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Abstract
International standards from IEC and IEEE regulate power grid parameters such as the RMS value, frequency,
harmonic and interharmonic distortion, unbalance or the presence of transients, that are important to assure
the quality of distributed power. Standard IEC 61000-4-30 suggests the zero crossing algorithm for the
measurement of the power grid frequency, but also states that different algorithms can be used.
This paper proposes a new algorithm, the Fractional Interpolated Discrete Fourier Transform, FracIpDFT, to
estimate the power grid frequency, suitable for implementation in resource limited embedded measurement
systems. It is based on the non-integer Goertzel algorithm followed by interpolation at non-integer multiples
of the DFT frequency resolution. The proposed algorithm is validated and its performance compared with
other algorithms through numerical simulations. Implementation details of the FracIpDFT in an ARM
Cortex M4 processor are presented along with frequency measurement results performed with the proposed
algorithm in the developed system.
Keywords: power quality, frequency estimation, non-integer Goertzel, frequency interpolation, embedded
measurement systems.
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1. Introduction

Energy demand and environmental concerns have resulted in significant improvements in
renewable energies and decentralized energy production [1]. Additionally, advances in power
electronics have led to extensive use of nonlinear loads that can degrade the power grid qual-
ity [2]. The combination of these two structural changes has increased interest in Power Quality
(PQ) research topics [3] and in distributed monitoring equipment that can be used to charac-
terize PQ events in multiple power-grid locations [4, 5]. The main objective of these moni-
toring systems is to maintain the efficiency, reliability, and safety amid the integration of re-
newable and alternative energy sources. However, these changes represent significant costs in
the electricity infrastructure [6]. Smart Grid [7] is a concept of next generation electric power
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systems that has emerged to address these concerns. Smart networks [8], Internet of Things
(IoT) [9] and machine learning [10] aim to reshape the way power quality monitoring is ad-
dressed. Power quality monitoring is characterized by measuring the power grid harmonics,
unbalances, sags, swells, and transients as defined in international standards from IEC [11, 12]
and IEEE [13].

According to IEC standard 61000-4-30 [11], for class A instruments (Paragraph 5.1.1), the
evaluation of the power grid frequency must be obtained every 10 s but shorter time intervals
are required for specific applications. For example, in Paragraphs 3.2.3 and 3.4.1 of [12] for
the evaluation of harmonics and interharmonics, a 10 cycle time span in 50 Hz power systems
(200 ms) is required, and in Paragraph 4.4 of [11], the minimum time interval aggregation is
also 10 cycles for 50 Hz power systems. Paragraph 5.1.1 of [11] proposes the zero crossing (ZC)
algorithm where the fundamental frequency is obtained by dividing the number of integral cycles,
counted during the considered time interval, by the cumulative duration of those cycles. To avoid
false zero crossings that affect the frequency estimation, harmonics, interharmonics and noise
should be attenuated using a low-pass filter.

The frequency estimation of an acquired signal is an active research topic with many con-
tributions comparing different techniques and applications [14] including also for power quality
measurements [15]. Spectral based algorithms usually start from the Discrete Fourier Trans-
form (DFT) calculation, using the Fast Fourier Transform (FFT), followed by interpolation for
frequency estimation [16–21]. Alternatively, in [22], an adaptive notch filter technique was pro-
posed for frequency estimation by tracking the instantaneous frequency of the input signal.
In [23], a time-domain model of a single-tone sinewave is used to best-fit the acquired samples in
sine-fitting algorithms which estimate the signal frequency and these algorithms have been used
in other areas of instrumentation and measurements [24]. Regardless of the accuracy of these
algorithms, most of them have a high computational burden which makes them unsuitable for
application in real-time embedded measurement systems that have limited computational abilities
as well as limited storage capacities.

For the spectral based algorithms, the computation of the DFT/FFT requires considerable
computational resources as well as storage capacity. One option is to use the Chirp Z [25] to
estimate only spectral components near a selected range of frequencies. Alternatively, an efficient
algorithm to estimate individual DFT components is the Goertzel algorithm [26] which consists
on a low-pass digital filter tuned to a specific DFT frequency tone. In [27], the algorithm was
adapted for application to non-integer (fractional) DFT components.

