. element size in x3 direction mm 0.5/10 0.5/10 0.5/15 10/15

Number of elements 1890 1080 720 320
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number of time intervals depends on the problem of cooling. 
The implemented inverse solution strategy was described by 
Hadała et al. [21]. The coefficient defining the unknown bound-
ary condition at the plate surface has been determined from the 
minimum condition of the error norm

     2

1 1

1  
 

NT NP mm
i n i n

m n
E p Te T p

NT NP  
   	 (5)

where:
	 Ten

m	 –	S ample temperature measured by the sensor n at the 
time τm; 

	 Tn
m	 –	 Computed sample temperature at the location of the 

sensor n at the time τm;
	 NP	 –	N umber of temperature sensors;
	 NT	 –	 Number of temperature measurements performed by 

one sensor.
The inverse solution can give the boundary condition at 

the vertical plate surface if the boundary conditions at the other 
plate surfaces are known. At the temperature symmetry planes 
zero heat fluxes have been specified

  1 2 3
2

; 0; 0Tq x x x
x

 
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
  	 (6)

  1 2 3
1

0; ; 0Tq x x x
x

 
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
  	 (7)

At the plate edges the convection heat losses have been 
approximated using the Nu models. At the vertical edge of the 
plate the Nusselt number Nu has been computed from the formula 
given by Churchill et al. [14] using an equation (15).

At the horizontal edge of the plate cooled from the above 
the formula developed by Lewandowski et al. [22] has been 
employed

 Nu = 0.774Ra1/5	 (8)

where: 
	 Ra	 –	 Rayleigh number (Ra = Gr ·Pr),
	 Pr	 –	 Prandtl number. 

At the horizontal edge of the plate cooled from the bottom 
the Nusselt number has been calculated from the formula given 
by Aihara et al. [23]

 Nu = 0.5Ra1/5	 (9)

The minimization of the error norm (5) was accomplished 
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. 
The BFGS formula was proposed independently by Broyden 
[24], Fletcher [25], Goldfarb [26] and Shanno [27]. The BFGS 
algorithm builds up, iteratively, the Hessian matrix based on the 
objective function derivatives

 
     i j ii

j j

E p p E pE p
p p

  


 
 	 (10)

The increment Δ pj = | pj | 10–6 has been used in forward 
estimation of the partial derivatives. Three stopping criteria 

have been used to terminate the minimization procedure. 
The first controls a decrease in the objective function value 
DE = E(pj)k – E(pj)k–1. The second criterion controls an aver-
age value of the objective function derivatives with respect to 
optimized parameters:

 
 

1

1 HTCN
i

HTC jj

E p
DG

N p




  	 (11)

The minimization procedure was terminated if DE or 
DG was lower than EPS in the two subsequent minimization 
steps k and k – 1. For all the solutions EPS = 1.0 ·10–8 have 
been specified. The third criterion limits a number of iterations 
allowed for updating the Hessian matrix. It is known that the 
BFGS updating formula is efficient up to N iteration. Where 
N denotes a number of unknown parameters to be determined. 
Thus, a maximum number of iterations was set to NHTC for the 
considered case. However, to reach the accuracy defined by the 
criterion (10) or (11) it was necessary to complete about 10 mini-
mizations of the error norm. The solution obtained from the last 
minimization (pi vector) served as a starting point for the next 
optimization. More about the BFGS algorithm and nonlinear 
optimization methods can be found in [28].

4. Models of the boundary condition  
at the plate surface

The inverse solution has given the heat flux distribution at 
the vertical plate surface. It has allowed to calculate the aver-
age heat flux
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q x x dx dx
q

S

 

 
  
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The average plate surface temperature has been calculated 
from

  
32
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Where the vertical plate surface was Shp = 0.0174 m2.
The average heat flux q·avg at the vertical plate surface Shp 

was used for the determination of the accuracy of the local mod-
els which define the heat losses due to convection and radiation 
at the vertical plate surface as well as at the vertical edge of the 
plate. Depending on the αcon and the plate surface emissivity 
εz (T ) three models of the boundary condition at the vertical 
plate surface were tested.

