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Abstract 
 

Hot deformation of metals is a widely used process to produce end products with the desired geometry and required mechanical properties. 

To properly design the hot forming process, it is necessary to examine how the tested material behaves during hot deformation. Model studies 

carried out to characterize the behaviour of materials in the hot deformation process can be roughly divided into physical and mathematical 

simulation techniques.  

The methodology proposed in this study highlights the possibility of creating rheological models for selected materials using methods of 

artificial intelligence, such as neuro-fuzzy systems. The main goal of the study is to examine the selected method of artificial intelligence to 

know how far it is possible to use this method in the development of a predictive model describing the flow of metals in the process of hot 

deformation.  

The test material was Inconel 718 alloy, which belongs to the family of austenitic nickel-based superalloys characterized by exceptionally 

high mechanical properties, physicochemical properties and creep resistance. This alloy is hardly deformable and requires proper 

understanding of the constitutive behaviour of the material under process conditions to directly enable the optimization of deformability and, 

indirectly, the development of effective shaping technologies that can guarantee obtaining products with the required microstructure and 

desired final mechanical properties.  

To be able to predict the behaviour of the material under non-experimentally tested conditions, a rheological model was developed using the 

selected method of artificial intelligence, i.e. the Adaptive Neuro-Fuzzy Inference System (ANFIS).  

The source data used in these studies comes from a material experiment involving  compression of the tested alloy on a Gleeble 3800 thermo-

mechanical simulator at temperatures of 900, 1000, 1050, 1100, 1150oC with the strain rates of 0.01 - 100 s-1 to a constant true strain value 

of 0.9. 

To assess the ability of the developed model to describe the behaviour of the examined alloy during hot deformation, the values of yield 

stress determined by the developed model (ANFIS) were compared with the results obtained experimentally. The obtained results may also 

support the numerical modelling of stress-strain curves.  
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1. Introduction  
 

Hot deformation of metals is a widely used process to produce 

end products with the desired geometry and required properties. To 

properly design this process, it is necessary to study the material 

behaviour during hot deformation. The values of the flow stress 

during hot deformation of materials depend on many factors, 

including strain, strain rate, temperature, etc. The phenomena that 

occur during this process are usually non-linear and therefore 

difficult to model. 

1.1. Methods of modelling the behaviour of 

metals during hot deformation 
 

Modelling studies to characterize the behaviour of metals 

during hot deformation can be roughly divided into physical and 

mathematical simulation techniques (Fig. 1). 

 

 

 

Fig. 1. The basic criterion for the division of methods used in phenomena modelling [1] 

 

Physical modelling involves the design of special test stands, 

where the controlled conditions of the process are simulated and 

process behaviour is observed (e.g. Gleeble apparatus).  

The second group is mathematical modelling, which describes 

in the form of appropriate mathematical expressions the cause-and-

effect relationships occurring in the process. The most popular in 

this field is hard modelling which takes into account the physical 

nature of the discussed phenomena and processes, formalized in the 

form of algebraic expressions which, apart from numbers, usually 

also include variables and numerical parameters. The primary 

techniques using this approach are all CAx systems. In programs 

based on the finite element method (FEM), the effectiveness of 

numerical simulation of the material shaping process is strongly 

dependent on the accuracy of the models used, including a detailed 

explanation/description of flow stress as a function of strain, strain 

rate and temperature, considered to be the key factor determining 

the dynamic response/reaction of  material to the application of a 

specific combination of thermo-mechanical process conditions [2]. 

The yield stress depends on the material parameters, and these in 

turn depend on the deformation history, strain rate and temperature. 

Therefore, a whole range of constitutive models describing the 

behaviour of the tested material during deformation, including hot 

deformation, has been developed and used in practice [3-5].  

The non-linear nature of the material response to changes in 

process parameters makes an accurate description of the material 

flow very difficult. The constitutive models describing the 

behaviour of materials during deformation can be divided into the 

following characteristic groups [6]: 

• Phenomenological models – these models are based on 

matching experimental data to appropriate mathematical 

equations/functions and define plastic flow stress as a 

function of temperature, strain rate and strain. They are 

widely used for various types of metals and their alloys, do 

not require detailed understanding of physical phenomena 

involved in the deformation process, use regression analysis 

to reduce the number of material constants describing the 

constitutive relationship between stress and process 

variables, and can be easily calibrated. These can be classical 

or modified models, e.g. Johnson-Cook (JC) model [7-9], 

Arrhenius equation, Molinari-Ravichandran (MR) model 

[10].  