The zero crossing based algorithm suggested in [11] is suitable for implementation in resource
limited devices since it consists in detecting and counting the number of zero crossings and
performing two linear interpolations to refine the initial and final zero crossing instants within
the time-frame. The filter used to attenuate the noise and the harmonic caused problems can be
applied to each incoming sample to reduce the number of stored values. An alternative to the zero
crossing algorithm must be particularly suited for implementation in embedded measurement
systems and deliver some improvement over the zero crossing based algorithm.

This paper proposes a new algorithm, the Fractional Interpolated Discrete Fourier Transform,
FracIpDFT, to estimate the power grid frequency based on the non-integer Goertzel algorithm [27]
followed by an interpolation of the estimated spectral components using the Interpolated Discrete
Fourier Transform (IpDFT) described in [16]. The proposed algorithm is compared to the ZC
algorithm for the estimation of the power grid frequency nominally operating at 50 Hz for
Δ𝑇 = 200 ms segments (10 power grid cycles), acquired at a sampling rate of 12.5 kHz, in
numerical simulations and power grid measurements.
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2. Zero crossing frequency estimation

In the IEC standard 61000-4-30 [11], Paragraph 5.1.1, the suggested algorithm for the mea-
surement of the power grid voltage frequency is the zero crossing algorithm. To avoid multiple
zero crossings caused by harmonics, interharmonics and noise, the acquired data should be filtered
to reduce (ideally to eliminate) false zero crossings not caused by the voltage fundamental. The
design of the digital filter is crucial to ensure computational efficiency and correct attenuation
of the harmonics, interharmonics and noise. Figure 1 shows a simulated voltage signal with har-
monic content and additive white noise and the filtering process, together with the ZC frequency
estimation. The filter may introduce attenuation of the fundamental frequency component, but
since its amplitude is not required, attenuation and even passband ripple do not affect the ZC
frequency estimation.

a) b)

Fig. 1. Simulated example of frequency estimation using digital filtering and zero crossing detection. In (a), a simulated
input voltage with a strong harmonic component and additive noise (thin line) together with the fundamental (thick blue
line) are shown. In (b), the thin line corresponds to the filtered voltage and the thick line corresponds to the fundamental.

For the digital filtering, three different low-pass 6th order Infinite Impulse Response (IIR) filters
were initially considered: (i) Butterworth; (ii) Chebyshev Type I and; (iii) Elliptic. The filters
were designed to operate at the sampling rate of 𝑓𝑠 = 12.5 kHz, with a 60 Hz passband, 3 dB
maximum attenuation within the passband and, for the elliptic filter, at least 100 dB attenuation
in the stopband. The obtained amplitude response of the three filters is represented in Fig. 2. The
relative attenuation from the 2nd to 5th harmonics as a function of the fundamental frequency, 𝑓1,
within the [40; 60] Hz frequency range is also shown. The elliptic filter presents higher relative
attenuation (particularly for the 3rd harmonic) and was therefore the filter selected to be used for
frequency estimation using zero crossing detection. Note that, in some situations, a band pass filter
might be a better solution due to the presence of subharmonics. However, the implementation of
such filter might require more computational power due to its higher order to maintain the 100 dB
attenuation in the stopband.

Fig. 2. The left plot represents the magnitude response of the three different low-pass 6th order IIR considered filters:
Butterworth, Chebyshev Type I and Elliptic. The remaining plots depict the relative attenuation of the 2nd, 3rd, 4th and

5th harmonics as a function of the voltage fundamental frequency, 𝑓1.
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3. Fractional Interpolated Discrete Fourier Transform (FracIpDFT)

This section describes the proposed algorithm for frequency estimation of a power grid voltage
waveform, the Fractional Interpolated Fourier Transform (FracIpDFT). A single-tone voltage is
represented by

𝑥(𝑡) = 𝐴 cos(2𝜋 𝑓1𝑡 + 𝜙), (1)

where 𝑓1 is the fundamental frequency, 𝐴 is the amplitude (without loss of generality, in the
simulations 𝐴 = 1 V is used) and 𝜙 is the initial phase. Acquiring 𝑁 samples at a sampling
frequency 𝑓𝑠 , results in a DFT frequency resolution of Δ 𝑓 = 1/Δ𝑇 = 𝑓𝑠/𝑁 . The DTFT of 𝑥(𝑡) is

