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In this paper, a spring system symmetrically arranged around a circular plate com-
pliant to out-of-plane oscillation is proposed. The spring system consists of single
serpentine springs mutually coupled in a plane. Three theoretical mechanical mod-
els for evaluating the stiffness of the spring system are built, which are based on
the flexural beam, Sigitta, and serpentine spring theories and equivalent mechanical
spring structure models. The theoretically calculated results are in good agreement
with numerical solutions using the finite element method, with errors less than 10%
in the appropriate dimension ranges of the spring. Compared to similar spring struc-
tures without mechanical coupling, the proposed mechanically coupled spring shows
advantage in suppressing the mode coupling.

1. Introduction

The mechanical spring is a key element in various micro-electro-mechanical
systems (MEMS) devices such as micro-actuators, inertial switches, accelerome-
ters, and so on [1–17]. In these devices, mechanical springs are designed for single
or multi-axis motion. Up to date, there are many types of springs introduced for
applications in controlling in-plane motions [1–17]. The springs can be designed
for compliance to the linear movements in 𝑥 and 𝑦 axes [1–4, 7, 9, 12]. In these
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designs, the springs are normally composed of the straight beams [1] and a few
designs employed the serpentine beam for extending the movement in the 𝑥 and
𝑦 axes [10]. For the rotational motion, the straight beam and serpentine springs
have also been used [18–22]. In general, the component spring elements are in-
dependent to each other, one end of component spring element connected to a
proof-mass/structure while the other is fixed to substrate or connected to another
structure. For out-of-plane 𝑧-axis motion, the straight beam springs have been
employed, however, their displacement range is limited [1, 23, 24]. To extend the
out-of-plane movement range in micro-actuators while minimizing the device area,
serpentine beam and spiral springs have been introduced [12–14]. In the design
of micro-actuators, the stiffness of suspending springs needs to be determined for
evaluating the operational frequency range as well as their actuation voltage [1–
4, 11–13, 18]. In the mechanical sensors, the sensitivity is defined by the stiffness
of suspending springs [14]. The different devices require the different operational
frequency range. The inertial switches need fast response time on order of μs, i.e.,
the operational frequency at hundreds of kHz [3, 15]. In the MEMS accelerom-
eters, the operational frequency range is from 0.1 Hz to 104 Hz, for applications
from inertial navigation to explosion monitoring [16]. To evaluate the stiffness of
suspending springs, theories of elastic straight beam, the Sigitta spring, and serpen-
tine spring have been applied [1, 14, 25, 26]. In particular, recently an actuator for
out-of-plane displacement has been proposed and investigated by the finite element
method (FEM). The spring with straight beams arranged around a square plate and
coupled with each other has shown that the operational frequency range can be ex-
tended while the coupling between the operation and undesired oscillation modes
is suppressed [11]. However, the coupled curve springs and theoretical models for
evaluating the stiffness of this spring system have not yet been much studied for
low mode cross-talk micro-actuators and low-noise mechanical sensors.

In this paper, we present a novel design of a spring system arranged around a
circular plate compliant to out-of-plane z-axis oscillation. We use single serpentine
beam springs and couple them with each other to suppress undesired oscillation
modes while the design guarantees compliance to the z-axis oscillation. The per-
formance of the spring is investigated by FEM and compared to the other similar
spring structures without mechanical coupling. The theoretical mechanical models
for evaluating the stiffness of the spring system are built, and the calculated results
are compared to numerical solutions using FEM.

2. Spring model compliant to out-of-plane z-axis oscillation

The coupled spring is composed of six serpentine springs that are symmet-
rically arranged around a center plate forming a circular spring system, Fig. 1.
The serpentine springs are linked together at meandering beams/circular arcs. For
convenience in presentation, this coupled spring is called to be Type A. The pa-
rameters of Type A are also shown in Figs 1a and 1b, where 𝑤 and 𝑡 are the width
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and thickness of the spring circular arcs, 𝐿IS is the length of beam interconnecting
between the serpentine spring arcs, 𝐿IB is the length of beam interconnecting be-
tween spring circular arcs in each serpentine spring, which is also the gap between
spring arcs, and 𝑅 (= 50 µm) is the radius of the center plate.