• Physical models – these models take into account physical 

aspects of material deformation, are based on the theory of 

thermodynamics, thermally activated dislocation motion and 

slip kinetics. They are obtained by fitting and regression of 

experimental data and are based on a large number of 

material constants, the determination of which requires high-

accuracy instruments used during the hot and dynamic 

deformation process when the internal microstructure of the 

tested material undergoes significant changes. In cases where 

phenomenological models are unable to provide an accurate 

interpretation, physical models take into account e.g. the 

dislocation evolution mechanism or the energy of thermal 

activation, but complexity limits their application in 

commercially used finite element softwares (FEM). 

Examples of classical and modified physical models include 

Zerilli-Armstrong (ZA) model [11-12]; dynamic 

recrystallization (DRX) model [13]; cellular automaton (CA) 

model [14]. 

Soft modelling is a special group of methods which, contrary 

to hard modelling, does not take into account the physical nature of 

phenomena but detect the cause-and-effect relationships occurring 

in the analysed process through a special analysis of the obtained 

source data. This group of methods assumes that all knowledge 
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about the process is hidden in the values of the obtained 

experimental data constituting the direct basis for modelling. This 

modelling uses the most popular methods in the field of artificial 

intelligence, namely:  

• Artificial neural networks (ANNs) and adaptive neuro-fuzzy 

inference system (ANFIS) - known as universal 

approximators of functions, useful mainly when it is 

necessary to model phenomena of a strongly non-linear 

nature and multi-dimensional functional relationships, which 

are difficult to determine in a purely analytical form. These 

methods perfectly cope with uncertain and incomplete source 

data, and uncertainty and incompleteness are the 

predominant features of the source data obtained from 

experiments [15-17]. The source data obtained from 

experiments is valid only for selected cases, and so it is 

incomplete, it is additionally burdened with measurement 

errors, and so it is uncertain. This group of methods has 

gained particular popularity as a tool for building models 

which describe the behaviour of material during deformation 

as a function of high temperature and strain rate. The 

relationship is non-linear but numerous factors that control 

flow stress are also non-linear, and this allows predicting the 

value of flow stress with much higher accuracy than the 

accuracy provided by regression methods. One of the main 

advantages of this approach is that it is not necessary to 

postulate a mathematical model or identify its parameters 

using regression methods. Literature describes various cases 

when this approach has been used to determine rheological 

models [18-24]. The authors of models [18-21] have 

demonstrated that the accuracy of the ANN fit with regard to 

the flow stress in alloys of Pb-Mg-10Al-0.5B [19] and Ti-

6Al-4V [20]  is much better than the accuracy obtained when 

constitutive equations are used. While ANNs are used to 

model the flow curves for various types of alloys, studies 

using ANFIS can be found only for a few alloys, like Sn-5Sb 

[23], Ti60 [24], 6063 aluminium alloy [25], Ti600 [26], Ni-

based superalloy [27]. 

 

 

1.2. Constitutive modelling of the Inconel 718 

alloy 
 

Among the models used to simulate the behaviour of materials 

during hot deformation, there are phenomenological constitutive 

models.  

The literature describes numerous studies carried out on the 

Inconel 718 alloy. Inconel 718 is a hardly deformable alloy that 

requires high forming temperatures and narrow ranges of other 

process parameters. At the same time it is one of the most widely 

studied nickel-based alloys which, owing to their wide application, 

are still interesting to many researchers. As a nickel-based, 

precipitation-hardened superalloy, wrought Inconel 718 is mainly 

used for gas turbine rotors, rocket engines, nuclear reactor 

components, pumps and instrumentation.  

One of the most popular approaches to studies of the Inconel 

718 alloy involves the use of Arrhenius constitutive equations. 

