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APPROXIMATION OF A STRAIGHT LINE IN SOFTWARE 
FOR CO-ORDINATE MEASURING MACHINE 

The software for co-ordinate measuring machine (CMM) is used for approximat­ 
ing geometric elements in plane (2d) and in space (3d) by approximation algorithms 
when number of measuring points obtained is larger than the minimum number of 
points necessary for element definition. Orthogonal regression methods are discussed 
in this paper. For 2d and 3d cases and they are compared with methods for defining 
straight line using linear regression. The advantage of orthogonal regression over 
linear regression is shown by comparing variance of measuring point displacement 
from both approximation line types.Algorithms for orthogonal regression make it 
possible to determine optimum position of a straight line for which value of variance 
of point distance from the line is the lowest possible. The tests have been performed 
on the Carl Zeiss CMM. 

1. Introduction 

A set of points obtained in the machine head movement along the plane 
perpendicular to the CMM table is approximated by a 2d straight line in the 
Cartesian system of co-ordinates XY. A set of points positioned along axes 
of successive cylinders in cylinder measuring procedure is approximated by 
a 3d straight line in the Cartesian space XYZ. The straight lines in question 
are called regression lines. The least squares method by Gauss is used for 
determining position of the regression line. Linear regression and orthogonal 
regression method has been described in available mathematical references 
[2], [3], [4]. 

Linear regression method is based on calculating the least squares of 
point displacement from theoretical line as measured parallel to the OX or 
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OY axis of the Cartesian system. The regression lines obtained are at angle
cp named correlation scissors.

Orthogonal regression method is based on calculating the least squares
of point displacement from theoretical line taken in perpendicular direction
relative to theoretical line.

Both cases account in determining the minimum function value using
methods of differential calculus. The methods presented below have been
applied for the 2d and 3d case. The 3d measurement of the straight line
is practically impossible on the CMM and it can be determined only by a
calculation procedure, such as the one called CALYPSO, provided by the
Zeiss company, where straight line passes by the consecutive cylinder ba­
ses [1]. The orthogonal regression methods are usually used by CMM
software.

2. Linear regression 

A sequence of points P1(xi, Yi) i = 1, ... , n is usually obtained as a result
of CMM measurements along a straight line (Fig. 1) and this sequence is
recorded as a PC computer file.

y y
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y
b) 

X X 
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x 

Fig. 1. Diagrams for calculating deviations TJi of measuring point positions from ideal line
passing through mass center .x,y of a set of measuring points Pi: a) deviation TJ; of measuring

point positions from the PL! line measured as parallel to the OY axis, b) deviation TJ; of
measuring point positions from the PL! line measured as parallel to the OY axis

Measurements of points in the XY plane can be carried out using a couple
of different methods: a) measuring head is driven as parallel to OY axis until
the spherical terminal contacts the straight line, b) measuring head is driven
as parallel to OX axis until the spherical terminal contacts the straight line
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(linear regression). The points measured are used for determining line PLl 
(Fig. 1 a) or line PL2 (Fig. 1 b ). 

2.1. Linear regression in use for 2d line definition 
by the Linnik method 

Equation of 2d straight line in its directional form goes as follows: 

(1) 

There are at least two measuring points P1(x1, yi) i = l, 2 needed for 
determining the equation (1) where bo and b are to be calculated. The calcu­ 
lated coefficients will be dependent on which two points have been selected 
from point set P1(x1, y;) i= l, ... , n.

Least squares method (Gauss method) is used for determining bo and b1 if 
number of points P1(x1, y1) is greater than two. In this method, quadratic val­ 
ues 11, for deflections of measuring points P1(x1, y1) from theoretical straight 
line along OY axis (2) or OX axis (3) are defined, then a sum of 7J7 squares 
is computed and minimum from the expression (2) or (3) is determined: 

i=ll i=ll 

F(bo, b1) = I rd= I (y, - (bo+ b1x,))2 = min 
i=l i=l 

i=ll i=ll 

F(bo, bi) = I 7J7 = I (x, - (bo+ b1y,))2 = min 
i=l i=l 

(2) 

(3) 

where n is the measurement number. 
Regression lines pass through mass center of a set of measuring points 

Pż(x,, y,) (Fig. 2). Both regression lines PLy/x and PLx/y develop the so called 
correlation scissors of width <p. Tangent of <p is calculated according to for­ 
mula [4]: 

CTxCTy l - p2 
tg<p = --- 

cr2 + cr2 lnl 
X y If/ 

(4) 

where CTx, cry - standard deviations for variables X and Y, p - correlation 
coefficient for variables X and Y. 

