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COMPUTERIZED DESIGN - GENERATION OF THE WORM-GEAR 
FLANK 

The study of the geometry for worm-gearing is much more complicated than 
that of plane gearing, since worm-gearing is three-dimensional. A numerical method 
to determine the conjugate profile of worm-gearing tooth is developed. The software, 
with numerical set-up and graphic display, is an original and special program, and 
it could be adopted for the geometry of any kind of cylindrical worm-gearings, as 
well as for spur gearings and bevel gearings. 

1. Introduction 

In order to study the geometry of the worm-gearing tooth, it is assumed 
that the spatial gearing consists of more plane-gearings (pinion-rack drives) 
that in fact are cross sections perpendicular to the worm-gear axis (Fig. 1). 

y 

Fig. I. Worm-gear drive 
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The analytic solution of such problem, even for a ruled worm-gearing, 
is very difficult due to the complexity of the equations of the plane-gearing 
profiles that are in the enveloping. 

Consequently, the "minimum distance method" [6] is used, which is 
applied in the case of the "discrete representation" of the enveloping profiles. 
Thus, the enveloping profile of the elementary worm-gear (plane-gear) can be 
determined numerically by knowing "discretely" a matrix having as elements 
the coordinates of the worm axial section and by using the theorem of the 
"minimum distance method". 

1.1. Minimum distance method 

Within of the new methods for determining the enveloping surfaces (nor­ 
mals method, Nicolaev method, Oliver method), there is a Romanian method 
named "minimum distance method". It is created by the professors of the 
Mechanical Faculty of the "Dunarea de Jos" University of Galati. With this 
method one can perform geometrical analysis of the contact for the two 
enveloping surfaces or curves, pointing out the contact mode of the two 
enveloping surfaces (curves). 

The contact of the enveloping profiles, referring to the relative motion 
of them, can be considered as a locus of the points for which the distance at 
the meshing pole is minimum. 

Thus, the "minimum distance method" may be enunciated as follows: 
The envelope of the coiled profiles that moves with a rolling centroid is 

the locus of the profile points for which, in the different rolling position, the 
distance at the meshing pole is minimum. 

1.2. Surfaces discretization method 

"Minimum distance method" will be used in this study under numerical 
algorithm, known as "surfaces discretization method". 

The envelopes to the families of surfaces can be determined with this 
numerical method that was created to avoid the calculus difficulties of the 
analytic methods. 

The approach is based on the generated surface discretization, because 
any surface may be described punctiformly with an accuracy which satisfies 
from the technical viewpoint. 

1.2.1. Generation of surfaces associated to the axoids 
in the rolling motion 

In order to obtain such surfaces, by the known procedures using rack-bar 
tools, pinion-cutters and rotating cutters, we used the "profiles discretization 
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method", under the basis of the "minimum distance method". Thus, if the 
generated curve Cr is given by a matrix having the coordinates of the curve 
points in the coordinate system sri 

s= SI S2 S3 
Y]J Y]2 Y]3 

sn 
Y]n 

(1) 

in the rolling motion of the centroids, respecting the rolling condition 

(2) 

where, cp1 is increment, then the massive (3) is determined in the coordinate 
system XY. 

It is obvious that, by the size of the increment cp1, the numerical repre­ 
sentation of the family (C:E)cpI can be extremely rigorous. 

The massive (3) represents, in "discrete way", the family of the curve 
Cr in the coordinate system XY. The envelope of this family of curves Cr 
constitutes the conjugated curve. 
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Consequently, the rmmmum distance theorem, in "discrete way", be­ 
comes: 

The "discrete" envelope of the family of curves, represented as massive 
of the coordinates of the points belonging to the family curves, consists of all 
points that are on these curves, for which, at a certain size of the increment 
cp1, the distance at the meshing pole is minimum. 

2. Geometry of worm-gearing tooth 

2.1. Worm geometry 

In order to determine the coordinates of the axial section of the worm, we 
consider the case of a worm-gearing with modified profile so as to ensure, 
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as well as possible, the generalization of the model from the geometrical 
viewpoint. 

Hence, we consider the axial section (x=O) of the worm (figure 2) with 
constant pitch, having a circular arch profile with center 01 for the right 
flank and 02 for the left flank. 

z 
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N" 

Fig. 2. Worm flank geometry 

The coordinates of the centers 01 and 02, are respectively given by the 
following relations: 

{ 
Y 01 = Re - u · cos a - a · sin a; 
Z02 = b + u · sin a - a - cos a; 

{ 
Y 01 = Re - u · cos a - a · sin a; 
Z02 = -b - u · sin a + a · cos a, 

where: 
a is constant parameter, [mm] (see figure 2); 
u = 1.25-m/cosa; 
R = ✓a2 + u2 is the radius of the circular arc profile, [mm]; 

n. m 
b = -- - 1 25 · m • tga · 4 . ' 

m 
p= 2; 
Re is tip radius of the worm tooth [mm]. 

