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Abstract: The aim of the study was to compare two grouping methods for regionalisation of watersheds, which are 
similar in respect of low flow and chosen catchments parameters (physiographic and meteorological). In the study, 
a residual pattern approach and cluster analysis, i.e. Ward’s method, were used. The analysis was conducted for specific 
low flow discharge q95 (dm3∙s–1∙km–2). In the analysis, 50 catchments, located in the area of the upper and central 
Vistula River basin, were taken. Daily flows used in the study were monitored from 1976 to 2016. Based on the residual 
pattern approach (RPA) method, the analysed catchments were classified into two groups, while using the cluster 
analysis method (Ward’s method) – into five. The predictive performance of the complete regional regression model 
checked by cross-validation R2

cv was 47% and RMSEcv = 0.69 dm3∙s–1∙km–2. The cross validation procedure for the 
cluster analysis gives a predictive performance equal to 33% and RMSEcv = 0.81 dm3∙s–1∙km–2. Comparing both 
methods, based on the cross-validated coefficient of determination (R2

cv), it was found that the residual pattern 
approach had a better fit between predicted and observed values. The analysis also showed, that in case of both 
methods, an overestimation of specific low flow discharge q95 was observed. For the cross-validation method and the 
RPA method, the PBIAS was –10%. A slightly higher value was obtained for the cross-validation method and models 
obtained using cluster analysis for which the PBIAS was –13.8%. 
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INTRODUCTION 

Low flows, like maximum flows, are a natural component of the 
hydrological regime of a river. They may occur in summer as well 
as in winter [MANDAL, CUNNANE 2009]. During periods of low flow 
the watercourse is fed by groundwater. Low flow depends on 
many factors such as the geology of the catchment, the 
hydrological regime or climate factors (air temperature and 
precipitation) [CUPAK et al. 2017]. Proper estimation of low flow 
characteristics is an important issue in water management, e.g. for 
determining water resources, water engineering and manage-
ment, energy use of watercourses, environmental flow determina-
tion issues, but also when a watercourse is used as a receiver of 
treated wastewater [CUPAK et al. 2017]. Low flows are also 
important for economic purposes, for the use of surface water for 
agricultural irrigation, electricity production and for the protec-
tion of the ecosystem and its biodiversity [JURIK 2020; JURIK et al. 

2016; ŠTEVKOVÁ et al. 2012; VOICU et al. 2020; ZIERNICKA- 
WOJTASZEK, KACZOR 2013]. 

The most reliable method of estimation of low flow 
characteristics is direct, statistical methods, based on in-stream 
flow measurement series. The key problem, however, is 
uncontrolled sites where observation data is not available. In 
such cases, hydrological regionalisation techniques, based on 
information from catchments where streamflow data are avail-
able, can be used [DEMUTH, YOUNG 2004]. These methods are 
applied in many European countries. In Austria, for example, 
a procedure for estimating low flows has been developed and 
depends on the available data (catchment type: controlled, 
uncontrolled). In Poland, there is no such procedure that would 
clearly indicate which method should be used, hence there is 
a need to develop it. For controlled catchments, this problem does 
not occur. For these, the most reliable statistical methods should 
be used [CUPAK 2020; WAŁĘGA et al. 2014]. 
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For uncontrolled catchments, on the other hand, empirical 
formulas are commonly used. However, it should be taken into 
account that these methods are characterised by the lowest 
accuracy of obtained results. Another aspect of empirical 
formulas is the year of their development, e.g. Punzet’s formula 
was developed by the author in the 1980s [CUPAK 2020; WAŁĘGA 

et al. 2014]. They, therefore, need to be verified using data now 
coming from much longer observation sequences [WAŁĘGA et al. 
2014]. 

Verification of existing formulas seems to be important also 
in view of the progressing climate change, its warming, which 
translates into changes in the water cycle and thus into changes in 
water resources [GUTRY-KORYCKA, JOKIEL 2017]. It is predicted that 
in the area of Poland the temperature will increase as well as 
a change in the amount of precipitation in particular seasons of 
the year will occur. An increase in precipitation is predicted in the 
winter, while a decrease is predicted in the summer. 

