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FORCING THE STARTUP OF VIBRATORY MACHINES 
BY MEANS OF SMALL POWER MOTORS 

The critical phases of starting of over-resonance vibratory machines were anal­ 
ysed and the strategy of overcoming those phases by low-power engines was proposed 
in the paper. The variational method based on the Pontriagin's maximum principle as 
well as method of phase angle modulation was applied. Effectiveness of the proposed 
solutions was investigated by the numerical simulation. 

1. Problem formulation 

The over-resonance vibratory machines, such as vibratory tables, screens, 
vibratory grids, vibratory conveyors, etc., usually contain motors with power 
significantly (e.g. twice) exceeding the power required for the implementation 
of the technological process in the steady state. In addition to the unnecessary 
outlays for the purchase of oversized motors, this will also lead to reduced 
energy efficiency of the system and considerable consumption of reactive 
power. 

The principal reasons of drive oversizing include: 
1) the absence of credible methods of estimating the power necessary for 

the implementation of the technological or the transport process 
2) difficulties in making the first half-turn of the heavy inertia vibrators [9] 
3) the possibility of stopping the motor in the course of the startup at the an­ 

gular velocity corresponding to one of the machine's natural frequencies 
[7]. 
As regards the first point, it can be stated that a considerable improvement 

on the credibility of calculations is expected owing to the increasingly popular 
digital models of the machine-bulk feed system [10], [11], [15], [20], [21], 
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(22], (23], (24] allowing relatively precise estimation of both the conduct of 
the feed and its impact on the machine motion as well as the consumption 
of power in transient and steady states. 

The second case, subjected to analysis in literature [6], [9] in terms of 
the constant startup moment, is in practice frequently encountered in con­ 
nection with vibratory machines with vibrators with large static moment of 
unbalance, which are unable to lift the unbalanced mass from the bottom 
position and require various types of assistance in the course of the startup. 

The third case is encountered where the vibrations that build up under 
resonance during machine startup consume the entire power of the motor, 
which is small within this range of rotational speed, creating the anti-torque 
preventing the rotational speed of the drive from increasing [7], [8]. 

The objective of the report has been to show that the critical phases 
of the startup of the vibratory machine may be passed by means of motors 
with smaller power; more specifically that: 
1) there is a control allowing for the performance of the first half-turn of 

the vibrator that is not in conformity to the conditions ( 1, 2) formulated 
in report [6] 

2) there is a control which allows the circum-resonance stall of the motor 
of the vibratory machine to be forced. 
The implementation of the solutions allows for the selection of small­ 

er and more cost efficient motors, whose rated power corresponds to the 
requirements of steady state operation. 

2. The implementation of the first half-turn of the vibrator 
by means of a motor with a small startup moment 

Report [6] shows that in order to make the first half-turn of the single 
inertia vibrator, the driving moment Mr=const of the motor should meet the 
following relation (1): 

Mr ~ mge sin cpo (1) 

where: 
Mr - startup moment of the motor reduced by the resistance in the vibrator 
and motor bearings, 
m - unbalanced mass, 
e - eccentric, 
g - acceleration of gravity, 
while the angle cp0 is the root of equation (2) 

(1 - cos <po) = cpo sin cpo (2) 
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therefore: 

cp0 = 133°34' 
This condition most frequently turns out to be the most significant re­ 

quirement for to the driving motor, making its oversizing necessary. 
Let us consider the issue of the startup of the inertia vibrator, whose 

large level of static unbalance prevents the first half-turn in the field of 
gravity forces. 
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Fig. 1. Model of the unbalanced mass of the inertia vibrator in the form of a physical pendulum 

This issue may be formulated and solved on the grounds of the variation 
calculus, based on the Pontriagin maximum principle. Let us consider the 
model of the inertia vibrator, whose diagram is shown in figure 1. The issue 
of the first half-tum may be formulated as follows: 
Let us find the time form of the moment acting on the vibrator shaft, which 
will ensure the change of the angular coordinate cp from the value of zero to 
the value of tt - without imposing on that moment any limitations concerning 
the value and direction of operation. 

