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Exponential decay of transient values in discrete-time
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The exponential decay of transient values in discrete-time nonlinear standard and fractional
orders systems with linear positive linear part and positive feedbacks is investigated. Sufficient
conditions for the exponential decay of transient values in this class of positive nonlinear systems
are established. A procedure for computation of gains characterizing the class of nonlinear
elements are given and illustrated on simple example.
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1. Introduction

In positive systems inputs, state variables and outputs take only non-
negative values for any nonnegative inputs and nonnegative initial condi-
tions [1, 2, 10, 13, 17, 21]. Examples of positive systems are industrial processes
involving chemical reactors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric pollutions models and
electrical circuits. A variety of models having positive behavior can be found
in engineering, management science, economics, social sciences, biology and
medicine, etc. An overview of state of the art in positive systems theory is given
in the monographs [1, 2, 11, 13].
Mathematical fundamentals of the fractional calculus are given in the mono-

graphs [11, 18, 19]. The positive fractional linear systems have been investigated
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in [3, 4, 6–13, 21]. Positive linear systems with different fractional orders have
been addressed in [1, 9, 21]. Linear positive electrical circuits have been investi-
gated in [13]. The global stability of nonlinear systems with positive feedbacks
and positive stable linear parts has been investigated in [6–8,14] and the stability
of discrete-time systems with delays in [20]. The exponential decay of transient
values in continuous-time positive nonlinear systems has been analyzed in [5].
In this paper the exponential decay of transient values in discrete-time non-

linear standard and fractional positive systems with positive feedbacks will be
addressed.
The paper is organized as follows. In Section 2 the basic definitions and

theorems concerning the positivity and stability of fractional orders linear systems
are recalled. The asymptotic stability of interval fractional linear systems with
interval matrices are considered in Section 3. The main results of the paper are
given in Sections 4 and 5. In Section 4 sufficient conditions for the global stability
and the exponential decay of transient values in the positive nonlinear systems are
established and procedures for computation of the gains characterizing the class of
characteristics of nonlinear elements are given. In Section 5 the results of Section 4
are extended to the fractional nonlinear positive systems. The considerations are
illustrated by numerical examples. Concluding remarks are given in Section 6.
The following notation will be used:< – the set of real numbers,<𝑛×𝑚 – the

set of 𝑛×𝑚 real matrices,<𝑛×𝑚
+ – the set of 𝑛×𝑚 real matrices with nonnegative

entries and <𝑛
+ = <𝑛×1

+ , 𝑀𝑛 – the set of 𝑛 × 𝑛 Metzler matrices (real matrices
with nonnegative off-diagonal entries), 𝐼𝑛 – the 𝑛 × 𝑛 identity matrix.

2. Fractional positive discrete-time linear systems

Consider the autonomous fractional discrete-time linear system

Δ𝛼𝑥𝑖+1 = 𝐴𝑥𝑖 , 0 < 𝛼 < 1, 𝑖 ∈ 𝑍+ , (1)

where

Δ𝛼𝑥𝑖 =

𝑖∑︁
𝑗=1
𝑐 𝑗𝑥𝑖− 𝑗 , (2a)

𝑐 𝑗 = (−1) 𝑗
(
𝛼

𝑗

)
,

(
𝛼

𝑗

)
=


1 for 𝑗 = 0,
𝛼(𝛼−1) . . . (𝛼− 𝑗+1)

𝑗!
for 𝑗 = 1, 2, . . .

(2b)

is the fractional 𝛼-order difference of 𝑥𝑖 and 𝑥𝑖 ∈ <𝑛, 𝑢𝑖 ∈ <𝑚 are the state and
input vectors and 𝐴 ∈ <𝑛×𝑛.
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Substitution of (2) into (1) yields

𝑥𝑖+1 = 𝐴𝛼𝑥𝑖 −
𝑖+1∑︁
𝑗=2
𝑐 𝑗𝑥𝑖− 𝑗+1 , 𝑖 ∈ 𝑍+ , (3a)

where
𝐴𝛼 = 𝐴 + 𝐼𝑛𝛼 . (3b)

Definition 1 [11, 20] The fractional system (1) is called (internally) positive if
𝑥𝑖 ∈ <𝑛

+, 𝑖 ∈ 𝑍+ for any initial conditions 𝑥0 ∈ <𝑛
+.