(a) three-dimensional view (b) top view

Fig. 1. Proposed coupling spring with curved beams and design parameters

To investigate the effect of coupling on spring behavior, two other similar
springs without coupling between spring circular arcs are used for comparison, as
shown in Fig. 2. Fig. 2a is a spring similar to Fig. 1; however, the connections
between the spring circular arcs are removed. This spring is called the Type B.
Fig. 2b is a different spring type similar to Fig. 2a, the serpentine springs in this
case are not axial symmetry such as Type B, which has rotational symmetry, this
spring is called the Type C. The two springs, Type B and Type C, are similar to that
reported previously [12–14]. Therefore, the advantage of the coupling effect in the
proposed spring is also preserved in comparison with springs without coupling.

(a) (b)

Fig. 2. System of axial symmetry spring (a) and rotational symmetry (b)
using six serpentine springs composed of circular spring arcs

Furthermore, the operational frequency range is different for each application
[3, 15, 16]. The operational frequency of MEMS devices depends on the dimen-
sional parameters of spring. We can change the dimensional parameters of spring
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as well as extending the length of spring by adding more spring stages, but the effect
of the spring couplings in suppressing mode coupling is still preserved when com-
pared with the similar spring systems without coupling. Therefore, in this study,
we choose the spring system with three stages, as shown in Figs 1 and 2.

3. Models for calculating the stiffness of spring systems

3.1. Approximate method of straight beams connected in series

Equivalent model of the coupling spring consisting of components connected
in series and parallel is shown in Fig. 3. The stiffness of the coupling spring is
determined by:

𝐾𝑡 = 6𝐾𝑏 . (1)

Here, 𝐾𝑏 is the stiffness of a single serpentine spring as shown in orange color in
Fig. 3. The number “6” represents the coupling spring consisting of six serpentine
springs connected in parallel. In the current design, each serpentine spring consists
of three circular arcs. So, the stiffness 𝐾𝑏 is determined by:

1
𝐾𝑏

=

𝑛∑︁
𝑖=1

1
𝑘𝑖
. (2)

𝑘𝑖 is the stiffness of the 𝑖-th circular arc spring, 𝑛 represents the serpentine spring
with 𝑛 circular arcs. Approximately, the 𝑖-th circular arc can be considered as a
straight beam of effective length 𝑙𝑖. The stiffness of the 𝑖-th straight beam spring
is [26]:

𝑘𝑖 =
3𝐸𝐼
𝑙3
𝑖

. (3)

In Eq. (3), 𝐼 (= 𝑤𝑡3/3) is the moment of inertia of the straight beam spring, 𝐸 is the
Young’s modulus of the spring material, for the silicon material𝐸 = 1.69·1011 N/m.

(a) (b)

Fig. 3. Structure model of the coupling spring analyzed into equivalent
mechanical structure model for evaluating stiffness (a) and equivalent
spring model consisting of spring components connected in series (b)
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The natural frequency of the coupling spring is determined by:

𝑓 =
1

2𝜋

√︂
𝐾𝑡

𝑚
. (4)

Here, 𝑚 is the mass of the suspension consisting of the central plate and the
serpentine spring beams. 𝑚 is calculated by the formula:

𝑚 = 𝑚plate +
13
35
𝑚beam , (5)

where, 𝑚plate is the mass of the central plate and 𝑚beam is the total mass of the
beams:

𝑚plate = 𝜌𝑉plate = 𝜌𝜋𝑅
2𝑡,

𝑚beeam = 6𝜌
6∑︁
𝑖=1
𝑉beam_𝑖 = 𝜌𝜋𝑅

2𝑡,

in which𝑉beam_𝑖 = 𝑙𝑖𝑤𝑡, 𝑤 and 𝑡 are constant for each design, however, 𝑙𝑖, the length
of the 𝑖-th beam, is changed, and 𝜌 is the density of spring material. The length of
the 𝑖-th circular arc spring is determined by:

𝑙𝑖 = 𝑟𝑖𝛽 . (6)

Here, 𝑟𝑖 = 𝑅 + 𝑖(𝐿IB + 𝑤) is the radius of the 𝑖-th spring arc and 𝛽 = 60◦ in this
study.