Only when measuring points are located exactly on the straight line, i.e. 
functional relationship exists, correlation coefficient p = I, hence tan( <p) = O 
and correlation scissors close. If p = O, then tan(<p) = co and correlation 
scissors open up to 90°. Points can not be approximated by a straight line 
equation this time. 
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y y

Fig. 2. Regression lines PLI and PL2 cross at mass center (i, y) and they develop correlation
scissors

Because of high CMM accuracy, measuring points are located very close
to regression line so that correlation coefficient is close to 1. Value of angle
<p is close to zero and correlation scissors are about to close.

Function F(bo, b1) ((2),(3)) has been minimized according to total dif­
ferential principle, i.e. partial derivatives with respect to parameters bo and
b1 have been calculated and then zeroed. After a few transformations, re­
lationship describing b1 coefficient can be obtained as tangent of angle for
the slope of the regression line passing through the mass center of point set
Pi(Xi,Y1): 

n 
I (xi - x)(yi - y) 

b 
cov(X, Y) i=I 

J = t ga = ---- = ------- 
D2(X) ± (x, - .x)2 

i=I 

Another constant bo can be calculated using the formula:

b = (- _ cov(X, Y) . x) 
o y D2(X)

(5)

(6) 

Constants bo and b1 are used to define linear function (1), i.e. function
y = f(x). The regression line with respect to independent variable y can
be defined in a similar way as an inverse function x = f(y) with respect to
regression function (1).
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3. Orthogonal regression for 2d line 

3.1. Orthogonal regression for 2d line definition by Lagrange 

In order to determine line of orthogonal regression, the distances l']i 
of points Pi(Xi, Yi) from theoretical line PL (Fig. 3) have been calculated. 
The line defined by orthogonal regression passes through the mass center of 
measuring point set. A normal line defined in the local co-ordinate system 
(X', Y'), with the origin at the mass center, can be described as follows: 

b1x' +b2y' = O 

bf+ bi - 1 = O 

(7) 

with additional condition: 

where local coordinates (x;, y) are connected with global coordinates 
(xi, Yi) in the following way: 

(8) 

y y 

X 

- 
X 

Fig. 3. Diagram for calculating distances T]; of measuring points from theoretical line PL passing 
through mass center (x,y) of measuring point set P;. Distances T]; are measured along normal 
direction to the PL line; local co-ordinate system (X', y') is shifted with respect to global 

co-ordinate system (X, Y) by vector [x, _y] 

Further analysis of the line slope will be carried out in the local co­ 
ordinates (x;, y;) but the 'denotation will be skipped. The quoted technique 
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is called the condition extreme Lagrange method [5]. The sum of squares of
the measuring point distances from PL line (Fig. 3) is calculated according
to the formula:

11 11

/(b1, b2) = I r17 = I (b1xi + b2yi = min
i=l i=l

with extra condition:

The Lagrange function takes the following shape

F(b1, b2, J) = f(b1, b2) + J(bf + b~ - 1) 

(9) 

(10)

The conditional extreme of the Lagrange function can happen only when
the partial derivatives of function (10) with respect to parameters b1, b2, and
,ł equal zero.

After some necessary transformations, the following system of linear
equations is obtained.

Il Il 

b1 Ix;+ b2IxiYi = Jb1 
i=l i=l

11 11 

b1 IxiYi + b2Ix;= Jb1 
i=I i=l

(11)

[
D

2
(X) cov(X,Y)l [b1] The introduction of designations A = 2 , b = b 

cov(X, Y) D (Y) 2 

simplifies the description of the equation (11) to:

A·b=J·b (12)

The system of equations (12) will be homogeneous after some trans­
formations. Non-zero solution of homogeneous system, eigen solution for
symmetric matrix, can be found using NROOT and EIGEN subroutines [9].
These subroutines provide normalized values of vector b, components of
which denote cosines for directional angles of regression line with respect to
OX and OY axes. Moreover, NROOT subroutine provides two eigenvalues
A1 and A2 determining components of two eigenvectors. Vector defining the
searched line is connected with the smaller value of A. The other eigenvector
defines perpendicular line.
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3.2. Orthogonal regression for determining 2d line by the Linnik 
method 

The essence of 2d orthogonal regression application was presented in 
Fig. 4. The local co- ordinate system (U, V) was set with origin located in 
mass center of point set Pi(Xi, ya.