4.1. Natural convection models

Three models of the natural convection at the vertical plate 
surface were examined and tested. The convection HTC has 
been calculated from
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con

a

Nu L


  	 (14)

Where: L – Characteristic length, L = 0.145 m for the vertical 
plate. The thermal conductivity of air λa was calculated at the 
ambient temperature Ta. The air properties necessary to calcu-
late the Ra and Pr numbers have been calculated at the ambient 
temperature Ta.

4.1.1. Model 1

The heat losses due to convection has been computed from 
the equation developed by Churchill et al. [14]
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 	 (15)

4.1.2. Model 2 

The model 2 utilizes the relation proposed by Churchill 
and Chu
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 	 (16)

However, the coefficients: p4, …, p9 have been determined 
from the error norm minimization. 

4.1.3. Model 3 

The heat losses due to convection has been computed from 
the exponential function

 Nu = p4 Ra p5	 (17)

The coefficients: p4 and p5 have been determined from the 
error norm minimization.

4.2. Emissivity model

The boundary condition model (2) combines the natural 
convection and radiation heat losses over the vertical plate sur-
face. In the radiation model it was assumed that the emissivity 
depends on temperature

 2
1 2 3z p pp p t p t     	 (18)

The model (18) describes the plate surface emissivity 
as a parabolic function of the dimensionless temperature 
t–p = Tp (x1, x2, x3) /1200°C. 

5. The uncertainty of the inverse solution

It has been mentioned in the section 3 that the inverse 
solution has been formulated as a nonlinear optimization prob-
lem. The inverse matrix (Hessian matrix) is built up iteratively. 
It is rather simply to prove that the solution (pi vector) is correct 
for the exact temperature indications at specified points (for ex-
ample at the thermocouple locations). However, the temperature 
measurements are subjected to errors which can result in the 
inverse solution inaccuracy to the boundary condition. It is im-
portant to determine the level of the inverse solution uncertainty 
related to the temperature measurement errors. The accumulated 
error resulting from the thermocouple accuracy, the gauge accu-
racy and the inclusion created by the thermocouple was described 
in the section 2. Its maximum value was estimated at a level of 
4.55°C. Thus, the simulated thermocouple’s readings should 
exhibit similar errors. It is known that the temperature measure-
ments errors depend on the temperature value. Thus, the highest 
temperature errors should be achieved at the beginning of cooling. 
Moreover, the simulated temperature errors should decrease in 
time. To avoid a numerical bias, it is important to simulate the 
thermocouples readings based on the numerical solution to the 
heat conduction problem different from that employed in the 
objective function minimization. For that the plate temperature 
was simulated using a nonlinear FEM solver. The employed non-
linear FEM solver utilizes a third-degree shape functions instead 
of linear shape functions described as FEM-R3 mesh. Only four 
nonlinear elements over the entire domain shown in Fig. 7 has 
been used to achieve a lower solution accuracy to the temperature 
field. The employed nonlinear FEM solver was described in [18]. 
The nonlinear FEM solver had shown a maximum temperature 
error of 5.7°C in comparison to the solution obtained with the 
linear FEM-R3 mesh shown in Fig. 7. In order to generate a 
simulated temperature readings, at the plate edges the boundary 
condition described in the section 3 were specified. At the vertical 
plate surfaces the boundary condition developed by Churchill 
et al. [14] has been used (the model 1) as a test function to be 
retrieved from the inverse solution. Further, for the simulated 
temperature indications the plate emissivity εz = 0.6 was speci-
fied. It is expected that the inverse solution gives a similar plate 
emissivity simultaneously determined with the convection HTC. 

It has been mentioned that the simulated temperature read-
ings have shown a maximum temperature error of about 5.7°C. 
The imposed errors on the synthetic thermocouple indications 
varied in time and space. At the thermocouple 9 the highest posi-
tive deviation has been observed, while at the thermocouple 5 
the highest negative deviation has been noticed. The simulated 
temperature measurements errors vanished in time as the plate 
temperature decreased, Fig. 8. Similar distribution of the temper-
ature measurements errors is expected in the physical experiment.