The intensity and frequency of phenomena such as floods 
and droughts are also expected to increase [SUCHOŻEBRSKI 2018]. 
These forecasts are confirmed by the results of measurements of 
the average air temperature in Poland. In 2020 it amounted to 
9.9°C and was 1.6°C higher than the mean annual multi-year 
temperature value for the climatological normal period 1981– 
2010. Since 1951, it has been observed that on the territory of 
Poland the air temperature increased by about 2.0°C. Over the 
last 70 years, the air temperature has increased by 2.1°C in the 
lowlands, Sub-Carpathians and Carpathians. An increase in air 
temperature is also observed for the winter and summer periods, 
and since the beginning of the second half of the 20th century, the 
temperature has increased by 2.5 and 1.9°C, respectively [IMGW 
2021]. Also KRAJEWSKI et al. [2021], in their study on the impact of 
land use change and climate change on runoff changes in a small 
agricultural catchment observed an increasing trend in mean 
annual air temperature. At the same time, they observed both 
a decrease in runoff depth and annual precipitation. Changes in 
runoff volume were caused by shifts in climatic variables. Studies 
of the relationships between flow intermittence and climate, 
carried out for 452 catchments located across Europe, indicate 
a strong spatial variability of the seasonal patterns of inter-
mittence and the annual and seasonal number of zero-flow days. 
Most of the detected trends indicate an increasing number of 
zero-flow days, especially in southern Europe [TRAMBLAY et al. 
2020]. 

The regionalisation method is one of the most common 
techniques used to extrapolate hydrological information at 
uncontrolled sites using information from controlled sites [LIN, 
WANG 2006; RIGGS 1973]. Regionalisation includes two tasks: 
delineation of hydrologically similar regions and identification of 
regional models for these regions [LIN, WANG 2006]. This method 
is based on the assumption that catchments with similar climatic 
and physiographic parameters will be characterised by similar 
flow, for example, unit outflow or distribution of mean monthly 
flow. However, in terms of geographic location, the catchments 
may not necessarily be next to each other. Regression relationship 
models are developed for the resulting regions. It is important to 
choose the right clustering method for the variables. 

Many studies have analysed different methods of determin-
ing the set of water gauging stations which may be regarded as 
forming a region of sufficient homogeneity of extreme flow 
characteristics. In their study, LAAHA and BLÖSCHL [2006] and 

VEZZA et al. [2010] used, among others, the residual pattern 
approach and statistical method, a hierarchical cluster analysis. In 
clustering, variables are divided into groups so that, within one 
cluster there are the most similar variables, and within the other, 
as dissimilar as possible. Another technique, is the residual 
pattern approach, which is based on the residuals extracted from 
a regression model, which is developed for all analysed 
catchments and their characteristics, without grouping [LAAHA, 
BLÖSCHL 2006]. The regionalisation technique to predict strea-
mflow in ungauged catchments in Mexico has been used by 
ARSENAULT et al. [2019]. They tested three methods: multiple 
linear regression (MLR), spatial proximity (SP), and physical 
similarity (PS). 

The aim of the study was to compare two grouping methods 
for regionalisation of watersheds, which are similar in respect of 
low flow and chosen catchment parameters (physiographic and 
meteorological). And to determine the optimum grouping 
method to be applied in uncontrolled catchments to estimate 
low flow. For the determination of groups of catchments that are 
similar in terms of specific low flow discharge q95 and 
meteorological and physiographic parameters, two methods were 
used: residual pattern approach and cluster analysis, i.e. Ward’s 
method. 

MATERIALS AND METHODS 

STUDY AREA 

The analysis takes into account 50 catchments that are located in 
the upper and central Vistula basin (Fig. 1), which is 
physiographically quite diverse. The area of the upper and central 
Vistula basin covers about 154,579 km2, which is ca. 50% of the 
total Poland’s area. 

According to KONDRACKI [2000], the analysed area spreads 
within three physiographic units: Carpathian Mountains, Non- 
Alpine Central Europe and East European Lowland. The median 
catchment altitude of analysed catchments varies from about 
119 m a.s.l. for the Sucha catchment (in cross-section Nowa 
Sucha), which is located in the centre of the central Vistula River 
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Fig. 1. Location of analysed catchments in the area of upper and central 
Vistula basin; source: own elaboration 
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basin. The highest median catchment altitude, about 836 m a.s.l., 
is observed in the Dunajec catchment in the Nowy Targ cross- 
section. The catchment is located in the southwestern part of the 
analysed area of the upper and middle Vistula River basin. 
Climate, in particular temperature and precipitation, depends on 
the altitude. In general, as altitude increases, the temperature 
decreases, and the climate becomes more humid. The average 
annual temperature varies between 6.0 and 8.5°C. The warmest 
part of the country is the Silesia Lowlands, where the average 
annual temperature is about 8.5°C. The coldest season of the year 
is winter, with an average annual temperature on Kasprowy 
Wierch of 0.8°C. The average annual precipitation in the analysed 
area is about 600 mm, with the highest value, about 1400 mm, 
recorded in the catchments located in the south, and the lowest, 
about 500 mm, in the centre (lowland catchments) [CEDRO, 
WALCZAKIEWICZ 2017]. In the analysis, catchments of different 
areas were used, from small (like Łubinka of 66.3 km2) to large 
(Pilica – 2548.67 km2 or Tanew – 2034.00 km2). The average 
catchment slope ranges from 0.009 for the Wolbórka River to 
0.085 for the Wieprz River (Tab. 1). Two soil groups (luvisols and 
cambic arenosols) were included in the analysis, as other soil 
groups were not present in most catchments. As there are lakes in 
the northeastern part of the analysed basin, this area was not 
included in the analysis. 