Theorem 1 [11, 20] The fractional system (1) is positive if and only if

𝐴𝛼 ∈ <𝑛×𝑛
+ . (4)

Proof is given in [11].

Definition 2 The fractional positive system (1) is called asymptotically stable if

lim
𝑖→∞

𝑥𝑖 = 0 for all 𝑥0 ∈ <𝑛
+ . (5)

Theorem 2 [11] The fractional positive system (1) is asymptotically stable if
and only if one of the equivalent conditions is satisfied:

1. All coefficient of the characteristic polynomial

𝑝𝐴 (𝑧) = det
[
𝐼𝑛 (𝑧 + 1) − 𝐴

]
= 𝑧𝑛 + 𝑎𝑛−1𝑧𝑛−1 + . . . + 𝑎1𝑧 + 𝑎0 (6)

are positive, i.e. 𝑎𝑘 > 0 for 𝑘 = 0, 1, . . . , 𝑛−1.

2. There exists strictly positive vector 𝜆𝑇 =
[
𝜆1 · · · 𝜆𝑛

]𝑇 , 𝜆𝑘 > 0, 𝑘 =

1, . . . , 𝑛 such that [
𝐴 − 𝐼𝑛

]
𝜆 < 0. (7)

Proof is given in [11].

Theorem 3 The positive system (1) is asymptotically stable if the sum of entries
of each column (row) of the matrix 𝐴 is less than one.

Proof. The proof follows from condition (7) for 𝜆𝑇 =
[
1 · · · 1

]
since[

1 · · · 1]𝑇 𝐴 <
[
1 · · · 1

]
if the sum of entries of each column of the matrix

𝐴 is less than 1. Proof for rows is similar. 2



580 T. KACZOREK, A. RUSZEWSKI

3. Fractional interval positive linear discrete-time systems

Consider the interval fractional positive discrete-time linear system (1) with
the interval matrix 𝐴 ∈ <𝑛×𝑛

+ defined by

𝐴1 ¬ 𝐴 ¬ 𝐴2 or equivalently 𝐴 ∈ [𝐴1, 𝐴2] . (8)

Definition 3 The interval fractional positive system with (8) is called asymptot-
ically stable if the system is asymptotically stable for all matrices 𝐴 ∈ <𝑛×𝑛

+
belonging to the interval [𝐴1, 𝐴2].
Definition 4 The matrix

𝐴 = (1 − 𝑘)𝐴1 + 𝑘𝐴2 , 0 ¬ 𝑘 ¬ 1, 𝐴1 ∈ <𝑛×𝑛, 𝐴2 ∈ <𝑛×𝑛 (9)

is called the convex linear combination of the matrices 𝐴1 and 𝐴2.

Theorem 4 The convex linear combination (9) is asymptotically stable if and
only if the matrices 𝐴1 ∈ <𝑛×𝑛 and 𝐴2 ∈ <𝑛×𝑛 are asymptotically stable.

For two fractional positive linear systems

𝑥1,𝑖+1 = 𝐴1𝑥1,𝑖 , 𝐴1 ∈ <𝑛×𝑛
+ (10a)

and
𝑥2,𝑖+1 = 𝐴2𝑥2,𝑖 , 𝐴2 ∈ <𝑛×𝑛

+ (10b)
there exists a strictly positive vector 𝜆 ∈ <𝑛

+ such that

𝐴1𝜆 < 𝜆 and 𝐴2𝜆 < 𝜆 (11)

if and only if the systems (10) are asymptotically stable.

Theorem 5 If the matrices 𝐴1 and 𝐴2 of fractional positive systems (10) are
asymptotically stable then their convex linear combination

𝐴 = (1 − 𝑘)𝐴1 + 𝑘𝐴2 for 0 ¬ 𝑘 ¬ 1 (12)

is also asymptotically stable.

Proof. By condition (7) of Theorem 2 if the fractional positive linear systems
(10) are asymptotically stable then there exists strictly positive vector 𝜆 ∈ <𝑛

+
such that

𝐴1𝜆 < 𝜆 and 𝐴2𝜆 < 𝜆. (13)
Using (7) and (13) we obtain

𝐴𝜆 =
[
(1 − 𝑘)𝐴1 + 𝑘𝐴2

]
𝜆 = (1 − 𝑘)𝐴1𝜆 + 𝑘𝐴2𝜆 < 𝜆

for 0 ¬ 𝑘 ¬ 1. Therefore, if the positive linear systems (10) are asymptotically
stable then their convex linear combination (12) is also asymptotically stable.2
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Theorem 6 The interval positive systems (9) are asymptotically stable if and only
if the positive linear systems (10) are asymptotically stable.
Proof. By condition (7) of Theorem 2 if the matrices 𝐴1 ∈ <𝑛×𝑛