2.1.1. Equations of the worm flanks 

(4) 

In accordance with Fig. 2, a point of the worm flank has the following 
coordinates: 
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a) for the right flank 

b) for the left flank 

X= O; 

Y = Y 01 + R · cos(¥ - a+ v, ); 

Z= Zo1 + R · sin(¥ - a+ v1); 

(5) 

X= O; 

Y = Y 02 + R · cos(¥ - a+ v2 ); 

Z = Z02 - R · sin(~ - a + v2 ). 

In the above relations, n1 and n2 are variable parameters of the right flank 
and left flank, respectively. Generally, the helical motion can be written by 
means of two coordinate transformations corresponding to simple motions, 
which are the components of the helical motion: a rotation about Oz axis 
having parameter j, and a translation along the same axis, proportional to 
the rotation angle p-rp, p being the helical parameter. In this way, the helical 
motion of the movable coordinate system XYZ is described by the matrix 

(6) 

equation: 

x = wJ ( rp) · X + a, (7) 

X cos cp +sm rp o X o 
y sin cp cos rp o y + o 
z o o 1 z p·cp 

where: 
x - is the matrix of the coordinates of a point with respect to the coordinate 
system xyz fixed to the frame; 
X - is the coordinates matrix of the same point with respect to the moving 
coordinate system; 
a - is the matrix of the coordinates of the point O (the origin of the moving 
coordinate system) with respect to the point 01 (Fig. 3); 
w3(cp) - is the matrix representing the rotation. 

Substituting relations (4), (5) and (6) into equation (7), we obtain the 
parametric equations of the right flank surface and left flank surface. Then, 
intersecting these surfaces with the plane x =. H will produce the curve 
representing the worm profile corresponding to the sectional plane: 
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Fig. 3. Coordinate system used for the helical motion 

a) for the right flank 

{

. H 
filn~1= . ; -[Y01 + R · sm(a - v1)] 

LOH y = [Yo 1 + R · ( a - v J)] · cos ~ 1 ; 
z= Z01 + R · cos(a - v1) + p · ~1; 

b) for the left flank 
(8) 

{ 

. H 
filn~2= ; 

-[Y 02 + R · sin(a - v2)] 
LSH y = [Yo2 + R · (a- v2)] · cos q»; 

z= Zo2 + R · cos(a - v2) + p · ~2- 

2.1.2. Numerical results 

The numerical application was made for a cylindrical worm-gearing with 
a circular arch profile, having the following constructive parameters: 
- number of worm threads, z1 = 1; 

number of gear teeth, z2 = 53; 
axial module, m, = 10mm; 
diametral quotient, q = 10; 
constructive parameter of the worm, a = 70mm; 
profile angle, a = 20°; 
angular increment, ~~ = n/3240. 
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Fig. 4. Right flank profile of the worm 

The curves are represented misplaced with respect to their real position 
in order to be shown them better. 

Table I. 
Tip circle of the worm Root circle of the worm 

Sectional plane Re= 62.5 mm R, = 37.5 mm 
[mm] 

y [mm] z [mm] y [mm] z [mm] 

X= -37.490 50.007498 6.520859 0.865968 20.142119 

X= -29.992 54.833657 5.806898 22.510663 17.038308 

X= -22.494 58.311834 5.145179 30.004499 15.620115 

X= -14.996 60.674294 4.515853 34.371063 14.460612 

X= -7.498 62.048610 3.905642 36.742754 13.410127 

x=0 62.5 3.304354 37.5 12.403610 

X= 7.498 62.04861 2.703065 36.742754 11.397092 

X= 14.996 60.674294 2.092854 34.371063 10.346607 

X= 22.494 58.311834 1.463529 30.004499 9.187104 

X= 29.992 54.833657 0.801810 22.510663 7.768911 

X= 37.490 50.007498 0.087848 0.865968 4.665101 
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2.2. Determination of the flank profile of the worm-gear 

The worm-gear tooth surface is generated by rolling. The "minimum 
distance method" is applied to the algorithm of the discretization, in the case 
of generation with the rack-bar tool. First of all, we get the discretization of 
the generating curve Cr, which in this case is the worm profile, represented 
by the following matrix: 

g= (9) 

Yn Zn 

where y1 and z1 are the coordinates of the profile from the plane x = H, 
which are determined by equations (8). 

Taking into account the fact that gear flank generation of the elementary 
gear drive is made with the rack-bar tool (Fig. 5), the coordinate systems are 
defined as follows: 

XYZ is moving coordinate system rigidly connected to the gear; 
~rit is moving coordinate system rigidly connected to the generating rack 
(worm); 

- xyz is fixed coordinate system rigidly connected to the frame. 

Rolling line of 
~ the rack 
... 

y 

Fig. 5. Worm-gear flank generation 
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The rolling condition is the following: 

(10) 

Here, ll<p is the angular increment of the rolling. It is obvious that, from 
the technical viewpoint, this increment have to be enough small to generate 
a profile with high accuracy. 