3.2. Equivalent Sigitta spring system method

In this method, the equivalent spring model is shown in Fig. 4. Fig. 4a illustrates
mechanical structure divided into the unit Sigitta springs, Fig. 4b illustrates three
equivalent unit springs connected in series and Fig. 4c illustrates a Sigitta-shaped

(a)

(b)

(c)

Fig. 4. Equivalent Sigitta spring system of the coupled spring
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spring structure with the structural parameters used for the stiffness calculation.
For the mechanical structure in the present study, the total spring consists of three
component springs in Fig. 4b connected in parallel. Therefore, the total spring
stiffness (𝐾ts) is:

𝐾ts = 3𝐾3sss , (7)

where, 𝐾3𝑠𝑠𝑠 is the total stiffness of the spring in Fig. 4b, 𝐾3sss is determined by:

1
𝐾3sss

=
1
𝑘1𝑠

+ 1
𝑘2𝑠

+ 1
𝑘3𝑠

. (8)

The stiffness of a 𝑖-th Sigitta spring (𝑘IS with 𝑖 = 1, 2, and 3) is calculated by [26]:

𝑘IS = 12
{
6
[
(𝑙3𝑠𝑖 − 2𝑐𝑖)2 sin2 𝛼 + 2 (𝑙1𝑠𝑖 + 2𝑙2𝑠𝑖 sin𝛼)

[
𝑙1𝑠𝑖 cos𝛼

+ (2𝑙2𝑠𝑖 cos𝛼 + 𝑙3𝑠𝑖 − 2𝑐𝑖) sin𝛼
]

cos𝛼
] /

(𝐺𝐼𝑡 ) +
[
6𝑙21𝑠𝑖 + 14𝑙22𝑠𝑖

+ 3 (𝑙3𝑠𝑖 − 2𝑐𝑖)2 + 3
[ (
𝑙3𝑠𝑖 − 2𝑐𝑖

)2 − 2
(
𝑙21𝑠𝑖 + 𝑙

2
2𝑠𝑖

) ]
cos 2𝛼

− 6 (2𝑐𝑖 − 𝑙3𝑠𝑖) (𝑙2𝑠 − 2𝑙1𝑠𝑖 sin𝛼) cos𝛼 + 6𝑙2𝑠𝑖
[
(𝑙3𝑠𝑖 − 2𝑐𝑖) cos 3𝛼

+ 𝑙2𝑠𝑖 cos 4𝛼 + 4𝑙1𝑠𝑖 sin𝛼 − 2𝑙1𝑠𝑖 sin 3𝛼
] ]
/(𝐸𝐼𝑦)

}−1/
𝑙2𝑠𝑖 , (9)

where, 𝐺 (= 𝐸/2(1+ a)), a is the Poisson’s ratio) is the shear modulus, 𝑙1𝑠𝑖 (= 𝐿IB)
is the length of the connecting beam, 𝑙2𝑠𝑖 is the length of the 𝑖-th circular arc spring
and the length 𝑙3𝑠𝑖 (Fig. 4c) is

𝑙3𝑠𝑖 = 𝑤 + 𝐿IS . (10)

Here, 𝐼𝑦 (= 𝑤𝑡3/12) and 𝐼𝑡 (= 𝑤𝑡3/3) are the moment of inertia about the 𝑦

and 𝑧 axes, respectively. In this study, 𝛼 = 30◦. The parameter 𝑐𝑖 in Eq. (9) is
calculated by:

𝑐𝑖 =

{
𝐺𝐼𝑡 [𝑙3𝑠𝑖 cos𝛼 + 𝑙2𝑠𝑖 cos 2𝛼] cos𝛼 +

(
𝐸𝐼𝑦 − 𝐺𝐼𝑡

)
𝑙1𝑠𝑖 sin𝛼 cos𝛼

+ 𝐸𝐼𝑦 (𝑙3𝑠𝑖 + 2𝑙2𝑠𝑖 cos𝛼) sin2 𝛼
}/ [

2
(
𝐺𝐼𝑡 cos2 𝛼 + 𝐸𝐼𝑦 sin2 𝛼

)]
. (11)