The inverse solution to the simulated temperature readings 
should give the convection HTC defined by the model 1 and the 
plate emissivity εz = 0.6. The results of the uncertainty tests have 
been summarized in TABLE 3 and shown in figures from 9 to 11. 
The plate initial temperature was 950°C. The average heat flux 
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at the plate surface computed from the model 1 (test function to 
be retrieved) has been plotted in figures as the solid red line. The 
inverse solutions to the average heat flux q·e have been plotted 
in Fig. 9 as the dotted lines. All the models have given a good 
approximation to the heat flux distribution versus the average 
plate surface temperature. The heat flux curves nearly overlapped 
the test function (the model 1). Some minor errors of the inverse 
solutions to the heat flux have been summarized in TABLE 3. 
The maximum error to the average heat flux did not exceed 5%. 

The model 2 had the same form as the test function (the 
model 1) but the coefficients defining the Nusselt number were 

computed from the error norm minimization. Due to the errors 
introduced to the simulated temperature measurements the 
inverse solution was shifted slightly from the original model 1. 
The differences to the heat flux were low with the maximum 
value below 0.5%. The maximum temperature errors were at 
a level of the temperature measurements errors. The convection 
HTC, Fig. 10, and the plate surface emissivity, Fig. 11, have 
been reproduced correctly. Thus, the invers solution utilizing 
the model 2 has given nearly a mirror of the specified emissivity 
and the convection HTC. 

The model 3 uses the McAdams type formula and has 
a slightly different nonlinearity from the test function (the 
model 1). It has resulted in an error of 20% to the convection 
HTC at higher temperatures, Fig. 10. The solution to the average 
heat flux obtained from the McAdams formula was much better 
with an error of 4%, TABLE 3. A better solution to the heat flux 
in comparison to the convection HTC has resulted from an over-
estimation of the plate surface emissivity of about 7.5%, Fig. 11. 
Thus, the decomposition of the heat flux into the convection and 
radiation part was not correct in the case of model 3. 

Fig. 8. Simulated temperature measurements errors at the location of 
the thermocouple 5 and 9

Fig. 9. Comparison of the inverse solutions to the specified heat flux 
(Model 1)

Fig. 10. Comparison of the inverse solutions to the specified convec-
tion HTC (Model 1)

Table 3

Accuracy of the inverse solutions to the heat flux  
and temperatures

Parameter Unit
Inverse solution utilizing 

boundary condition model:
Model V Model 2 Model 3

Average error to heat  
flux q·avg

kW/m2 0.013 0.005 0.059

Maximum error to heat  
flux q·avg

kW/m2 0.97 0.29 3.33
% 1.2 0.3 4.1

Average temperature error K 0.23 0.25 1.1
Maximum temperature error K 5.6 5.9 6.5
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The best solution to the temperature field has given the 
model V. The model has been designed to identify the plate 
emissivity and the convection HTC over the plate surface for an 
unknown regime of air flow. For the considered test, two periods 
of time were employed in the boundary condition model defined 
by Eq. (3). It gave NHTC = 56 coefficients defining the convec-
tion HTC. In addition to that, three coefficients defining the plate 
emissivity in Eq. (18) have been added to the vector pi. It gave N 
= 59 parameters which have been determined from the minimum 
condition of the error norm (5). The model gave ATE = 0.23°C 
over the entire range of the plate temperature. The maximum error 
to the heat flux was below 1.5%. The model V was capable to 
decompose the convection HTC and the plate surface emissivity, 
Fig. 11. The models 2 and 3 based on the closed form equations 
are not capable of varying the convection HTC over the plate 
surface depending on the local flow of air. For that reason, the 
inverse solutions to the measured temperatures may be less accu-
rate in the case of these models. The model V has allowed for the 
convection HTC variation over the plate. Further, no assumption 
was made concerning the convection HTC variation versus the 
plate temperature. The model V can serve as the reference solu-
tion for the heat flux and emissivity. It allows the comparison of 
the other models’ accuracy in inverse solutions to the physical 
experiment of the plate cooling. Notice that the emissivity model 
has been tested in the uncertainty tests. The simulated temperature 
histories were obtained for a constant emissivity of εz = 0.6. Thus, 
the inverse solutions did not introduce nonlinearity to the plate 
surface emissivity in the case of simulated temperature readings. 