DATA 

For the analysis, daily flows monitored from 1976 to 2016 were 
taken and collected for 50 catchments located in the upper and 
central Vistula River basin (Fig. 1). Also for these catchments, 12 
chosen physiographic and meteorological parameters were 
specified (Tab. 1). As a criterion for the selection of catchments, 
it was assumed that only those catchments would be included in 
the analysis for which daily flows for at least 20 years are 
available. Data on daily flows, temperature and precipitation were 
obtained from the Institute of Meteorology and Water Manage-

ment National Research Institute – National Research Institute 
(Pol. Instytut Meteorologii i Gospodarki Wodnej – Państwowy 
Instytut Badawczy, IMGW-PIB) in Warsaw. Data from the 
IMGW-PIB was processed. Parameters such as soils and land 
cover were determined on the basis of the soil map of Poland 
[DOBRZAŃSKI et al. 1972] and Corine Land Cover 2012 base [CLC 
undated], morphometric parameters – on the basis of KONDRACKI 

[2000], and physiographic parameters were determined in QGIS 
program, using WMS service. Low flows were quantified based on 
Q95%, i.e. flow that occurs for 95% of the analysed time. This 
characteristic is commonly used, among other things, for water 
management choices, including water supply design. Q95% was 
standardised by the catchment area and the specific low flow 
discharge q95 (dm3∙s–1∙km–2) was calculated. 

CLASSIFICATION OF CATCHMENTS 

Regional regression model 

The regional regression is constructed as a multiple regression 
(Eq. 1), which shows the relationship between a specific low flow 
discharge q95 (as dependent variable) and morphoclimatic 
parameters (independent variables): 

q95 ¼ �0 þ �1x1 þ �2x2 þ . . .þ �p� 1xp� 1 ð1Þ

where: xi = analysed catchment characteristics, βi = regression 
coefficient. 

Stepwise regression was used to plot the regression model 
because it is most commonly used and gives the most accurate 
results (Eq. 1). The Mallow’s Cp was used for the stepwise 
regression procedure to get the best model. It is a metric used 
when there are several variables that can be used in a regression 
model. It can be used to determine the optimal model in terms of 
prediction error [LAAHA, BLÖSCHL 2006]. It is calculated as 
[Statology 2021]: 
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Table 1. Statistical summary of catchments’ characteristics 

Variable  Symbol Unit 
Value 

min. mean max. 

Catchment area A km2 66.63 615.86 2548.67 

Length of the watercourse L km 11.20 45.57 121.98 

Mean annual air temperature T °C 5.00 7.39 8.23 

Mean annual precipitation P mm 536.00 670.05 1192.57 

Mean catchment slope I – 0.001 0.022 0.085 

Median catchment altitude Hme m a.s.l. 119.50 286.36 836.00 

Forests LU1 % 3.00 27.34 68.17 

Grassland LU2 % 0.00 8.33 34.00 

Arable land LU3 % 6.30 50.92 86.00 

Built – up area LU4 % 0.00 5.95 27.80 

Luvisols S1 % 0.00 51.95 100.00 

Cambic arenosols S2 % 0.00 18.37 73.40  

Source: own elaboration. 
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Cp ¼ RSSp=S
2 � N þ 2 Pv þ 1ð Þ ð2Þ

where: RSSp = the residual sum of squares for a model with 
p predictor variables, S2 = the residual mean square for the model 
(estimated by mean square error – MSE), N = the sample size, 
Pv = the number of predictor variables. 

Model performance criteria 

The regression model attempted to combine all morphoclimatic 
variables under the following assumptions: no multicollinearity, 
the significance of the independent variables, homoscedasticity 
and normality of residuals. The last two parameters were checked 
by plotting the normality of the residuals. For this purpose, the 
Anderson–Darling test and the Shapiro–Wilk test were also used, 
as well as the White’s test to check homoscedasticity. The quality 
of the model fit was also checked, for the regions obtained, and 
therefore to what degree q95 is explained by the independent 
variables. The efficiency measures used in the study were the 
coefficient of determination R2 and R2

adj (adjusted coefficient of 
determination), Nash–Sutcliffe efficiency (E) and percentage bias 
(PBIAS). 