They express the flow stress in the form of a mathematical equation 

where material constants can be determined by the regression 

analysis based on experimental results. Unfortunately, the 

traditional Arrhenius equation does not take into account the effect 

of strain on the value of flow stress which, as is generally known, 

is important because the stress-strain curves are representative of 

the process of strain hardening or dynamic softening. After the first 

application by Jonas [28], this model was modified to obtain more 

accurate and precisely predicted stress values by assuming that 

constants in the model depend on the strain value [29-30]. This 

requires the use of multiple regression, calculation of material 

constants for each value of deformation and matching the optimal 

degree of polynomial. Another popular method used to test the 

Inconel 718 alloy is the Johnson-Cook method and its 

developments, e.g. Johnson-Cook and Zerilli-Armstrong (JC-ZA) 

method. This model was tested for its ability to predict the flow 

stress in materials, assessed through the correlation coefficient, 

mean absolute error and its standard deviation [31]. 

Despite wide interest in this type of models, some of their 

disadvantages can be indicated, like mathematical formulation 

necessary for the algorithmic transformation of input data into 

output data, low accuracy of the regression method when predicting 

the non-linear relationships between stress and process variables, 

especially for high values of the strain rate, the need to recalculate 

constants in the case of adding new experimental data, and time-

consuming procedures [18, 26, 32]. 

There are examples in the literature of the use of soft modelling 

for Inconel 718 alloys [33-34], but these methods are mainly used 

to study the alloy physical properties other than the properties 

discussed in this article [35]. 

 

 

2. Research methodology  
 

The aim of this study is to present the selected research 

methodology and the results obtained in the development of a 

rheological model for the Inconel 718 alloy using an ANFIS 

algorithm. A diagram of the adopted research methodology is 

shown in Figure 2. The research includes the following stages: an 

experiment carried out on the selected test material, collecting the 

obtained experimental source data, selecting a modelling method 

and determining model parameters, and analysis of hardening 

curves generated by the developed model. 
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Fig. 2. Scheme of research methodology used for the construction of rheological models 

 

2.1. Test material and experimental procedure 
 

The source data used in these studies comes from a material 

experiment involving a compression test carried out on the alloy 

delivered in the form of a 50 mm diameter rod. The chemical 

composition of the alloy tested is shown in Table 1. 

 

Table 1. 

Chemical composition (wt%) of the tested Inconel 718 alloy 

Al Co Fe C Mo Cr Ti Nb Ni 

0,49 0,20 18,12 0,024 2,90 17,95 1,00 5,22 rest 

 

The original microstructure of Inconel 718 alloy is shown in 

Fig. 3. On delivery within the alloy investigated there are: phase 

separation  (needle-shaped precipitates within the grains 

boundaries), NbC and TiC carbides in the matrix of the fcc crystal 

structure. This proves that the material as delivered has not been 

fully heat treated by the manufacturer.  

 

 
Fig. 3. The original microstructure of Inconel 718 alloy 

 

The tests were carried out using a Gleeble 3800 thermo-

mechanical simulator (Fig. 4) operating in a protective argon 

atmosphere. Through upsetting, the samples in the simulator were 

undergoing a true strain of 0.9. The heating rate was 2.5°C/s, the 

holding time was 10 s. After deformation, the samples were cooled 

in a jet of compressed air.  

 

 
Fig. 4. Gleeble 3800 thermo-mechanical simulator 

 

Axial-symmetric samples with dimensions of  10 x 12 mm 

taken from the alloy were subjected to a compression test carried 

out at 900, 1000, 1050, 1100, 1150 [℃] with average strain rates 

equal to 0.01; 0.1; 1; 10; 100 [s-1]. The ranges of parameter values 

used in the compression test were taken from the literature. 

However, considering the lack of data on the behaviour of nickel 

alloys during deformation at high strain rates, despite problems 

with the precise control of parameters, tests were also carried out 

for the strain rate of 100 s-1. It was thought that the results might 

prove useful when designing the forming processes for high-speed 

machines. 

 

 

2.2. Source data acquired 
 

As a result of the studies, a database of experimental results 

containing 475 knowledge records was created. The input data 

included temperature, strain and strain rate. The output data (the 

dependent variable) was the stress value measured under given 

process conditions. The ranges of the values of the tested 

parameters are summarized in Table 2, while Table 3 shows a 

fragment of the developed database. 
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Table 2. 

List and ranges of the analysed input parameters 

 

Parameters 
Ranges 

Min. Max. 

INPUTS 

Temperature T, °C 900 1150 

Strain 𝜺̇, 1/s 0,01 100 

Strain rate ε 0 0,9 

OUTPUT 

Stress σ, MPa 52,342 931,343 

 

Table 3.  