The (U, V) system was rotated with respect to (X', Y') system which in 
turn was translated with respect to (X ,Y) system. Co-ordinates of Pi point in 
(U, V) system is bound by the following relationships: 

, , } u, = x1 cos a + y1 sin a

v1 = -x; sin a + y; cos a (13) 

V 
I 

y PL 

X 

X 

- 

X X - 

Fig. 4. Location of measuring point Pn(x0, y0) in co-ordinate system (U, V) rotated with respect 
to (X', Y') by an angle a. The (X', Y') system is located at mass center (x,y) for point set Pi 

The distance of point from local axis U is denoted by vi. According to 
the Gauss rule, the minimizing procedure is applied: 

n

0 = Ł v; = min 
i=I 

(14) 

After differentiation of function (14) with respect to parameter a and 
equaling the derivative to zero, relationship is obtained for tangent of dou­ 
ble a: 
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Il 2Ix;l 
i=l 

tg2a = Il Il 

I x;2 - I Y? 
i=I i=I 

(15)

The angle of the line slope to OX axis in global co-ordinate system is
calculated according to another relationship

Il 

I (xi - x)(Yi - y) 
1 i=l 

a=-a~g--------- 
2 Il - - I (xi - x)2 - (yi - y)2

i=l 

(16) 

4. Orthogonal regression for 3d line 

3d line in Cartesian system can be expressed in many ways. The most im­
portant ones go as follows:

x - xo y - Yo z - zo 
direction form of line L equations: L: = =

Vy Vz 

{

X= Xo + Vx. t 

parametric form of line L equations: L: y : Yo + Vy · t 

Z - Zo + Vz · t 

(17) 

(18)

where: (xo, y0, zo) - co-ordinates of point placed on line, [vx, Vy, Vz] - 

directional vector components, t - parameter.
The components of vector v are direction cosines of the line 3d assuming

positive sense of Cartesian co-ordinate system axes. PLl line in R3 plane
and distribution of measuring points Pi in its neighborhood are presented
in Fig. 5.
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z 

PL! 
z 

X 

Fig. 5. Diagram for calculating distances 11, of measuring points from theoretical line PL passing 
through mass center of measuring points set PJxi, Yi, z;); (x;,, Y;', zi') are coordinates of P; in 
(X', Y', Z') local co-ordinate system shifted with respect to global co-ordinate system (X, Y, Z) 

by vector [i, y, i] 

4.1. Orthogonal regression for 3d line according to Lagrange method 

The line defined by orthogonal regression passes through the mass center 
of measuring points registered on the CMM. The distances of measuring 
points Pi from line PL are denoted as Tli (fig. 6). 

The distance Tli of measuring point Pi(x;, y;, Z:) from line PL in local 
co-ordinate system (X', Y') can be calculated from the following formula [5]: 

1Ji = I
➔ ➔,1 b X pi 

WI 
(19) 

➔ ➔
where b = [b1, b2, b3], P; = [x;, y;, Z:J and there is additional requirement: 

(20) 

Further notation will not include the ' sign. It should be remembered 
that coordinates (x1, yl) are connected with the local system (X', Y'). The 
absolute value of a vector W x li can be computed from the co-ordinates of 

➔ ➔
vectors b and Pi [5]: 
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+ + 
2 

(21) 

X

Fig. 6. Line PL passes through mass center (.i,ji,.f) of a set of measuring points P;(x;, y;, z;). The
distance TJ i of point Pi from the line is computed basing on absolute value of a vector [bx P;] 

and of directional vector [bl

A function f(b1, b2, b3) being a sum of distance lJi squares was subjected
to minimizing procedure which can be expressed as follows:

The Lagrange function is created in order to find conditional extreme for
three variables:

F(b1, b2, h, ,ł) = f(b1, b2, b3) - ,ł(bf + b~ + b~ - l) (23)

for additional condition: bf + b~ + b~ - l = O (24)
Partial derivatives with respect to four parameters are formulated and

they are made equal to zero. Then, a system of liner equations is created as
follows:
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n n n 

b1 Ł (y; + z;) + b2 I-x1Yi + b3 I-x1z1 =A· bi 
i=l i=l i=l 
n n n 

br Ł -X1Y1 + b2 Ł (x; + z;) + b3 I-y1z1 =A· b2 
i=l i=I i=l 
n n n 

b1 I-xiZi + b2 I-Y1Zi + h Ł (x; + y;) =A· b3 
i=I i=l i=I 

(25) 

After adopting the matrix-type notations, it can be rewritten as follows: 

n Il n I (y; + z;) I-XiYi I-XiZi 
i=I i=I l=l 
Il n n 

b = [ ::1 A= I-XiYi Ł (x; + z;) I-YiZi ' 
i=l i=l l=l 
n n n 

I-x1z1 I-YiZi I cxl + y;)
i=l i=I i=l 

or shortly put as 

A·b=A·b (26) 

it can also be expressed as: 