𝑋 (Ω) = 𝐴

2
[
𝑊𝑅 (Ω −Ω1)𝑒 𝑗 𝜙 +𝑊𝑅 (Ω +Ω1)𝑒− 𝑗 𝜙

]
, (2)

where Ω = 2𝜋 𝑓 / 𝑓𝑠 is the normalized angular frequency, Ω1 = 2𝜋 𝑓1/ 𝑓𝑠 represents the normalized
fundamental angular frequency of 𝑥(𝑡) and 𝑊𝑅 (Ω) is the rectangular window spectral response
given by

𝑊𝑅 (Ω) =
sin(Ω𝑁/2)
sin(Ω/2) 𝑒

− 𝑗 Ω2 (𝑁−1) . (3)

Figure 3 shows the amplitude spectra of a simulated voltage 𝑥(𝑡) with 𝑓1 = 51 Hz and
Δ 𝑓 = 1/Δ𝑇 = 1/0.2 = 5 Hz. Since the frequency does not correspond to an integer multiple of
the DFT spectral resolution, Δ 𝑓 , there is spectral leakage, and the frequency must be estimated
through interpolation.

Fig. 3. Simulated DTFT amplitude for a 51 Hz sine voltage with spectral leakage (thin dashed line).
The vertical dashed line represents the voltage frequency, and the bins represent the DFT spectral

amplitudes for Δ 𝑓 = 5 Hz.

Although the FFT can be applied to obtain all the voltage spectrum bins with Δ 𝑓 resolution,
the Goertzel algorithm [26] is an efficient process to compute a single DFT component without
calculating the FFT. The Goertzel calculation of the DFT 𝑘-th spectral component consists of
two consecutive independent steps: (i) application of a 2nd order IIR filter with real coefficients
and; (ii) estimation of the Goertzel DFT 𝑘-th component using only the last two outputs of the
IIR filter from step (i). The difference equation of the IIR filter for the first step is

𝑠[𝑛] = 𝑥 [𝑛] + 2 cos
(
2𝜋𝑘
𝑁

)
𝑠[𝑛 − 1] − 𝑠[𝑛 − 2], (4)

where 𝑥 [1, . . . , 𝑁] are the acquired samples and 𝑠[1, . . . , 𝑁] are the filter outputs with 𝑠[0] =

𝑠[−1] = 0. The Goertzel algorithm was generalized for non-integer multiples 𝑘 of the DFT
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frequency resolution [27], allowing the computation of the spectrum coefficients at any desired
frequency and, in this case, the second step is

𝑦𝑘 [𝑁] =
(
𝑠[𝑁] − 𝑒− 𝑗 2𝜋𝑘

𝑁 𝑠[𝑁 − 1]
)
𝑒− 𝑗2𝜋𝑘 . (5)

Figure 4 shows an example of the amplitude and phase of the spectrum of a sine voltage with
𝑓1 = 51 Hz sampled at 𝑓𝑠 = 12.5 kHz with Δ 𝑓 = 5 Hz. The vertical lines represent the frequency
components, computed by the non-integer Goertzel algorithm with 1 Hz resolution, while the
dashed line represents (2).

Fig. 4. Simulated spectrum for a 𝑓1 = 51 Hz voltage signal with spectral leakage. The dashed line
represents the DTFT of the voltage sampled with Δ 𝑓 = 5 Hz and the vertical bins show the spectral

coefficients computed by the Goertzel algorithm with 1 Hz resolution.

For the computation of 𝑠[𝑛], only three values of (4) need to be stored in memory (𝑠[𝑛],
𝑠[𝑛 − 1] and 𝑠[𝑛 − 2]) and (5) is only used once to obtain 𝑦𝑘 [𝑁] from 𝑠[𝑁] and 𝑠[𝑁 − 1]
through two complex multiplications. Since 𝑘 and 𝑁 are known, the terms 𝑒− 𝑗2𝜋𝑘/𝑁 , 𝑒− 𝑗2𝜋𝑘

and cos (2𝜋𝑘/𝑁) can be calculated beforehand and stored to further improve the algorithm
computational performance. The complex exponentials in (5) are used at the end of the Goertzel
algorithm (in this paper, every Δ𝑇 = 200 ms), while the calculation of 𝑠[𝑛], performed for each
sample using (4), only involves real numbers. As shown in [27], when 𝑁 is a power of two,
corresponding to a faster optimized FFT, the calculation of 𝐾 Goertzel components is better
than the full FFT as long as 𝐾 < min[4𝑁/7; 2 log2 (𝑁)], where the first term corresponds to
the memory size and the second accounts for the number of operations involved (as described
in [27], if 𝑁 is a power of 2, the FFT requires 6𝑁 log2 (𝑁) real operations whereas each Goertzel
algorithm requires 3𝑁). For 𝑁 > 12, the second term is dominant and thus, the Goertzel requires
less memory and fewer operations when 𝐾 < 2 log2 (𝑁). When the number of samples is not
a power of two, the FFT requires more operations and thus the Goertzel advantage is even more
significant.