Fragment of the acquired experimental data 

T, °C 𝜺̇, 1/s Ε σ, MPa 

900 0,01 0,00 248,906 

1000 0,01 0,00 136,706 

1050 0,01 0,00 87,944 

1100 0,01 0,00 67,512 

1150 0,01 0,00 52,342 

900 0,1 0,00 309,446 

1000 0,1 0,00 196,492 

1050 0,1 0,00 136,093 

1100 0,1 0,00 111,226 

1150 0,1 0,00 90,845 

900 1 0,00 335,036 

1000 1 0,00 291,715 

1050 1 0,00 224,541 

1100 1 0,00 175,104 

1150 1 0,00 149,092 

900 10 0,00 342,686 

1000 10 0,00 280,424 

1050 10 0,00 313,916 

1100 10 0,00 261,074 

1150 10 0,00 210,558 

900 100 0,00 395,462 

1000 100 0,00 392,053 

1050 100 0,00 365,436 

1100 100 0,00 317,121 

1150 100 0,00 309,871 

900 0,01 0,05 307,769 

… … … … 

 

Based on the ANFIS algorithm, the data collected in the table was 

used to develop a predictive model simulating the behaviour of the 

tested material under non-experimentally tested conditions. 

 

 

2.3. Adaptive Neuro-Fuzzy Inference System  
 

Fuzzy systems have attracted a lot of attention in recent years. 

First of all, they require much less information to model various 

phenomena than the classical modelling methods, and secondly, 

they are very good at processing uncertain and incomplete 

information. In fuzzy logic, the knowledge about the problem is 

written in the form of rules. In the presented study, a fuzzy Sugeno-

type inference system [36] was selected for fuzzy inference, the 

rules of which are characterized by premises written in the form of 

fuzzy sets, while conclusions are determined in the form of linear 

relationships (1).  

 

If x is A and y is B then z1 = a1x+b1y+c1          (1) 

 

where:   

x and y – explanatory (input) variables,  

A, B – names of fuzzy sets representing premises,   

z1  – the dependent (output) variable, the value of which is 

represented by a linear functional relationship, 

a1, b1, c1 – coefficients in the linear description of the function.  

 

Figure 5 is an example of the inference system mapping four 

rules, the conclusions of which are linear functions operating in a 

narrow range of specific fuzzy sets. An appropriate inference 

mechanism adopted for the Sugeno system can provide a smooth 

transition from one linear function to another for areas where the 

sets overlap. As a result, based on the Sugeno model, it is possible 

to build a fuzzy system that switches between several local linear 

solutions acting as a strongly non-linear system that moves globally 

around its operating point.  

 

 
Fig. 5. An example of the Sugeno inference system  

 

Fuzzy inference system (FIS) structure identification includes: 

• determining input and output variables, 

− dividing the ranges of input variables into an appropriate 

number of fuzzy sets with a specific shape of the 

membership function,  

− parametric identification and estimation of parameters 

of the membership function of fuzzy sets of inputs,  

− parametric identification of parameters of the linear 

models appearing in the conclusions of the rules,  

• determining fuzzy rules of the IF-THEN type interrelating 

fuzzy premises with linear conclusions. Each rule represents 



46  A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 2 ,  I s s u e  3 / 2 0 2 2 ,  4 1 - 5 2  

one narrow local system of dependencies occurring in the 

analysed process. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) [37] is a 

hybrid algorithm which, using  available training data, determines 

the optimal FIS parameters, i.e.:  

− parameters of the membership function of fuzzy sets for input 

variables,  

− coefficients of linear functions appearing in the conclusions 

of the rules, 

− a set of fuzzy rules of the IF-THEN type.  

The process of determining the parameters of the FIS system is 

carried out by constantly changing these parameters as a result of 

presenting the system with individual model cases from the training 

sample. Training is iterative and consists in:  

− tuning parameters of the membership function of fuzzy sets 

occurring in the premises of the rules - this operation is based 

on the error back propagation algorithm,  

− updating the coefficients of linear functions appearing in the 

conclusions of the rules - this operation is performed by the 

least squares method.  

The general scheme of data processing in the ANFIS algorithm 

consists of several computational layers, which are schematically 

presented in Figure 6.  