The diversity of solutions requires imposing an additional condition on 
solution. This criterion may be formulated in a number of ways; however, 
from the heat viewpoint of the driving motor it seems most purposeful and 
desired that the criterion should assume the form of the minimum time 
functional in the form: 

tk 

tk = J dt - min 
t = o 

(3) 
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On the grounds of the equations of pendulum motion (4) subject to 
the operation of the moment M(t) and with reference to the contents of 
maximum principle [3], the Hamilton function, due to criterion (3), assumes 
the following form (5), 

{ 

dw = _!_(M(t) - mge sin(ep)) 
dt lzr 
dep - = (JJ 
dt 
T1 , H = -(M(t)- mge sinupj) + wT2 -1 
lzr 

(4) 

(5) 

Its linear dependence on the value of M(t) implies immediately the form 
of the moment maximizing the Hamilton function (5) along the optimum 
trajectory to the trajectory found in the boundary of the area of the force 
moment variability. Hence, restricting the moment M(t) to the set: 

M(t) c [-Mo, +Mo] (6) 

it can be written that: 

M(t) =Mo· sgn(T1) (7) 

where: Mo - the preset value. 
On the grounds of the conditions necessary for the existence of the 

Hamilton function extremum, the system ( 4) may be complemented with 
equations for coupled functions T1, T2: 

dco 8H 1 (M . ,n ) . - = -a = - O· s1gn(r1 - mgesm(ep)) 
dt T1 lzr 
dep 8H -----w dt - 8T2 - 
dT1 8H 
- =-- =-T2 
dt ow 
dT2 8H mgecos(ep)T1 = = dt 8ep lzr 

In turn, due to the minimum-time variant of the maximum principle, 
the end positions of the coupled functions should meet the conditions of 
transversality, which may be written in a general form as follows [1]: 

(8) 

-• Im aga [x·, t~J 
T = k 0 8x*[t*] 

a=l k 

(9) 
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where: ga [x*(tk), t:] the conditions imposed on the motion coordinates 
at time t = t~. 

In the task, only one condition is imposed on the end positions of the 
motion coordinates 

g1 : cp*(t~) - Jt = 0 
based upon which we determine: 

n,*(*) k 8g1 O 
Tl tk = I 8w = 

(10) 

(11) 

'I';(t~) = k1 ~~ = k1 

In the task under consideration, k1 is an arbitrary constant. The fact that 
the end conditions are independent from time at the free end time imposes 
yet another condition on the Hamilton function, i.e. zeroing of its value along 
the optimum trajectory. 

Hence, complementing the end conditions (11) and (12) with the con­ 
ditions at the start time and the condition of zeroing the Hamilton function 
e.g. at the end point: 

(12) 

w*(O) = O 
cp*(O) = O 
H(t~) = O 

we receive a complete set of relations necessary for the unambiguous deter­ 
mination of the solutions of system (8). 

The task received belongs to the so-called double boundary problem 
which generally cannot be solved by using conventional methods of numeric 
integration; a special approach is required instead. 

By contrast, even the preliminary analysis leads to interesting conclu­ 
sions. By using the two last equations of system (8) we get the equation in 
the form: 

(13) 

d2'I'1 mge 
-2- + -'¥1 cos(cp) = O 
dt Izr 

(14) 

which, for small values of angle cp, assumes the form of a homogeneous 
differential equation with constant coefficients. This equation allows us to 
determine that the time form of the driving moment is the switch type 
function with switching frequency equal to the doubled natural frequen­ 
cy of the pendulum, i.e. 
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fo = _!_ fmge n'/Tr 
For the arbitrary values of the angle rp, system (8) may be solved, e.g. 

by means of shooting method [4]. By employing such an approach, the task 
has been solved for two examples of the values of the moment Mo, i.e. 
Mo= 16.47 [Nm] and Mo= 65.88 [Nm]. For pendulum: lzr = 1.98 [kg m2

],

m., = 382.3 [kg], e = 0.04 [m] has been adopted. 
In the first case, whose solutions have been presented in figure 2, the 

moment has changed its sign as many as eight times, which arises from 
relation (7) and the conduct of \f 1 (t) -figure 2c, to ultimately lead the angular 
coordinate rp to the value of n. Pursuant to (7) the moments of passing zero 
by the coupled coordinate \f I determine the moments of driving moment 
switching and are subsequently: 0.185 [s], 0.548 [s], 0.914 [s], 1.286 [s], 
1.666 [s], 2.064 [s], 2.484 [s] and 2.947 [s]. As it can be easily verified, 
these switches occur every 0.363 seconds (for small defections) up to 0.463 
(for larger values of rp), which, for small angles, is close to switching time 
determined on the grounds of relation (15), equal to 0.361 sec. 