A commonly used strategy to estimate the frequency of an acquired waveform with spectral
leakage is to interpolate the relevant spectral components. Renders et al. [16] derived analytical
expressions for the two point interpolation, when a rectangular window is considered, which is
the IpDFT algorithm used in this paper. Multipoint interpolation and the use of windows has also
been studied in the literature, such as the Hann window multipoint interpolation [17].

The FFT+IpDFT [16] starts by identifying the two DFT bins, 𝑓𝐴 and 𝑓𝐵, with 𝑓𝐵 > 𝑓𝐴, where
one is the largest amplitude component and the other is its largest neighbour to minimize the
relative influence that noise can have on the used neighbour component (in the example of Fig. 3,
𝑓𝐴 = 50 Hz, 𝑓𝐵 = 55 Hz). The complex DFT coefficients for these bins are 𝑆𝐴 = 𝑈𝐴 + 𝑗𝑉𝐴 and
𝑆𝐵 = 𝑈𝐵 + 𝑗𝑉𝐵, and the interpolated estimated frequency is

𝑓1 =
𝑓𝑠

2𝜋
arccos

[
𝑍𝐵 cos(Ω𝐵) − 𝑍𝐴 cos(Ω𝐴)

𝑍𝐵 − 𝑍𝐴

]
, (6)
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where Ω𝐴 = 2𝜋 𝑓𝐴/ 𝑓𝑠 , Ω𝐵 = 2𝜋 𝑓𝐵/ 𝑓𝑠 and

𝑍𝐴 = 𝑉𝐴

𝐾opt − cos(Ω𝐴)
sin(Ω𝐴)

+𝑈𝐴 ,

𝑍𝐵 = 𝑉𝐵
𝐾opt − cos(Ω𝐵)

sin(Ω𝐵)
+𝑈𝐵 ,

𝐾opt =
(𝑉𝐵 −𝑉𝐴) sin(Ω𝐴) + (𝑈𝐵 −𝑈𝐴) cos(Ω𝐴)

𝑈𝐵 −𝑈𝐴

.

(7)

The uncertainty of the FFT+IpDFT [16] frequency estimate depends on the amount of noise
in the acquired voltage. In particular, when the spectral leakage is very reduced, the neighbour
components have a very low amplitude and the selection of the highest amplitude neighbour is
significantly affected by the noise contributions at those DFT components, resulting in increased
frequency uncertainty when compared with situations where there is significant spectral leak-
age. Reducing the DFT frequency resolution, Δ 𝑓 , leads to spectral bins that are closer to each
other which reduces the noise influence, but this requires longer acquisition segments and the
interpolation algorithm is still significantly worse in reduced spectral leakage situations. Another
possibility is computing the complex coefficients at non-integer multiples of the frequency res-
olution, which can be done with non-integer Goertzel filters. Although (6) and (7) were derived
considering that 𝑓𝐴 and 𝑓𝐵 are located at integer multiples of Δ 𝑓 , they are also valid if the
frequency bins used for the interpolation are integer multiples of Δ 𝑓 /2 as long as the frequency
spacing between the components used for interpolation remains at Δ 𝑓 (𝑖.𝑒., 𝑓𝐵 − 𝑓𝐴 = Δ 𝑓 ).