(A - A · E) · b = O (27) 

where E is unit matrix. 
Homogeneous equation (27) will have a solution different from zero 

(b =I= O) when the matrix (A - A • E) is a singular i.e. when its determinant 

det(A - A · E) = O (28) 

Condition (28) leads to the characteristic equation of a matrix solutions 
of which are eigenvalues At, i= 1, 2, 3. Eigenvalues At and eigenvectors b1

are computed by the NROOT procedure within which an EIGEN subroutine 
is called [9]. In this procedure, an iterative method of Jacobi is applied. The 
computations carried out with help of the subroutines yielded three eigen­ 
values Ai, i = l, 2, 3 and corresponding eigenvectors of components equal to 
direction cosines of vectors parallel to the lines. The vector corresponding to 
the smallest eigenvalue is the object to be found. Summing up, 3d regression 
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line passing through mass center (.i, y, z) of the set of points PJxi, Yi, z.) and
➔

components of this line direction vector are determined by b for the smallest
eigenvalue Ai. 

5. Variance for deviations of measuring points from 2d line 
of linear and orthogonal regression 

Lines of linear and orthogonal regression pass through the mass center of
point set Pi(x1, Yi) obtained during CMM measurements. The slope values of
regression lines are much different. Optimum angle for regression line slope
will be researched according to the square root from the variance of distances
of measuring points from theoretical line. The 2d line passing through mass
center (.i, y) is controlled by the following relationship:

y-y=tga·(x-x) (29) 

The distance 11, from a point Pi(x1, Yi) from theoretical line can be de­
scribed as follows:

ltga · Xi - Yi+ (y- .i· tga) I 
T/1 = ✓tg2a + 1 

The following substitutions facilitating mathematical description were

(30)

used:

cfx = tga, cf= (y- .i· tga) (31) 

A variance of points Pi(Xi, yl) with respect to a line of linear regression
can be expressed as follows:

n 
I (cfx · Xi - Yi+ cj)2/(cfx2 + 1) 

D2(T/) = _i=_l _ 
n 

(32)

Standard deviation o for measuring points Pi(Xi, Yi) can be computed from:

a= ✓D2(T/) (33)

Variance of measuring points deviation from the 2d linear regression line 

In 2d linear regression, variance according to formula (32) and standard
deviation for distances of points Pi(xi, Yi) according to formula (33) are
calculated for the regression slope angle a computed according to formula
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(5). The formulae describing coefficients cf x and cf should use angle a 
computed as recommended above. 

Variance of measuring points deviation from the 2d orthogonal regression 
line by La.grange 

For the 2d orthogonal regression line by Lagrange, the variance by formula 
(32) and the standard deviation by formula (33) for points Pi(xi, Yi) can be 
obtained from the matrix R2 (2 x 2), which results from subroutines NROOT 
and EIGEN. One of the column vectors of matrix R2 describes direction 
cosines of orthogonal regression line. 

Let it be a vector located in the second column of matrix R2. Then, the 
regression line slope will be available from the following formula: 

a= arcos(R2(1,2)) (34) 

The formulae describing coefficients cf x and cf should use angle a 
computed according to expression (34). 

Variance of measuring points deviation from the 2d orthogonal regression 
line by Linnik 

For the 2d orthogonal regression line by Linnik, the variance given by for­ 
mula (32) and the standard deviation given by formula (33) for points Pi(xi, 
yi) can be obtained for the regression slope angle a computed according to 
formula (16). The formulae describing coefficients cf x and cf should use 
angle a computed as recommended above. 

6. Variance for deviations of measuring points from 3d line 
for orthogonal regression by Lagrange 

The components of the direction vector for orthogonal regression line 
3d can be determined from three columns of matrix R3( 3 x 3) including 
components of direction vectors for lines corresponding to eigenvalue ,li, 
i = 1, 2, 3 (subroutine NROOT [9]). The sought vector of orthogonal re­ 
gression line corresponds to the smallest eigenvalue A.i. Let us denote this 

➔
vector as follows: b = [R3(1, i), R3(2, i), R3(3, i)], where i is column number. 

➔
Components of vector b are direction cosines calculated with respect to axes 
OX, OY and OZ. 