6. The results of heat flux and heat transfer  
coefficient identification

The inverse solutions were performed by minimizing the 
error norm (5) for the measured temperatures which have been 
shown in Fig. 3. The chamber temperature Tk (τ) was specified 
according to the measured temperature of the chamber wall 
parallel to the plate surface depicted in Fig. 4 as the Tw curve. 
The inverse solutions gave the average temperature errors ATE 
varying from 1.8 to 4.2°C. The ATE have been summarized in 
TABLE 4 for the simultaneous determination of the convection 
HTC as well as the plate emissivity defined by Eq. (18).

Table 4

The average temperature errors (ATE) of the inverse solutions  
to the measured temperatures

Model number 
ATE 
°C

V 1.8
1 4.1
2 4.2
3 4.1

In Fig. 12 the plate temperature indicated by the thermo-
couple 5 has been compared to the plate temperatures computed 

from the HTC models and the plate emissivity model defined 
by Eq. (18). For the plate surface emissivity approximated by 
a second-degree polynomial, the models 1, 2 and 3 have given 
similar errors. It must be pointed out that in the case of model 1 
none of the parameters describing the convection HTC was 
determined from the error norm minimization. Only parameters 
describing the plate surface emissivity were optimized. The op-
timization of the Nu models’ parameters has led to similar ATE 
and the computed and measured temperatures nearly overlapped. 
However, good agreement of the temperatures histories indicates 
only that the heat flux at the plate surface was correctly identi-

Fig. 11. Comparison of the inverse solutions to the specified (Model 1) 
plate surface emissivity

Fig. 12. Comparison of the temperature history indicated by the ther-
mocouple 5 with the inverse solutions based on the tested models of 
heat convection and emissivity
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fied. An essential error may result in the decomposition of the 
radiation and convection part of the heat flux.

The lowest ATE = 1.8°C has given the model V which has 
been considered as the reference solution to the heat flux and 
emissivity at the vertical plate surface. For the measured tem-
peratures, five periods of time were employed in the boundary 
condition model defined by Eq. (3). It gave NHTC = 88 coef-
ficients defining the convection HTC. In addition to that, three 
coefficients defining the plate emissivity in Eq. (18) have been 
added to the vector pi. It gave N = 91 parameters which have been 
determined from the minimum condition of the error norm (5).

As the plate temperature grows the radiation heat losses are 
more and more important and the convection Nu models were 
extended with the radiation model (18). In the inverse solutions 
the polynomial coefficient in Eq. (18) as well as the Nusselt 
number coefficients were determined from the error norm mini-
mization. The obtained parameters have been given in TABLE 5. 
Notice that in the case of model 1 parameters: p4, …, p9 were 
not optimized and had values proposed by Churchill et al. [14].

Table 5

The parameters of the Nusselt number and the emissivity model (18) 
obtained from the error norm minimization

Parameter Model 1 Model 2 Model 3
p1 0.704 0.424 0.390
p2 –1.400 0.159 0.122
p3 1.958 0.244 0.134
p4 0.825 2.103 2.613
p5 0.387 1.334 0.172
p6 0.492 0.664 —
p7 0.166 7.603∙10–2 —
p8 0.562 0.514 —
p9 0.296 1.498∙10–2 —