The proposed FracIpDFT algorithm for frequency estimation consists in computing the Go-
ertzel components spaced at Δ 𝑓 /2 within the frequency range of interest and choosing two Δ 𝑓

spaced spectral components to perform the interpolation using the IpDFT (6)–(7). To illustrate
the choice of the components for interpolation, Fig. 5 shows the situation presented in Fig. 3 with
computed spectral components at integer multiples of Δ 𝑓 /2. In this case, the highest amplitude
component is located at 50 Hz which, in [16], would be used with the 55 Hz component for
interpolation. However, selecting the components at 47.5 Hz and 52.5 Hz would lead to a better
frequency estimation due to its higher aggregated amplitude, thus reducing the effect of noise.
Therefore, in the proposed algorithm, after the non-integer Goertzel components are calculated,
the highest amplitude is detected and the interpolation is performed with its two neighbour com-
ponents. Since the power grid measurement frequency range is [42.5; 57.5] Hz (Paragraph 5.1.2
of [11]), to implement the proposed algorithm, nine Goertzel filters (located from 40 Hz up to
60 Hz with 2.5 Hz spacing) are needed to cover this frequency range.

Fig. 5. Simulated example of the amplitude spectra for a 51 Hz sine voltage with spectral leakage
(thin dashed line). The vertical dashed line represents the actual voltage frequency and the bins

represent the spectral amplitudes at integer multiples of Δ 𝑓 /2, with Δ 𝑓 = 5 Hz.
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4. Simulation results

In this section, a comparison between the proposed FracIpDFT algorithm and other frequency
estimation algorithms is presented. The results correspond to simulations using a 12.5 kHz
sampling rate and 200 ms segments, corresponding to 𝑁 = 2500 samples per segment. The
Cramér–Rao Lower Bound (CRLB) for the frequency estimation of digitally acquired signals
when the phase is unknown, is given by (3.41) of [28]

CRLB =
𝑓𝑠

2𝜋

√︄
12

𝑁
(
𝑁2 − 1

)
SNR

, (8)

where SNR is the signal to noise ratio.
Figure 6 presents the frequency estimation RMSE (Root Mean Square Error) relative to the

CRLB simulation results obtained with three different Hann window interpolations (2, 3 and 5
point interpolation) [17], the ZC algorithm, FFT+IpDFT (described in [16]), sine-fitting and the
proposed FracIpDFT algorithm, considering additive white noise with SNR = 13.98 dB. The
sine-fitting algorithm is included only for the purpose of comparison since its implementation
complexity makes it unsuitable for embedded system real-time operation. The results, obtained by
105 random noise and phase realizations, show that the sine-fitting algorithm is the best frequency
estimator with a relative RMSE close to 1 for the entire tested frequency range. The second best
option is the proposed FracIpDFT algorithm, where the worst relative result is around 1.2 for
frequencies at the midpoints of the Goertzel filters locations (𝑖.𝑒., 𝑓1 = 𝑚Δ 𝑓 ±Δ 𝑓 /4 with𝑚 ∈ N).

Fig. 6. Frequency estimationRMSE relative to theCRLB obtained by simulation for differentRMSE andCRLB
estimation algorithms including additive noise with SNR = 13.98 dB. Simulation results were obtained from

105 random noise and random initial phase realizations and a 0.1 Hz step.

Since the multipoint Hann window algorithms are significantly worse than the other considered
algorithms, these algorithms are discarded from the following analysis. Figure 7 shows the RMSE
of the estimated frequency as a function of the SNR for two different frequencies corresponding
to the best (Fig. 7a with 𝑓1 = 50 Hz) and worst (Fig. 7b with 𝑓1 = 51.25 Hz) frequency estimation
by the proposed FracIpDFT algorithm.

In Fig. 7a the voltage frequency is 50 Hz corresponding to one of the computed Goertzel filters
and the FracIpDFT algorithm uses the components at 47.5 Hz and 52.5 Hz for interpolation. In
this case, the frequency estimation is as good as the estimation of the sine-fitting algorithm
and approaches the CRLB for the considered SNR range. The FFT+IpDFT algorithm presents
the worst RMSE because there is no spectral leakage (the algorithm performs worse due to the
relative noise influence on the selection of highest amplitude neighbour), while the standard ZC
algorithm also has a considerable RMSE when compared with the CRLB. The results presented
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a) b)

Fig. 7. Frequency estimation RMSE obtained by simulation for different algorithms as a function of SNR for two
frequency values: a) 50 Hz; b) 51.25 Hz. Simulation results were obtained from 105 random noise and random initial

phase realizations.

in Fig. 7b correspond to a frequency of 51.25 Hz, which is one of the midpoints between two
computed Goertzel filters. The RMSE of the proposed FracIpDFT algorithm is equal to the RMSE
of the FFT+IpDFT algorithm but better than the ZC algorithm – the ZC achieves relative RMSE
values between 1.8 and 1.9, while both the FFT+IpDFT and the proposed FracIpDFT algorithms
present results around 1.2. For the range of frequencies and SNR considered, with the exception
of the sine-fitting, the proposed FracIpDFT algorithm presents the best RMSE.