+ , 𝐴2 ∈ <𝑛×𝑛
+ are

asymptotically stable then there exists a strictly positive vector 𝜆 ∈ <𝑛
+ such that

(7) holds. The convex linear combination (12) satisfies the condition 𝐴𝜆 < 𝜆 if
and only if (13) holds. Therefore, the interval system (9) is asymptotically stable
if and only if the positive linear system is asymptotically stable. 2

4. Exponential decay of transient values in feedback positive nonlinear systems
with interval matrices

Consider the nonlinear multi-input multi-output feedback system shown in
Fig. 1which consists of the nonlinear elementwithmatrix characteristic 𝑢 = 𝑓 (𝑒),
positive linear part with interval matrices and feedback with gain matrix 𝐻.

Figure 1: The positive nonlinear feedback system

The linear part is described by the equations
𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 , 𝑖 ∈ 𝑍+ = {0, 1, . . .}, (14a)
𝑦𝑖 = 𝐶𝑥𝑖 , (14b)

where 𝑥𝑖 ∈ <𝑛, 𝑢𝑖 ∈ <𝑚, 𝑦𝑖 ∈ <𝑝 are the state, input and output vectors of the
system 𝐴 ∈ <𝑛×𝑛, 𝐵 ∈ <𝑛×1, 𝐶 ∈ <1×𝑛 are interval

𝐴1 ¬ 𝐴 ¬ 𝐴2 , 𝐵1 ¬ 𝐵 ¬ 𝐵2 , 𝐶1 ¬ 𝐶 ¬ 𝐶2 . (14c)
The matrix characteristic of the nonlinear element satisfies the condition

𝑢 ¬ 𝐾𝑒, 𝑢𝑖 = 𝑓 (𝑒𝑖) ¬ 𝑘𝑖1𝑒1 + . . . + 𝑘𝑖𝑝𝑒𝑝 , 𝑖 = 1, . . . , 𝑚, (15a)
where

𝑢 =


𝑢1
...

𝑢𝑚

 , 𝐾 =


𝑘11 · · · 𝑘1𝑝
...

. . .
...

𝑘𝑚1 · · · 𝑘𝑚𝑝

 , 𝑒 =


𝑒1
...

𝑒𝑝

 , (15b)

In general case the feedback matrix 𝐻 is not square.
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Theorem 7 The multi-input multi-output nonlinear discrete-time system consist-
ing of the positive linear part with interval matrices (14c), the matrix nonlinear
element satisfying the condition (15) and the feedback with the matrix 𝐻 ∈ <𝑚×𝑝

+
is globally stable if there exists a matrix 𝐾 with positive entries such that the sum
of entries of each column (row) of the matrix

(1 − 𝑞)𝐴1 + 𝑞𝐴2 + 𝐵𝐾𝐻𝐶 =

{
𝐴1 + 𝐵1𝐾1𝐻𝐶1 ∈ <𝑛×𝑛

+ for 𝑞 = 0,
𝐴2 + 𝐵2𝐾2𝐻𝐶2 ∈ <𝑛×𝑛

+ for 𝑞 = 1
(16)

is less than one.

Proof. As the Lyapunov [15, 16] function 𝑉 (𝑥𝑖) we choose

𝑉 (𝑥𝑖) = 𝜆𝑇𝑥𝑖 ­ 0 for 𝑥𝑖 ∈ <𝑛
+, 𝑖 ∈ 𝑍+ , (17)

where 𝜆 ∈ <𝑛
+ is strictly positive vector.

Using (17) and (14) we obtain

Δ𝑉 (𝑥𝑖) = 𝑉 (𝑥𝑖+1) −𝑉 (𝑥𝑖) = 𝜆𝑇 (𝐴𝑥𝑖 + 𝐵𝑢𝑖) − 𝜆𝑇𝑥𝑖
= 𝜆𝑇

(
𝐴𝑥𝑖 + 𝐵 𝑓 (𝑒𝑖)

)
− 𝜆𝑇𝑥𝑖 ¬ 𝜆𝑇

[
(𝐴 − 𝐼𝑛) + 𝐵𝐾𝐻𝐶

]
𝑥𝑖 (18)

since 𝑢 ¬ 𝐾𝑒 = 𝐾𝐻𝐶𝑥𝑖.
By Theorem 3 from (18) it follows that Δ𝑉 (𝑥𝑖) < 0 if the sum of entries of

each column (row) of the matrix (16) is less than one. 2

To find the maximal matrix 𝐾 for which the nonlinear system shown in Fig. 1
is globally stable the following procedure can be used.