As the 3d line passes through mass center (x, y, z) of the set of points 
Pi(Xi, Yi, z.) [12] located in the neighbourhood of theoretical line, the dis- 
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tance of this point from this line can be determined form the following
expression [5]:

17, = l[(x, - x), (y, - y), (z, - z)] x [R3(1, i), R3(2, i), R3(3, i)]I (35)

provided that l[R3(1,i),R3(2,i),R3(3,i)]I = 1.
After having extended the cross product (35), one can present the vari­

ance D7(17) of the distance of measuring points P1(x1, y1, z,) from theoretical
3d line as follows:

2 2 2 ± (y, - y), (z, - z) + (x, - x), (z, - z) + (x, - x), (y, - y) 
i= 1 R3(2, i), R3(3, i) R3( 1, i), R3(3, i) R3( 1, i), R3(2, i)

D7(17) = ------------------------
n 

(36)

where n - number of measuring points P1(x1, y1, z1). 

Standard deviation a- of measuring points P1(x1, y1, z1) can be calculated as
previously shown:

(37)

7. Summary of numerical results 

The presented algorithms were tested for data acquired from measure­
ments carried out in the CNC operating cycle of the co-ordinate measuring
machine ZEISS Vista equipped with the trigger probe TP2 manufactured by
Renishaw company. Basic software supplied for Vista machine, named as
Calypso v. 3.5.04 was used.

Table I.
Results of regression line parameter estimation

Calculations according to: CALYPSO Carl Zeiss Elaborated software 

Line passing through point [mm]: X = 6.0902, y = 3.6760 X= 22.0681, y = J0.4633

Line slope [deg]: Kl = Y/X = 26.7387 a= 26.7387

Standard deviation [mm]: s = 0.0023 o= 0.000098

The results obtained using Calypso were compared with the results ob­
tained from computations basing on the presented relationships. The compar­
ative specification is given in Table 1. In the course of computations made
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basing on the elaborated software, compatibility of the line slope angle a 
results with the results basing on the Calypso Carl Zeiss was confirmed up 
to .0001. There are differences as to location of passing point. According to 
a standard [ 12], this point should coincide with mass centre, and the Calypso 
software does not meet this standard. It should be improved in the subsequent 
versions of the Calypso. 

8. Summary 

CMM software has been elaborated by teams of mathematicians, metrol­ 
ogy specialists and programmers for various assumptions using more or less 
sophisticated software. Therefore, measuring capabilities and accuracy of the 
CMM software vary from product to product. Inaccuracy of CMM compu­ 
tations is an important component of measuring uncertainty. CMM manu­ 
facturers usually do not give any details concerning the type of software, 
particularly approximation technique used or its accuracy. CMM users are 
left with two possibilities of verifying accuracy of calculations performed 
using the standard CMM software. 
1) Method consisting in checking the standard software by a master, di­ 

mensions of which (linear, angular, shape or positional error levels) are 
entered from the keyboard and CMM measurements are bypassed 

2) Method consisting in inspection of a geometric element on the CMM, 
and then processing the obtained data by self-made verification software. 

The parameter of standard deviation er entered in calculations for describ­ 
ing the deviation of points from line is a good measure for accuracy of 
approximation software. The value of this parameter should be around 10% 
of measuring uncertainty value. The software which does not meet this esti­ 
mation should be replaced by an improved software. 

Presented algorithms for approximation of 2d and 3d lines were coded 
and compiled in FORTRAN 77 computer language and were named the 
sigmroot . The software has been tested at the Warsaw University of Tech­ 
nology and was based on data acquired from measurements carried out in 
the CNC operating cycle of the co-ordinate measuring machine Vista man­ 
ufactured by Carl Zeiss. The presented software can be used for extending 
measuring capabilities of imperfect CMM programming. 

Manuscript received by Editorial Board, September 05, 2005 
final version, February 07, 2006. 
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Aproksymacja prostą w oprogramowaniu współrzędnościowej maszyny pomiarowej

Streszczenie

Oprogramowanie współrzędnościowych maszyn pomiarowych (CMM) przybliża twory geo­
metryczne na płaszczyźnie (2D) i w przestrzeni (3D) algorytmami aproksymacyjnymi, gdy liczba
punktów pomiarowych jest większa od matematycznie najmniejszej liczby punktów niezbędnych do
ich zdefiniowania. W artykule omówiono metody regresji ortogonalnej definiowania prostych 2D i
3D i porównano je z metodami definiowania prostych metodami regresji prostoliniowej. Przewagę
prostych regresji ortogonalnej nad prostymi regresji prostoliniowej wykazano poprzez porównanie
wariancji odchyleń położenia punktów pomiarowych względem obu typów prostych. Algoryt­
my regresji ortogonalnej pozwalają ustalić optymalne położenie prostej, przy którym wariancja
odległości punktów pomiarowych względem tej prostej przyjmuje wartość najmniejszą. Testowanie
przeprowadzono na CMM VISTA firmy Carl Zeiss.