(15) 
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Fig. 2. Conducts of che system of equations (8) for M0 = I 6.47[Nm] 
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Fig. 3. ,,A" - conducts of solutions of system of equations (8) for Mo = 65.88[Nm]. 
,,B" - conducts of coordinates of motion for the variant with the inclusion of the interactions 

of the machine body and the electrical moment 
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In the second case, the results for which have been presented in the 
figure 3 and labelled with label A, the quadrupled moment changes its sign 
only once, at the moment t = 0.36[s]. In the same figure, for comparative 
purposes, the conduct of the coordinates of motion determined on the grounds 
of a more accurate model has been plotted - label B. The above-determined 
moments of switches have been preserved, but the physical pendulum in the 
simulation model has been replaced with the inertia vibrator acting on the 
body of the vibratory machine founded on the viscous-elastic suspension - 
fig. 4. 

M r 
l. 

b 

Fig. 4. Physical model of the vibratory machine 

The equations of motion of the mechanical parts then assume the fol­ 
lowing form: 

{ 
(M + mjx - mecp2 sin(cp) + merp cos(cp) + bx-« kx = O 
Us+ me~+ Iw)ćp + mex cosirp) = Met - mgecos(cp) 

(16) 

(17) 

where J5 means the central moment of inertia of the vibrator, while Jw - the 
axial moment of inertia of the motor rotor. 

The above model, in which the electromagnetic moment of the motor has 
been determined on the grounds of the dynamic model of the asynchronous 
motor, has been subject to simulation examination, with the adoption of the 
above switching time, i.e. for t = 0.36 sec. 
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The comparison of solutions shown in figure 3: 
A - for simplified system, for which this control has been determined, 
B - for system corresponding to the real vibratory machine, 

shows that the simplified method of finding the optimum control is fully 
adequate for real systems as well. 

The following parameters have been adopted for the simulations: 
mass of the machine body - 7263.2 [kg], 
coefficient of elasticity of the body support - 4.83 106 [Nim], 
coefficient of viscous damping of the machine support - 3.84 104 [Ns/m], 
rated power of motor - 8.1 [kW], 
nominal speed of motor - 1420 [rpm], 
motor overloading coefficient - 2.13. 

3. Forcing the circum-resonance stall of the motor 

Let us now deal with the analysis of the second, critical phase of the 
startup - the stall of the driving system at the resonance frequency of the 
vibratory machine. Let us consider the model of the vibratory machine as 
shown in figure 5. 

/111111111111111 

Fig. 5. Physical model of the vibratory machine 

The equations of motion of the system following drive self-synchronization 
have the following form: 

mox + boi + kox = 2mne ( tj)2 sin cp - ćp cos cp) (18) 

(19) 

where: 
illo = mk + m., + 2mn, 
m., - mass of the vibrator body, 
mk - mass of the body of the vibratory machine, 
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m, - unbalanced mass of the vibrator, 
J - moment of inertia of the rotary masses of the single electric vibrator 
with relation to the rotation axis, 
e - eccentric, 
Met - electromagnetic moment of the motor, 
ko - coefficient of elasticity of the suspension of the vibratory machine, 
bo - damping coefficient of the suspension, 
coordinates x, cp - as in the figure, 

Let us now consider the quasi-steady states, encompassing both the state 
of nominal operation and the steady run of the machine during the circum­ 
resonance stall, 

In the steady state, the solution of the (18), (19) with regards to tjJ may 
be presented in the form [16], [17] 

tjJ(t) =w+ ~w(cp) 

where: 
w = canst, describes the principal, constant component of the angular velo­ 
city, while 
~w ( rp) - slight fluctuations around the average value of w, 
Assuming in the first approximation 

tjJ(t) = w = canst 
we receive the approximated form of equation (18): 

mox + box + kox = 2mnew2 sin wt 
Its particular integral is 

Xu51(t) = A sin(wt + y) 
where: 

2mne (.Q!..)2 
m, Wn A=--;:====== 

[ l - (:
0
)2] + (btf 

Wn=~ 

-b0w 
sm y = ------:;::========= ✓(ko - mow2 )

2 + (b.,«. )2 

(20) 