3.3. Equivalent serpentine spring system

In this method, the overall spring is considered to be composed of six identical
serpentine springs, coupled in parallel, each serpentine spring shown in Fig. 2. The
total spring stiffness in this model is calculated by 𝐾ts = 6𝐾zs. The stiffness of each
serpentine spring component 𝐾zs is determined by [27]:

𝐾zs = 1
/ 

3∑︁
𝑛=1

60𝑛

√︄
𝑛𝑤

√
𝐿IB

𝑙𝑛𝑡

𝑙2𝑛
𝐺ℎ

[(
𝐺ℎ

𝐸𝐼𝑦

)
𝑙𝑛 + 3𝐿IB

] , (12)
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where, the parameter ℎ is determined by [28]:

ℎ = 𝑡𝑤3
[
1
3
− 0.21

𝑤

𝑡

(
1 − 𝑤4

12𝑡4

)]
. (13)

𝑙𝑖 in Eq. (12) is the length of the 𝑖-th arcs as shown in Fig. 2.

4. Comparing the performance of the spring types based on simulation

First, the simulation results of operating modes of spring systems are pre-
sented. Based on simulation, we will evaluate the mechanical coupling between
the operation modes, the out-of-plane z-axis oscillation mode and nearest oscil-
lation mode. Figs 5a–c show the first modes of the springs, which are also the
modes oscillating in the 𝑧-axis direction, and Figs 5d–f show the second modes of
oscillation. The parameters of the spring used in the simulation are 𝑅 = 50 μm,
𝑤 = 20 μm, 𝑡 = 10 μm, 𝐿IS = 10 μm and 𝐿IB = 20 μm. To consider the effect of
the mechanical coupling on the spring system, we consider the frequency difference
(𝛿 𝑓 ) between the operating mode, mode 𝑧 ( 𝑓Mode 𝑧) and the second mode ( 𝑓Mode 2)

𝛿 𝑓 = ( 𝑓Mode 2 − 𝑓Mode 𝑧)
/
𝑓Mode 𝑧 × 100%. (14)

𝑓Mode 𝑧 and 𝑓Mode 2 in this case are also shown in Figs 5a–c and Figs 5d–f, respec-
tively. Therefore, the 𝛿 𝑓 values for the three types of springs, type A (𝛿 𝑓 -type A),

(a) (b) (c)

(d) (e) (f)

Fig. 5. Out-of-plane 𝑧-axis oscillation mode (a)–(c) and the second modes (d)–(f).
In this case, the spring system parameters are as follows 𝑅 = 50 µm, 𝑤 = 20 µm,

𝑡 = 10 µm, 𝐿IS = 10 µm and 𝐿IB = 20 µm
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type B (𝛿 𝑓 -type B), and type C (𝛿 𝑓 -type C) are 60.8%, 52.8%, and 53.1%, respectively.
Thus, according to the analysis of the coupling between operating modes, the sys-
tem ensures mechanical isolation between the operating mode and neighboring
modes [29].

To compare the performance of three spring types, we will investigate the
effect of the mode coupling based on evaluating the dependence of 𝛿 𝑓 on the
representative dimensions of the spring. First, the width 𝑤 of spring is changed
from 2 µm to 20 µm, while the other parameters are kept constant, as shown in
Fig. 5. The investigated results are shown in Fig. 6, where Figs 6a–d are frequencies
of mode 𝑧 and mode 2, the stiffness of mode 𝑧, and 𝛿 𝑓 of three spring types,
respectively.