2.2.1. Generation motions 

The generation motions of the worm-gear flank are the following: 
1) A rotation of the centroid of the gear of the elementary gear drive with 

respect to the fixed coordinate system xyz, described by the matrix equation 

x = wJ(i ·ll<p) ·X. (11) 

In the above relation, x is the matrix of the coordinates of the point with 
respect to the fixed coordinate system, X is the matrix of coordinates of the 
same point with respect to the moving coordinate system XYZ, and w 1 ( <p) 
is the matrix of the rotation about moving Ox axis; 

2) A translation of the moving coordinate system Sll~ associated to the 
rack with respect to the fixed coordinate system, described by the equation: 

x=l;+a (12) 

with 

o 
a= -Rr (13) 

-R, ·(i· Arp) 

being the matrix of the coordinates of the origin 01 of the moving coordinate 
system with respect to the point O; 

3) Relative motions 
Substituting the relation (12) into (11) will yield the equation of motion 

of a point on the generating curve "g" (Fig. 5) from the coordinate system 
XYZ with respect to the coordinate system l;11t, as follows: 

s = wT (i· fl<p) · X - a. (14) 

By means of the above relation, the equation of motion of the point 
on the rack of the elementary gear drive with respect to the gear can be 
determined as 
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X = W1 (j , ~cp) · [s + a]. 
From the last equation, we obtain 

(15) 

{

X= s; 
Y = (11 - Rr) · cos(j · ~cp) + [t - Rr · (j · ~cp)] · sin(j · Arp); 
Z= -(11 - Rr) · sin(j · ~cp) + [t - Rr · (j · ~cp)] · cos(j · ~cp). 

The system of equations (16) represents the family of generating curves 
"g" with respect to the coordinate system of the worm-gear, 11 and t being 
the coordinates of the points on the generating curve (Fig. 6). 

(16) 

y 

Fig. 6. Coordinates of the meshing pole P 

The envelope to the family (16) is what we have to determine, namely, the 
gear profile. The enveloping condition is given by minimizing the distance 

d = ✓(Y - Yp)2 + (Z -Zp)2. (17) 
The coordinates of the meshing pole P (Fig. 6) are given by the following 

equations: 

Yp = -Rr · cos(j · Arp); 
Zp = Rr · sin(j · Arp). 

2.2.2. Numerical results 

(18) 

On the basis of the methodology presented above, the computer program 
WORM-GEAR was created. By means of this program, the profile of the 
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worm-gear tooth in the 11 sectional planes, can be obtained. For instance, 
the Fig. 7 and 8 present the profile in two sectional planes, Ho and H3. 

\ I 
/ 

Ri o 

Fig. 7. Profile of the worm-gear tooth in the sectional plane Ho 

\ \ 

\ 
Ri 3 

Fig. 8. Profile of the worm-gear tooth in the sectional plane H3 
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Table 2. 

Nr. Y [mm] Z[mm] 

1 -253.34130 4.106199 

25 -256.73828 5.751924 

50 -259.69055 7.067912 

150 -268.14165 10.480897 

200 -271.53037 11.822857 

283 -277.11246 14.168198 

Table 3. 

Nr. Y[mm] Z[mm] 

1 -257.7102 1.89833 

25 -260.0342 3.16316 

50 -262.572 4.21142 

150 -270.2919 7.18554 

200 -273.6183 8.47787 

300 -280.5391 11.40585 

354 -284.6536 13.35288 

The program was executed the same application, like in the case of the 
worm (see section 2.3.2). In the tables 2 and 3 are given the coordinates 0f 
the points on the left flank of the gear tooth. The notation "Nr." in the first 
column of these tables represents the number of the point on the flank. 
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Fig. 9. Coordinate system ed for the profile of the worm-gear tooth 

The coordinate system YOZ is located in the center of the worm-gear (Fig. 9). 
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3. Conclusions 

As the result of the above study, we can draw the following conclusions: 
1) A numerical method to determine the conjugate profile of worm­ 

gearing tooth is developed; 
2) The proposed approach may be applied to any types of cylindrical 

worm-gearings and to spur gearings and bevel gearings; 
3) The developed computer program enables one to obtain numerical 

solutions and graphic illustrations; 
4) The proposed numerical method allows for the geometry optimization 

and the study of the meshing for various geometrical parameters of the worm­ 
gearing, being in fact a simulation of meshing; 

5) The most important fact is that we can determine the parameters which 
influence the improvement of performance of the worm-gearing tooth; 

6) By means of this study, the authors developed a method to evaluate the 
rigidity of the worm-gearing tooth, what is very important for the accuracy 
of the machine-tool or robot linkages. 

Manuscript received by Editorial Board, February 06, 2006 
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Projektowanie wspomagane komputerowo
- generacja linii zęba przekładni ślimakowej

Streszczenie

Badanie geometrii zazębienia ślimakowego jest o wiele bardziej skomplikowane niż w przy­
padku zazębienia płaskiego, gdyż przekładnie ślimakowe są trójwymiarowe. Opracowano metodę
wyznaczania zarysu zęba współpracującego przekładni ślimakowej. Oprogramowanie zawiera mod­
uły obliczeń numerycznych i zobrazowania graficznego i jest oryginalnym wyspecjalizowanym
pakietem programowym, który może być przystosowany do geometrii dowolnego typu walcowych
przekładni ślimakowych jak również przekładni czołowych i stożkowych.