(21) 

(22) 

(23) 

(24) 
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ko - moW2
cosy = ------;:========

,/(ko - mow2)2 + (bow)2

or:

Xu51(t) = A [sin wt cosy+ cos wt siny]

Solving equation (19) for Me1(t) we get:

Me1(t) = J · O + mnex cos q:, = mnex cos q:, 
Combining relation (26) and inserting x = Xus1(t) here, we get:

(25) 

(26)

(27) 

Me1(t) = -mneAw2 [sin wt cosy+ cos wt siny]· cosuot) =

2 2~n e ( :n )2 l ko - moW2 . t= -mnew -;:::::======= ------;:======== sm w +
[ 1 - (;")2] + (bkow)2 ,/(ko - mow2)2 + (bow)2

+ -bow cos wt1 cos wt

,/(ko - ffioW2)2 + (bow)2

This expression may be brought to the form:

(28)

2 2 4 [ (moW2 - ko) .Me1(t) = 2mne w 2 2 sm uit cos uit+
(k0 - m0w2) + (b0w)

b0w 2 l + 2 cos wt
(ko - ffioW2) + (bow)2

The average electromagnetic moment per period is expressed by the relation:

(29) 

1 LT w [ (m w2 - ko) 12,r/w
Mśr = - M0,(t)dt = -2m~e2w4 0

2 2 sin wt cos wtdt + 
T o 2n (ko - m0w2) + (bow) o

b W L2,r/w ] + 0 

2 cos2 wtdt
(k0 - m0w2) + (b0w)2 O

(30)

By integrating, we ultimately receive:

(31) 
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In the case of the stall under the resonance, w = Wn, which gives: 

(32) 

This expression presents the average value of the moment per period, 
which is transmitted to the vibrator by the driving motor in order to overcome 
the resistance of the system, associated with the transmission of energy to 
maintain the vibrations of the body. In particular, it shows that the startup 
may be facilitated by increasing the suppression in the system, e.g. by way of 
providing the feed to the machine body. This effect can be seen, e.g. in the 
simulation examinations of the vibratory machines with digitally modelled 
bulk feed [13] and is known from practice [8]. 

In practice, however, the solution is not always possible, particularly 
in the case of machines operating in synchronically activated technological 
trains, where often a longer period of time passes from the moment of the 
production line activation to the moment when the feed reaches the vibratory 
machine. 

However, the above-mentioned considerations indicate another possibil­ 
ity of overcoming the circum-resonance stall. Let us consider the vibratory 
machine in the state of the resonance stall at w = Wn. Let us assume that by 
means of, for instance, double-state control of the motor, the rapid change 
has been made to the angular position of the vibrator with angle ±n with 
relation to the position it would occupy by rotating steadily and the output 
angular velocity cp = Wn would be returned to it in this position. 

Due to the short duration of this operation, the conduct of the vibrations 
of the machine body performing high amplitude vibrations Xus1(t) described 
by relation (26) has not changed significantly, since a change to the vibration 
character, just as their escalation in the resonance zone, requires a number 
of periods of the vibrator operation. Therefore, expression (27) assumes the 
form: 

(33) 

What follows is also a change to the sign of expression (32) describing 
the average value of the electrical moment. This means that directly after 
switching the phase angle of the vibrator, the direction of the energy flow 
in the system changes. The energy accumulated in the vibrating body drives 
the vibrator by overcoming its motion resistance. If at this moment the driv­ 
ing motor is turned off, a reduction of the amplitude of free vibrations of 
the machine body may be brought about, maintaining at the same time the 
vibrator rotational speed. 
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When the motor is turned on again with the amplitude of the body 
vibrations reduced and the vibrator rotational speed maintained, it should 
be possible for the motor to pass the resonance zone, as the resistances 
of vibrator motion arising from the vibrations of the body are lower (the 
moment of resistance arising from the vibrations of the vibrator axis depends 
proportionally on the amplitude of vibrations [14]). 

A certain simplification of the driving motor control is possible, allowing 
for adverse returns with an unsuppressed magnetic field to be avoided. Instead 
of using the counter activation of the motor, its temporary deactivation should 
be sufficient. The change to the vibrator phase with regard to the vibrations 
of the body takes place automatically due to the frictional resistance of the 
vibrator motion, which will, following the deactivation of the motor, aim at 
reducing its speed (and thereby, at the change to the phase angle) until the 
direction of the energy flow in the system has changed (!lep = -:rt) and the 
body has started to transmit the power for maintaining the rotation of the 
vibrator motion with the circum-resonance angular velocity. This strategy 
finds its confirmation both in the simulation examinations and in research 
[12]. 