(a) (b)

(c) (d)

Fig. 6. Frequency of mode 𝑧 (a) and mode 2 (b), the stiffness of mode 𝑧 (c) and 𝛿 𝑓 (d)
of the three types of spring investigated as a function of 𝑤

Thus, the operating frequency of the three types of spring can be changed
from 70 kHz to 260 kHz for Type A and from 55 kHz to 220 kHz for types B
and C. The frequency characteristic of mode 𝑧 and mode 2 initially increases and
reaches a maximum then decreases gradually as the width of the circular arc spring
increases. The investigation results also show that Type B and Type C have the
same frequency value and 𝛿 𝑓 . Especially, when the width 𝑤 of circular arc spring
increases, 𝛿 𝑓 of the spring Type A is almost decreased, but is always greater than
60% and the value 𝛿 𝑓 of the two remaining spring types.
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In the next investigation, we change 𝑡 from 2 µm to 20 µm while keeping other
parameters as shown in Fig. 5. The investigated results are shown in Fig. 7. Thus,
the oscillation frequency of mode 𝑧 of all the three spring types is proportional to
the thickness 𝑡 of the circular arc spring. The operating frequency range of Type A
varies from 50 kHz to 375 kHz, while types B and C vary from 50 kHz to 310 kHz.
The operating frequencies of mode 𝑧 and mode 2 as well as 𝛿 𝑓 of the two spring
types B and C in this investigation have the same values. The 𝛿 𝑓 value of type A
increases quite linearly from 75% to 90% as 𝑡 increases gradually from 2 µm to
20 µm. In contrast, 𝛿 𝑓 of types B and C tends to decrease from about 65% to 5%
within the investigated 𝑡 range.

(a) (b)

(c) (d)

Fig. 7. Frequency of mode 𝑧 (a) and mode 2 (b), the stiffness of mode 𝑧 (c) and 𝛿 𝑓 (d)
of the three spring types investigated as a function of 𝑡

In the next study, we will investigate the behavior of three spring types depend-
ing on 𝐿IB. Similarly, we also fix the remaining parameters of the spring systems,
while changing the 𝐿IB from 2 µm to 20 µm. The simulation results are shown in
Fig. 8. When the 𝐿IB increases, the length 𝑙𝑖 of the spring circular arc increases, the
investigation results in Fig. 8 show that the oscillation frequency of all three spring
types tends to decrease. The frequency change range of mode 𝑧 of Type A is about
600 kHz, while that of types B and C are about 550 kHz. The operation frequency
of the springs Type B and Type C is still the same, but their second oscillation
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mode has a separation as shown in Fig. 8b. The spring Type A has 𝛿 𝑓 > 60% and
gradually increases to 78% when 𝐿IB increases from 2 µm to 20 µm. In contrast,
the 𝛿 𝑓 value of types B and C tends to decrease as the 𝐿IB increases and is always
smaller than that of Type A.

(a) (b)

(c) (d)

Fig. 8. Frequency of mode 𝑧 (a) and mode 2 (b), the stiffness of mode 𝑧 (c) and 𝛿 𝑓 (d)
of the three types of spring investigated as a function of 𝐿IB

In the final case, we investigate the performance of three spring types depending
on 𝐿IS from 2 µm to 20 µm. The simulation results are shown in Fig. 9. The
investigation results show that the operation frequencies of all three spring types
tend to increase quite linearly, but with a reasonable frequency change range of
about 50 kHz. The operation frequency of types B and C is also the same. The
spring Type A has 𝛿 𝑓 > 75% and increases gradually to 85% when the 𝐿IS increases
from 2 µm to 20 µm. In contrast, the 𝛿 𝑓 value of types B and C tends to decrease
as the 𝐿IS increases.

Thus, the investigation results in Figs 6 to 9 show that the spring Type A always
has 𝛿 𝑓 superior to the two remaining spring types. The behavior of springs Type
B and Type C is not changed when the arrangement of springs in axial or rotating
symmetry. Therefore, using the coupling bars among single serpentine springs in
the plane, the spring type A has increased resistance to mode coupling, while the
operating frequency range is similar to that of Type B and Type C.
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(a) (b)

(c) (d)

Fig. 9. Frequency of mode 𝑧 (a) and mode 2 (b), the stiffness of mode 𝑧 (c) and 𝛿 𝑓 (d)
of the three types of spring investigated as a function of 𝐿IS