 

 

 
Fig. 6 Architecture of the ANFIS algorithm 

 

The initial layer (INPUTS) is responsible for the transfer of 

input variables from the training set (x1, x2, ..., xn), and the first 

layer (L1) performs the fuzzification process, i.e. determining the 

coefficients of the membership of each input vector xi in the 

adopted fuzzy sets Ak
i of each variable. The second layer (L2) 

determines the degree of activation of the premises of the k-th rule 

wk. The elements of this layer follow the t-norm, e.g. in the form of 

the product. The obtained value is normalized in the next layer 

(L3). The fourth layer (L4) computes the conclusion values of the 

k-th rule yk, which are then weighted by the degrees of the truth of 

the logical rules (wi). In the fifth layer (L5) they are added together. 

The output gives the predicted value of the dependent variable for 

the modelled sample. Here, the output from the model is compared 

with the pattern in the training data, the error is calculated based on 

the difference between the calculated response of the i-th FIS and 

the pattern response obtained for this case, and information about 

the error is sent to the previous layer and FIS parameters are 

modified in accordance with the adopted principle. The ANFIS 

model uses hybrid training, i.e. gradient training combined with 

least squares estimation.   

− Step 1 - the parameters of the premises (fuzzy sets) are 

constant - construction of local linear models:  the parameters 
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of the rule conclusions are determined (least squares 

estimation).  

− Step 2 – the parameters of the rule conclusions are constant 

(coefficients of linear functions). The error is calculated and 

then propagated backwards. The parameters of the rule 

conditions (parameters of the membership function of fuzzy 

sets) are modified with partial derivatives of the error function 

(gradient training).  

The training is stopped when the average error has reached the 

assumed minimum.  

 

3. Results and discussion 
 

 

3.1. Experimental stress-strain behaviour 
 

The true stress-strain curves of Inconel 718 at temperatures 

from 900℃ to 1150℃ and the strain rates ranging from 0.01 to 100 

s-1 up to a true strain of 0,9 are shown in Fig. 7.  

 

 

 

a)  

 

b) 

 
c) 

 

d)  

 
e)  

 

 

 

 

Fig. 7. The stress – strain curves of Inconel 718: a) at 900℃ for different strain rates, b) at 1000℃ for different strain rates, c) at 1050℃ for 

different strain rates, d) at 1100℃ for different strain rates, e) at 1150℃ for different strain rates 

 

 

It is easy to note that the stress-strain curves slightly differ in 

shape depending on the strain rate and temperature. The stress 

increases with the increase in strain rate and decreases in 

temperature, thus suggesting that during hot compression the stress 

is sensitive to both strain rate and temperature. The main reason for 

the increase in stress value with the increase in strain rate may be 
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the energy accumulation time, the lower is the strain rate, the longer 

is the time. High temperature and lower strain rates promote a 

longer time for the nucleation process and the growth of 

dynamically recrystallized grains as well as the annihilation of 

dislocations, thus reducing the stress level [38]. Additionally, the 

flow stress increases at the beginning of the deformation process. 

It is related to the rate of material hardening caused by the rapid 

generation and multiplication of dislocations [39]. The intensive 

process of material hardening in the initial phase is visible at 

temperatures below 1150oC. At the same time, the dynamic 

recovery associated with the climbing and sliding of dislocations is 

too weak to overcome the hardening effect. As the true strain 

increases, the flow stress also increases to its maximum (peak) 

value, to undergo later a gradual decrease. The softening of the 

tested material, manifested by a decrease in true stress after 

exceeding the maximum value with the strain increase, may be the 

result of a recrystallization process and dynamic recovery of 

material, or instability of material flow [40-41]. A steady course of 

the curves was observed for lower strain rates.  

 

 

3.2. Fuzzy FIS model developed using ANFIS  
 

Three input variables were adopted as an input to the algorithm, 

i.e. temperature, strain and strain rate. Stress was adopted as an 

output. A schematic diagram of the FIS model with input and 

output variables is shown in Figure 8.   

 

 
Fig. 8. Schematic diagram of the FIS model with input and output 

variables 

 

In the training process, tests were carried out on many FIS 

architectures with the different numbers of the fuzzy sets for input 

variables and types (shapes) of membership functions. The best 

results were obtained for the structure where all fuzzy sets of input 

variables were Gaussian in nature. The adopted formula is 

presented in equation (2), and its graphical form is presented in 

Figure 9. 