Harmonics and interharmonics are PQ events that can influence the nominal frequency estima-
tion. To study that influence, even in the presence of spectral leakage, two fundamental frequencies
were used: 50 Hz (where the proposed method has better performance) and 51.25 Hz (where the
proposed method has a higher RMSE). For this test the influence of an interfering component in
the range 60 Hz to 160 Hz for the two different fundamental frequencies was used and the results
are presented in Fig. 8. The interfering component amplitude is 5 % of the fundamental which is
higher than the compatibility level for the interharmonic voltage defined in IEC 61000-2-2 [29].
Overall, the presented method is better than the zero crossing and the 3 point Hann method (the

a) b)

Fig. 8. Harmonics and interharmonics test with the influence of an interfering component in the 60 Hz to 160 Hz range
with a 0.1 Hz step. Two fundamental frequencies were used: 50 Hz (a) and 51.25 Hz (b).
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best of the three Hann methods). The insets in Fig. 8 show that for some interfering frequencies
the zero crossing and 3 point Hann algorithms can slightly outperform the proposed method.
However, in general the proposed algorithm performs better.

5. Implementation and measurement results

The proposed FracIpDFT algorithm is implemented in an STM 32F411EDISCOVERY de-
velopment kit. The microcontroller (STM32F411VE) is an ARM 32-bit Cortex-M4 working at
100 MHz with the internal 12-bit ADC configured to continuously acquire samples using inter-
rupts to trigger the sampling and conversion. In Fig. 9 two flowcharts of the implementation in
the embedded measurement system are presented.

The main flowchart, Fig. 9a, includes the configuration of the ADC, the configuration of the
interrupts that retrieves each sample according to the sampling rate and, when 2 500 samples
are completed (corresponding to a 10 cycle segment of the nominal power grid frequency at the
12.5 kHz sampling rate), estimates the power grid frequency. The flowchart represented in Fig. 9b

Fig. 9. Main flowchart (a) of the embedded frequency measurement system and interrupt flowchart (b).
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corresponds to the interrupt routine executed as each new sample arrives. The sample value is
applied to the nine Goertzel filters to update their states according to (4). When the number of
samples reaches 2 500, the segment has ended, and the states of the filters are stored and reset to
start processing the next segment. An end of segment flag, EOSeg, is set to 1 so that the main
program can perform the final calculations to estimate the frequency. In the main program, when
the EOSeg flag is detected as 1, the outputs of the Goertzel filters are estimated using the stored
final states and (5). From these, two components are selected for the IpDFT according to the
procedure described in Section 3. The IpDFT is then applied to estimate the frequency with these
two components using (6) and (7). The final frequency estimation steps require less than 1 ms
and during this process, new samples are being acquired and processed by the Goertzel filters.

To test the capabilities of the proposed embedded system an Agilent 33250A function gener-
ator was used to produce a sinewave voltage. For this test, the Agilent 33250A output includes
a DC component since the STM ADC input is unipolar. Figure 10 presents the frequency estima-
tion histograms obtained with the embedded measurement device and the FracIpDFT proposed
algorithm for 50 Hz and 51.25 Hz. The expanded uncertainty, obtained with a 1.96 coverage
factor, is 0.28 mHz for 50 Hz and 0.40 mHz for 51.25 Hz.

a) b)

Fig. 10. Histograms of 104 FracIpDFT frequency estimations using a function generator to impose the 50 Hz (a) and
51.25 Hz (b) frequencies. The thick dash-dot lines correspond to the 95 % confidence interval limits obtained with a 1.96

coverage factor ([49.999 56; 50.000 12] Hz and [51.249 36; 51.250 17] Hz).