Procedure 1
Step 1. Find the matrix 𝐾1 such that the sum of entries of each column of the
matrix

𝐴1 + 𝐵1𝐾1𝐻𝐶1 ∈ <𝑛×𝑛
+ (19)

is less than one.
If 𝑚 𝑝 > 𝑛 then we choose 𝑚 𝑝 − 𝑛 nonnegative entries of the matrix 𝐾 and

the remaining its entries (components of vector 𝑘) we compute as the solution of
the linear matrix equation

𝐺 𝑘 = ℎ, (20)
where the matrix 𝐺 and the column vector ℎ are defined by the sum of entries of
each column (row) of the matrix (19).
Step 2. In a similar way as in Step 1 find the matrix 𝐾2 such that the sum of
entries of each column of the matrix

𝐴2 + 𝐵2𝐾2𝐻𝐶2 ∈ <𝑛×𝑛
+ (21)

is less than one.
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Step 3. Knowing 𝐾1 and 𝐾2 find the desired matrix 𝐾 which satisfies the condi-
tions (19) and (21).

Example 1 Consider the nonlinear system with the positive linear part with the
interval matrices

𝐴1 =

[
0.3 0.2
0.2 0.4

]
, 𝐴2 =

[
0.5 0.3
0.3 0.5

]
, 𝐵1 =

[
0.4
0.3

]
, 𝐵2 =

[
0.5
0.4

]
,

𝐶1 =

[
0.4 0.2
0.1 0.3

]
, 𝐶2 =

[
0.5 0.3
0.2 0.4

]
,

(22)

the matrix nonlinear element satisfying the condition (15) and the matrix

𝐻 =

[
0.3 0.1
0.2 0.5

]
. (23)

Find the maximal matrix 𝐾 for which the nonlinear system is globally stable.
Using Procedure 1 we obtain
Step 1. Using (19) and (22) we obtain

𝐴1 + 𝐵1𝐾1𝐻𝐶1 =
[
0.3 0.2
0.2 0.4

]
+

[
0.4
0.3

] [
𝑘11 𝑘12

] [
0.4 0.3
0.3 0.4

] [
0.4 0.2
0.1 0.3

]
=

[
0.052𝑘11 + 0.052𝑘12 + 0.3 0.036𝑘11 + 0.076𝑘12 + 0.2
0.039𝑘11 + 0.039𝑘12 + 0.2 0.027𝑘11 + 0.057𝑘12 + 0.4

]
. (24)

The sumof entries of the first columnof thematrix (24) is 0.091𝑘11+0.091𝑘12+0.5
and the sum of entries of the second column of the matrix (24) is 0.063𝑘11 +
0.133𝑘12 + 0.6.
Solving the system of linear inequalities{

0.091𝑘11 + 0.091𝑘12 + 0.5 < 1,
0.063𝑘11 + 0.133𝑘12 + 0.6 < 1

. (25)

we obtain 𝑘11 < 4.725 and 𝑘12 < 0.769.
Therefore, the maximal 𝐾1 for which the matrix (24) is Schur is 𝐾1 =[

4.725 0.769
]
.

Step 2. Using (21) and (22) we obtain

𝐴2 + 𝐵2𝐾2𝐻𝐶2 =
[
0.5 0.3
0.3 0.5

]
+

[
0.5
0.4

] [
𝑘12 𝑘21

] [
0.4 0.3
0.3 0.4

] [
0.5 0.3
0.2 0.4

]
=

[
0.085𝑘11 + 0.1𝑘12 + 0.5 0.065𝑘11 + 0.13𝑘12 + 0.3
0.068𝑘11 + 0.08𝑘12 + 0.3 0.052𝑘11 + 0.104𝑘12 + 0.5

]
. (26)
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The sum of entries of the first column of thematrix (26) is 0.153𝑘11+0.18𝑘12+0.8
and the sum of entries of the second column of the matrix (26) is 0.117𝑘11 +
0.234𝑘12 + 0.8.
Solving the system of linear inequalities{ 0.153𝑘11 + 0.18𝑘12 + 0.8 < 1,

0.117𝑘11 + 0.234𝑘12 + 0.8 < 1
(27)

we obtain 𝑘11 < 0.733 and 𝑘12 < 0.488.
Therefore, the maximal 𝐾2 for which the matrix (26) is Schur is 𝐾2 =[

0.733 0.488
]
.