The phase angle modulation strategy, applied by the authors to overcome 
the circum-resonance stall for the first time, has been used to date only to 
reduce the maximum amplitudes of the systems overcoming the resonance 
zone [18], [19]. The method presented by S.M. Wang, Q.S. Lu and E.H 
Twizell [ 19], has been applied to reducing the maximum amplitude of the 
resonance vibrations of the unbalanced gas turbine rotor. Employing the 
phase modulation technology ( change to the phase angle) while passing the 
resonance zone has allowed in this case for a reduction of the maximum 
amplitude of vibrations by 25% with relation to the amplitude obtained as a 
result of the conventional startup with constant acceleration. 

Simulation examinations 
The model as shown in figure 4, described by equations (16), (17), has been 
used for simulation examinations. 

The size of the motor has been selected specifically, so that it would not 
be able to pass the resonance zone of the machine, which is evidenced by the 
results of the simulation (figure 6). As it can be seen, following the expiry 
of 1 O seconds, the rotational speed of the motor becomes fixed at the level 
of 18 rad/sec. The amplitude of vibrations is equal to 0.03m. 

Under the state of a stall, the angular velocity of the motor - and thereby 
its angular acceleration - is subject to slight fluctuations; see figure 6b. [12]. 
The motor control applied involves an appropriate deactivation and activation 
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of the voltage feeding the motor, with the reactivation moments of the motor 
taking place when the angular acceleration of the vibrator is in its maximum. 
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Fig. 6. Stall of the motor in the resonance zone 

The results of the control applied have been presented in figure 7. 
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Following a stall of the motor at the moment of reaching the resonance 
velocity, the disconnection of the power supply from the motor and its reac­ 
tivation causes the motor speed to increase and pass through the resonance 
zone. At the same time, through the type of control applied, the maximum 
amplitude of vibrations when passing the resonance zone becomes reduced 
to the value of 0.02 m, as compared to 0.03 m during the circum-resonance 
stall. 

Even better results may be obtained by repeating several times the type 
of control shown, which allows a machine with a very small motor to pass 
through the resonance zone - fig. 8. 
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Fig. 8. Overcoming the circum-resonance stall by means of a small power motor 
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4. Conclusions 

On the basis of the results obtained, the following may be concluded: 
1 °. Finding the driving moment control allowing a successful startup is pos­ 
sible for the inertia vibrators whose high value of static unbalance prevents 
the first half-turn in the gravity force field. 
2°. For the minimum time transition of the angular coordinate of the vibrator 
from the position O to Jt, with the concurrent reduction of the moment to 
the range of [ +Mo, -M0], the moment on the shaft should assume the values 
that are constant by sections with values +Mo, -Mn. The moments of driving 
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moment switching are determined by the roots of the coupled function \f 1 

of system (8).
3°. In practical applications, the simplification associated with the disregard
for the feedback action of the vibratory machine body, as with bringing the
driving moment to the form constant by sections, is not of considerable sig­
nificance for the determination of the moments of driving moment switching.
4°. Where the driving motor fails to ensure that the vibration machine reso­
nance zone will be passed, the continuation of the startup is possible by way
of double-state control of the motor. In particular, it is possible to overcome
the circum-resonance stall by a deactivation and reactivation of the motor as
described in item 3.
5°. Further reduction of the requirements with regard to the startup moment
of the motor may be obtained by repeating the procedure described above
several times, the principles of selection of the moment of activation and
deactivation of the motor being preserved.

The report completed under the KBN (Committee of Scientific Research)
research project No. 4T07C01428.
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Forsowanie rozruchu maszyn wibracyjnych silnikami małej mocy

Streszczenie

W pracy poddano analizie krytyczne fazy rozruchu maszyny wibracyjnej i zaproponowano
strategię ich przezwyciężania silnikami małej mocy. W tym celu zastosowano wariacyjną zasadę
maksimum Pontriagina i metodę modulacji kąta fazowego, Skuteczność proponowanego podejścia
sprawdzono na drodze symulacji cyfrowej.