The Nu based models were compared with the reference 
model V, and the possibilities of the simultaneous determination 
of the convection and radiation heat losses were discussed. The 
heat flux predicted by all the models has agreed well with the 
reference model V, Fig. 14. But the convection part decomposed 
from the total heat flux is different, Fig. 13. For example, the dif-
ference between the model V and the Churchill and Chu formula 
(Model 1) was about 10 kW/m2 at 800°C. Optimization of the 
Nu parameters in the Churchill and Chu formula (Model 2) as 
well as in the McAdams formula (Model 3) did not change the 
convection heat flux essentially, Fig. 13. Thus, good prediction 
of the total heat flux by Nu models was due to the plate emis-
sivity overestimation, Fig. 15. The surface emissivity predicted 
by the model 1 had a minimum value of 0.45 at 430°C (Fig. 15). 
But at the ambient temperature as well as at 800°C the emissiv-
ity was about 0.7. Such variation of the plate emissivity is not 
supported by the experiments performed by Burakowski [2] for 
this grade of steel. 

The minimization of the parameters defining the convec-
tion and radiation heat losses in the model 2 and model 3 has 
given a similar plate surface emissivity growing from about 
0.4 at the ambient temperature to about 0.65 at 800°C. Thus, 
simultaneous minimization of the parameters defining the Nu 
number, Fig. 16, and the plate emissivity, Fig. 15, has given 
qualitatively correct decomposition of the total heat flux. How-
ever, the emissivity is too high in view of the results published 
by Burakowski [2]. Moreover, in the case of Nu models, the ATE 
of about 4 K was high as for the plate cooling in air, Table 4. 
It means that the convection HTC computed from Eq. (16), or 
Eq. (17) was not sufficiently exact for the decomposition of the 
total heat flux into radiation and convection part. The emissivity 
obtained from the model V was close to 0.25 at 300°C and 0.48 
at 800°C as reported by Burakowski [2]. Since the emissivity 

Fig. 13. The convection heat flux determined from the models compared 
to the reference model V

Fig. 14. The total heat flux determined from the models compared to 
the reference model V
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has been correctly identified and the lowest temperature error 
has been obtained for the model V, thus the convection part 
has the best accuracy in the case of V model. The course of the 
Nusselt number change obtained from the V model in relation 
to the other models indicates an essential increase in the Nu 
number for temperatures above 100°C (Fig. 16). However, the 
model V has required 91 parameters to be determined instead 
of 9 (Model 2), or 5 (Model 3). 

7. Conclusions

In the case of temperature reaching 900°C, at the initial 
stage of cooling in air an important role has the radiation heat 
loss. The separation of the convection and radiation parts is dif-
ficult due to the simultaneous influence of both mechanisms on 
the plate temperature. It requires the accurate determination of 
the surface emissivity. The other choice is to limit the radiation 
heat loss as low as possible at the experimental stand. It is pos-
sible for polished surfaces at low temperatures. Metals heated to 
high temperature oxidized and emissivity grows. Moreover, the 
boundary layer depends on the surface roughness. Thus, determi-
nation of the convection heat losses for cooling plates having a 
natural surface roughness would be important for practice. It has 
been shown that it is possible but required a high accuracy model 
describing the convection heat loss. The Nu models based on 
the Churchill and Chu, or McAdams’s formula did not reach the 
required accuracy. The polynomial approximation of the con-
vection HTC has given the desired accuracy, but the number of 
unknown parameters reached 88. The determined surface emis-
sivity has varied from 0.2 at room temperature to about 0.47 at 
800°C. The obtained emissivity from the model V was in good 
agreement to the measured values obtained by Burakowski for the 

same grade of steel. The inverse solution from the model V has 
allowed for accurate identification of the heat flux for the surface 
emissivity depending on the plate temperature. The comparison 
of the identified convection heat loss has shown the lowest dif-
ferences to the boundary condition proposed by Churchill et al. 
[14] for the air properties calculated at the ambient temperature. 
However, at 800°C the difference was essential. 

The identified values of the Nusselt number parameters, that 
allow to determine the convective boundary condition (model 2, 
TABLE 4), can be used for cooling vertical plates in the high 
temperature range. These problems are most often encountered 
during plastic forming processes, e.g. hot forging, rolling or 
continuous casting. 
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