Step 3. Using the results obtained in Steps 1 and 2 we obtain that the maximal
𝐾 for which the matrices (24) and (26) are Schur is 𝐾 =

[
0.733 0.488

]
.

Lemma 1 If 𝑧𝑘 , 𝑘 = 1, . . . , 𝑛 are the eigenvalues of the matrix 𝐴 ∈ <𝑛×𝑛
+ , then

the matrix 𝐴 − 𝐼𝑛𝛾 has the eigenvalues 𝑧𝑘 + 𝛾, 𝑘 = 1, . . . , 𝑛, 0 ¬ 𝛾 < 1.

Proof. Let 𝑧𝑘 , 𝑘 = 1, . . . , 𝑛 be the roots of the equation

det
[
𝐼𝑛𝑧 − 𝐴

]
= 0 (28)

then
det

[
𝐼𝑛𝑧 − (𝐴 − 𝐼𝑛𝛾)

]
= det

[
𝐼𝑛 (𝑧 + 𝛾) − 𝐴

]
= 0. (29)

Therefore, if 𝑧𝑘 , 𝑘 = 1, . . . , 𝑛 are the eigenvalues of the matrix 𝐴 then 𝑧𝑘 + 𝛾,
𝑘 = 1, . . . , 𝑛, are the eigenvalues of the matrix 𝐴 − 𝐼𝑛𝛾. 2

From Lemma 1 it follows that if the eigenvalues of the matrix 𝐴 are located
in the unit circle then the eigenvalues of the matrix 𝐴 − 𝐼𝑛𝛾 are located in the
circle with the radius 1 − 𝛾. In this case transient values of the linear system are
decreasing faster than (1 − 𝛾)𝑖 for 𝑖 = 1, 2, . . . .

Example 2 The asymptotically stable matrix with positive entries

𝐴 =

[
0.6 0.2
0.1 0.7

]
(30)

with the characteristic polynomial

det
[
𝐼2𝑧 − 𝐴

]
=

����𝑧 − 0.6 −0.2
−0.1 𝑧 − 0.7

���� = 𝑧2 − 1.3𝑧 + 0.4 (31)

has the eigenvalues: 𝑧1 = 0.5, 𝑧2 = 0.8.
The matrix

𝐴𝛾 = 𝐴 − 𝐼2𝛾 =

[
0.4 0.2
0.1 0.5

]
, 𝛾 = 0.2 (32)
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has the characteristic polynomial

det
[
𝐼2𝑧 − 𝐴𝛾

]
=

����𝑧 − 0.4 −0.2
−0.1 𝑧 − 0.5

���� = 𝑧2 − 0.9𝑧 + 0.18 (33)

and the eigenvalues 𝑧1 = 0.3, 𝑧2 = 0.6.
This simple example confirms the Lemma 1.
From the above considerations and Theorem 7we have the following theorem.

Theorem 8 Transient values in the multi-input multi-output nonlinear system
consisting of the positive linear part with interval matrices (14c), the matrix
nonlinear element satisfying the condition (15) and the feedback with the matrix
𝐻 are decreasing faster than (1− 𝛾)𝑖 for 𝑖 = 1, 2, . . . if the sum of entries of each
column(row) of the matrix

(1 − 𝑞) (𝐴1 − 𝐼𝑛𝛾) + 𝑞(𝐴2 − 𝐼𝑛𝛾) + 𝐵𝐾𝐻𝐶

=

{
𝐴1 − 𝐼𝑛𝛾 + 𝐵1𝐾1𝐻𝐶1 ∈ <𝑛×𝑛

+ for 𝑞 = 0,
𝐴2 − 𝐼𝑛𝛾 + 𝐵2𝐾2𝐻𝐶2 ∈ <𝑛×𝑛

+ for 𝑞 = 1
(34)

is less than one.