To validate the proposed FracIpDFT frequency estimation algorithm, zero crossing was
also implemented in the same development kit to perform direct comparisons between the two
algorithms using the same real power grid data. In addition, an Agilent 53131A universal counter
was used to measure the power grid frequency so that the results can be compared with the
proposed FracIpDFT results. Since the frequency estimation is performed every 200 ms, the
53131A is configured to measure the frequency with a 200 ms gate time. The interface with the
power grid is made with an analog conditioning circuit that includes a voltage divider, to reduce
the power grid voltage amplitude, and the addition of a DC component. The voltage divider can
be replaced with a Hall Effect sensor to isolate the electrical power grid from the STM. Figure 11a
shows two periods (40 ms) of a real electrical voltage grid signal acquired at 12.5 kHz. As shown
in Fig. 11b, which corresponds to a 10 s acquisition, the signal has a significant harmonic content,
which results in a –35.64 dB THD.

Figure 12 presents the results of 48 hours continuous measurements with the embedded
system implemented algorithms: (a) FracIpDFT measurements; and (b) the difference between
the FracIpDFT and zero crossing algorithms, which never exceeds 10 mHz (0.02 %). The system
can measure continuously for an unlimited amount of time because the samples are processed
and discarded and the measurement results are, in this case, not locally stored.

The results shown in Fig. 13 correspond to the estimated frequency of the electrical power
grid over a 60 minute time span of the proposed FracIpDFT and Agilent 53131A universal
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a) b)

Fig. 11. Real electrical power grid voltage time representation (a) and spectrum (b). The THD is –35.64 dB for a 10 s
segment with a 12.5 kHz sampling rate.

a) b)

Fig. 12. Estimated power grid frequency during 48 hours using the embedded measurement system with FracIpDFT (a).
ZC was used for comparison and the difference between the results obtained with both algorithms, represented in (b), is

below 10 mHz.

a) b)

Fig. 13. Electrical power grid frequency estimation over a 60 minute time span: (a) results from the Agilent 53131A
universal counter/timer with a gate time of 200 ms; and (b) frequency estimation obtained with the implemented embedded

measurement system using the proposed FracIpDFT algorithm.

counter measurements. The results highlight that the proposed embedded device and algorithm
tracks the frequency variations and the results are similar to those obtained with the 53131A.
A direct comparison of the results cannot be performed because the measurements cannot be
synchronized.

6. Conclusions

In this paper a new algorithm, FracIpDFT, is proposed to estimate the power grid frequency
using a limited number of Goertzel filters and spectral interpolation. The algorithm is based on the
Goertzel algorithm implemented as second-order IIR filters making it suitable for implementation
in resource limited embedded measurement systems.
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The FFT+IpDFT results are close to the CRLB with significant spectral leakage but worsen
when spectral leakage is reduced because of increased relative noise influence on the lower
amplitude neighbour. In the proposed FracIpDFT, the Goertzel filters are at the frequencies of
the FFT spectral components (𝑚Δ 𝑓 ) and additional filters are centered in the middle of the
FFT spectral components (𝑚Δ 𝑓 + Δ 𝑓 /2) so that, when spectral leakage is reduced, the selected
interpolation components are the intermediate components to avoid the influence of noise in the
lower amplitude components. The performance of the proposed algorithm is compared with the
performance of other algorithms such as zero crossing, sine-fitting and multipoint Hann window
algorithms and the results are presented in Fig. 6. The noise sensitivity analysis, Fig. 7, has
shown that additive white noise has a lower influence on the proposed FracIpDFT algorithm
when compared with the ZC algorithm.

Details of the proposed FracIpDFT algorithm implementation in a low-cost embedded devel-
opment kit were presented. To assess the frequency estimation capabilities of the FracIpDFT, an
analysis was performed for a generated sinewave and the results, Fig. 10, show a 95 % confidence
interval of [49.999 56; 50.000 12] Hz for 50 Hz and [51.249 36; 51.250 17] Hz for 51.25 Hz.
Side by side implementation of the proposed FracIpDFT and the ZC algorithms in the embedded
measurement system yielded the results presented in Fig. 12 which demonstrate the capability
of the proposed algorithm to continuously monitor the power grid frequency with results similar
to those obtained with the zero crossing algorithm. The results obtained over a 60 minute time
span (Fig. 13) with the proposed FracIpDFT algorithm and with the Agilent 53131A show that
the algorithm can successfully track the power grid frequency variations. Overall, the proposed
FracIpDFT algorithm has a similar implementation complexity and memory requirements as the
zero crossing algorithm but produces better results, and thus it is a good option for embedded
system implementation.
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