5. Comparing between the analytical and numerical solutions

In the above section, the operational simulation results of the three spring
types have been presented, the spring Type A shows the superior characteristics
compared to types B and C, while the performance characteristics of Type B are
similar to that of Type C. Therefore, in this section we will focus on examining
the computational models that can be applied for the design of micro-actuators
based on the springs Type A and Type B as well as Type C. For convenience in
comparison, we use the following symbols: Δ 𝑓 1-A, Δ 𝑓 2-A, and Δ 𝑓 3-A are the
difference between the calculated natural frequency ( 𝑓𝑐) and the natural frequency
obtained by using FEM ( 𝑓𝑚) using the calculation methods 1, 2, and 3 for Type
A, respectively; while Δ 𝑓 1-B and Δ 𝑓 3-B are the difference between 𝑓𝑐 and 𝑓𝑚
using the calculation methods 1 and 3 for Type B, respectively. Here, the difference
between 𝑓𝑐 and 𝑓𝑚 is evaluated in percent by Δ 𝑓 i-A(B) = ( 𝑓𝑐 − 𝑓𝑚)/ 𝑓𝑚 × 100%.
In the following, we consider the cases of the dimensional parameter change of
the springs similar to that investigated by using FEM above. The calculated results
using the three models in Section 2 are compared to numerical solutions using
FEM. The Δ 𝑓 errors between the analytical and numerical solutions are shown in
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Fig. 10. Fig. 10a shows that the error in the range of beam width from 2–6 μm is
larger than 20%; however, in the range from 8–20 μm, the error is less than 10%.
When the beam width changes, the Sigitta model is consistent with the structure
of the coupled spring, while the straight beam spring model is suitable for the
structure of the uncoupled springs.

(a) 𝑤(Δ 𝑓𝑤) (b) 𝑡 (Δ 𝑓𝑡 )

(c) 𝐿IB (Δ 𝑓LIB) (d) 𝐿IS (Δ 𝑓LIS)

Fig. 10. Comparing the results of natural frequency calculation using the theoretical models
in Section 2 and the numerical solutions in Section 3 depending on the representative

dimensions of the springs

When the beam thickness changes, Fig. 10b, the calculation error using the
Sigitta model for the coupled spring structure and that using the straight beam
spring model for the uncoupled spring are less than 15%. The difference between
the straight beam spring model and the coupled spring structure is from 5 to
25%. When the interconnection length 𝐿IB between the beams changes from 2
to 10 μm, Fig. 10c, the Δf values are larger than 20%. However, when this length
increases from 14 to 20 μm, Δ 𝑓 decreases and less than 10%. Finally, the Δ 𝑓 errors
when the coupling length 𝐿IS changes is shown in Fig. 10d. When changing the
coupling length between two springs, the difference between the Sigitta model for
the coupled spring structure and the straight beam spring model for the uncoupled
spring structure is less than 10%. Meanwhile, the Δf values using the straight beam
spring model for the uncoupled and coupled spring structures are larger than 15%.
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From the above comparison, it shows that the Sigitta spring model is suitable
for the structure of the coupled spring, while the straight beam spring model is
suitable for the uncoupled spring structures. These models show small calculation
errors (< 10%) when the beam width is from 8 to 20 μm, the beam thickness from
2 to 20 μm, the interconnection length between circular spring arcs from 12 to
20 μm, and the coupling length between two serpentine springs from 2 to 20 μm.
This suitability can be explained that the straight beam spring model does not take
into account the coupling between the serpentine springs, while the equivalent
Sigitta model has considered this coupling effect. In addition, the Sigitta model
has also taken into account the angular deflection 𝛼 of the spring beams (Fig. 4c),
which is more suitable for the simulated spring structures than the approximated
straight beam spring structure.

6. Conclusions

Thus, we have proposed a model of coupled spring that prioritizes to the out-of-
plane oscillation while suppressing neighboring modes of oscillation. Compared
with similar springs without coupling between component spring beams in plane,
the coupling spring has shown outstanding characteristic in resistance to mode
coupling. The difference between the operational frequency and adjacent modes is
always greater than 60%, while the operational frequency can be varied in a wide
range from 70 kHz to 900 kHz. In addition, in this study, the models for calculating
the natural frequency of spring models have also been built. Comparing between the
analytical and numerical solutions shows that the Sigitta spring model is suitable
for the coupled spring structure, while the straight beam spring model is suitable
for the uncoupled spring structures.
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