5. Fractional positive feedback nonlinear systems

Consider the nonlinear system shown in Fig. 1 which consists of the positive
linear part, nonlinear element with characteristic 𝑢 = 𝑓 (𝑒) and the scalar gain
feedback ℎ. The linear part is described by the equations (3) with interval matrix
𝐴 satisfying the condition (8). To simply the notion it is assumed that the scalar
characteristic 𝑢 = 𝑓 (𝑒) satisfies the condition

0 < 𝑓 (𝑒) < 𝑘𝑒, 0 ¬ 𝑘 < ∞. (35)

The following theorem gives sufficient conditions for the decreasing of the tran-
sient values in the nonlinear system faster than (1 − 𝛾)𝑖 for 𝑖 = 1, 2, . . .
Theorem 9 Transient values in the fractional nonlinear discrete-time system
shown in Fig. 1 with the positive linear part (9), the nonlinear element satisfying
the condition (35) and the scalar positive feedback are decreasing faster than
(1 − 𝛾)𝑖 for 𝑖 = 1, 2, . . . if the sum of entries of each column (row) of the matrix

(1 − 𝑞) (𝐴1 − 𝐼𝑛𝛾) + 𝑞(𝐴2 − 𝐼𝑛𝛾) + 𝑘ℎ𝐵𝐶

=

{
𝐴1 − 𝐼𝑛𝛾 + 𝑘ℎ𝐵1𝐶1 ∈ <𝑛×𝑛

+ for 𝑞 = 0,
𝐴2 − 𝐼𝑛𝛾 + 𝑘ℎ𝐵2𝐶2 ∈ <𝑛×𝑛

+ for 𝑞 = 1
(36)

is less than one.
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Proof. As the Lyapunov function 𝑉 (𝑥) for the system with not interval matrices
we choose

𝑉 (𝑥𝑖) = 𝜆𝑇𝑥𝑖 ­ 0 𝑓 𝑜𝑟 𝑥𝑖 ∈ <𝑛
+, 𝑖 ∈ 𝑍+ , (37)

where 𝜆 ∈ <𝑛
+ is strictly positive vector.

Using (37) and (35) we obtain

Δ𝑉 (𝑥𝑖) = 𝑉 (𝑥𝑖+1) −𝑉 (𝑥𝑖) = 𝜆𝑇𝑥𝑖+1 − 𝜆𝑇𝑥𝑖

= 𝜆𝑇

(
𝐴𝛼𝑥𝑖 +

∞∑︁
𝑘=2

𝑐𝑘𝑥𝑖−𝑘+1 + 𝐵𝑢𝑖

)
− 𝜆𝑇𝑥𝑖

= 𝜆𝑇

[
(𝐴𝛼 − 𝐼𝑛)𝑥𝑖 +

∞∑︁
𝑘=2

𝑐𝑘𝑥𝑖−𝑘+1 + ℎ𝐵 𝑓 (𝑒𝑖)
]

¬ 𝜆𝑇
[
(𝐴𝛼 − 𝐼𝑛 + 𝑘ℎ𝐵𝐶)𝑥𝑖 +

∞∑︁
𝑘=2

𝑐𝑘𝑥𝑖−𝑘+1

]
(38)

Taking into account that

∞∑︁
𝑘=2

𝑐𝑘𝑥𝑖−𝑘+1 ¬
∞∑︁
𝑘=2

𝑐𝑘𝑥𝑖 = (1 − 𝛼)𝑥𝑖 (39)

we obtain

Δ𝑉 (𝑥𝑖) = 𝜆𝑇 [𝐴𝛼 + 𝐼𝑛𝛼− 𝐼𝑛 + 𝑘ℎ𝐵𝐶 + (1−𝛼)𝐼𝑛]𝑥𝑖 = 𝜆𝑇 [𝐴+ 𝑘ℎ𝐵𝐶]𝑥𝑖 < 0. (40)

For the nonlinear system with interval matrices (9) we obtain (36). 2

The considerations can be easily extended to the systems with multi-input
multi-output nonlinear systems satisfying the condition (15).

6. Concluding remarks

The exponential decay of transient values in the discrete-time nonlinear stan-
dard and fractional orders with positive linear parts and linear positive feedbacks
has been investigated. Sufficient conditions for the exponential decay of transient
values in this class of positive nonlinear systems have been established (Theo-
rems 7 and 9). Procedure for computation of gains characterizing the class of
nonlinear elements are given and illustrated on simple example. The considera-
tions have been extended to fractional order nonlinear systems. An open problem
is an extension of the consideration to different fractional orders nonlinear sys-
tems.
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