 

𝜇𝐴(𝑥; 𝑥̅; 𝜎) = exp⁡ (−(
𝑥 − 𝑥̅

𝜎
)
2

) (2) 

where: - 𝑥̅ - centre,  - width of the fuzzy set. 

 

 
Fig. 9. Graphical representation of the Gaussian membership 

function 

 

The temperature and strain rate variables were divided into five 

fuzzy sets, while the strain variable was divided into three fuzzy 

sets. The structure of the developed ANFIS model is presented in 

Figure 10. 

 

 
Fig. 10. The structure of the ANFIS model developed to predict 

stress values 

 

The model comprised 75 generated subspaces, where each of 

the subspaces was represented by one fuzzy rule describing system 

operation in this subspace. The general form of the rules is 

presented in formula (3).  

 

IF (x1 = A1) and (x2 = B2) and (x3 = C3)  

THEN y1 = f1(x1, x2, x3) 
(3) 

 

The simulation performed with the designed algorithm gave 

very satisfactory results. The minimum training RMSE determined 

by the formula (4) was achieved as early as in the 23rd epoch and 

was at a level of 3.328 (Fig. 11a). Figure 11b compares calculations 

derived from the FIS model with training data. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑖)

2

𝑛

𝑖=1

 (4) 
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a)  b)  

Fig. 11. Outcomes of the training process: a) the course of the training error, b) training data compared with the results of modelling 

 

Figure 12 shows graphical representation of fuzzy sets 

determined by ANFIS in the training process for the adopted input 

variables, i.e.: (a) temperature, (b) strain, (c) strain rate. 

 

a)  b)  c)  

Fig. 12. Graphical representation of the input variables: a) temperature, b) strain rate, c) strain  

 

3.3. Adaptive Neuro-Fuzzy Inference System 
  

The results obtained on the developed predictive model 

simulating the behaviour of Inconel 718 under the non-

experimentally tested conditions are discussed. Figure 13 shows 

comparative plots obtained for the experimental results (dotted 

line) and values predicted by ANFIS model (solid line) at (a) 900 
oC, (b) 1000 oC, (c) 1050 oC and (d) 1100 oC, (e) 1150 oC. 

A comparison of the experimental flow curves with the curves 

predicted by ANFIS model for the same temperature parameters, 

i.e. from 900 to 1150℃, and strain rates, i.e. from 0.01 to 100 s-1, 

showed a similar course of the curves in the full range of 

deformation values. Hence it can be concluded that in the entire 

process space the calculated values of stress show very high 

goodness of fit with the experimental data. This indicates the 

correct selection of the stress prediction model for the examined 

range of the temperature and strain rate values and indicates that 

the developed model can be used to predict the values of stress in 

the examined nickel alloy. 

 

a)  

 

 
 

b) 

 

c)  d)  
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e)  

 

 

 

Fig. 13 Comparative plots of the experimental results (solid line) and values predicted by ANFIS model (dotted line) at (a) 900℃, (b) 

1000℃, (c) 1050℃ and (d) 1100℃, (e) 1150℃  

 

 

4. Summary  
 

Modelling of the Inconel 718 alloy plastic flow behaviour in a 

hot deformation process using artificial intelligence methods was 

described. Source data from the material experiment, which 

comprised the compression test in a Gleeble thermo-mechanical 

simulator carried out at temperatures of 900, 1000, 1050, 1100, 

1150 [℃] and strain rates of 0.01; 0.1; 1; 10; 100 [s-1], was used in 

the research.  

The following conclusions can be derived from this study: 

• An analysis of the flow curves was performed and it was 

found that with the increasing value of true strain, the flow 

stress was also increasing to its maximum (peak) value, to 

decrease gradually later on.  

• The flow curves were plotted since the literature provides no 

information on the use of the neuro-fuzzy ANFIS algorithm 

to develop the flow curves for the tested nickel alloy. For the 

entire range of temperature values, i.e. 900 - 1150℃, and the 

strain rates of 0.01 - 100 s-1, a high degree of compliance was 

obtained between stress values determined by the model and 

experimental data.  

• The developed flow curves can be used for numerical 

modelling of the plastic forming process of Inconel 718 alloy.  
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