Additionally, for the regression model, the goodness of fit, 
in cases when uncontrolled catchment will be included in 
a region, was tested [VEZZA et al. 2010]. Determination of the 
coefficient of determination (R2, R2

adj) is valued by finding the 
best model from among the others, but cannot be applied to 
compare models of various nature. For that reason, a cross- 
validation method was carried out. On the basis of cross- 
validation, the coefficient of determination (R2

cv) can be 
calculated (Eq. 3): 

R2
cv ¼

var q95ð Þ � Vcv

var q95ð Þ
ð3Þ

where: Vcv = the root mean square residual error, var(q95) = the 
spatial variance of the flow characteristics. 

The value of PBIAS (Eq. 4) and a root mean sum of squares 
error (RMSE) – Equation (5) was calculated [PATEL 2007]: 

PBIAS ¼
1

n

Xn

i¼1

ð
qi95 � q̂i95

qi95

Þ � 100% ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðqi95 � q̂i95Þ

r

ð5Þ

where: qi95 = the observed specific low flow discharge q95 for 
catchment i, q̂i95 = the forecast of the model. 

RMSE and BIAS values equal to 0 indicate a perfect fit. The 
PBIAS indicates the average bias of the simulated data whether it 
is higher or lower compared to the observed values. A BIAS 
percentage of 0.0 indicates adequate model fit. A positive value 
shows that the model is underestimated, whereas a negative value 
shows that the model is overestimated [FANG et al. 2014]. The 
classification proposed by VAN LIEW et al. [2007] was used to 
assess PBIAS, described as follows: model is classified as very 
good when PBIAS < 10%; model is good when PBIAS is in the 
range 10–15%; model is satisfactory when PBIAS is in the range 
15–25%, and model is classified as unsatisfactory when PBIAS 
≥ 25% [DOS PEREIRA et al. 2016]. 

The E value (Eq. 6) is a normalised statistic which gives the 
relative magnitude of the residual variance versus the variance in 
the measured data [NASH, SUTCLIFFE 1970; TEGEGNE et al. 2017]. 
The E indicates how well both the observation and computation 
data fit the 1:1 line [TEGEGNE et al. 2017]. The E was used because 
it is recommended for use by ASCE [MORIASI et al. 2007]. It is 
calculated as: 

E ¼ 1 �

PN
i¼1 ðq95 � q̂95Þ

2

PN
i¼1 ðq95 � q̂95 Þ

2
ð6Þ

where: q95 = the observed low flow, q̂95 = the calculated low flow, 
q̂95 = the average value. 

E takes values ranging from 1.0 (indicating perfect fit) to 
–∞. Values of coefficient less than 0 indicate that the model is 
useless [KRAUSE et al. 2005]. 

Classification methods 

The first applied method was the residual pattern approach 
(RPA), in which the residual, between the low flow values, 
calculated from the global regression model, and the observed 
values, was estimated. Geographically contiguous regions are then 
plotted manually on a map [CUPAK 2020]. In the RPA, in the first 
step, a global regression model should be determined using 
stepwise regression, and then the residuals obtained from the 
global model should be plotted on a map in geographical space. In 
the last step, if patterns of residuals are visible, then regions with 
similar signs and magnitude of residual values should be 
identified [VEZZA et al. 2010]. 

Another method was cluster analysis, in which a set of 
feature vectors is divided into clusters or groups in such a way that 
for one cluster the feature vectors are as similar as possible and as 
different as possible from other adjacent clusters [CUPAK 2020]. 

For the calculation, the Euclidean distance, as a measure of 
similarity, was used. It is a measure of the distance between 
objects defined by relevant features. Next, the delineation of 
homogeneous regions (cluster agglomeration) was carried out on 
the basis of the relationship between the catchment characteristics 
and the specific low flow q95. For this purpose, the hierarchical 
cluster analysis method, i.e. Ward’s method, was used. The 
purpose of Ward’s algorithm [WARD 1963] is to minimise the sum 
of squares of the deviations from the centroids of their clusters 
[RAO, SRINIVAS 2006]. Among the hierarchical cluster analysis 
methods, the Ward’s algorithm is the most commonly used. It is 
characterised by a trend to form equal-value spherical clusters 
and it performs well in recovering the cluster structure. This 
makes Ward’s algorithm a useful tool for identifying homo-
geneous regions for regionalisation [RAO, SRINIVAS 2006]. How-
ever, as with other hierarchical clustering techniques, Ward’s 
algorithm does not provide for the reassignment of feature 
vectors that may not have been correctly classified at the start of 
the analysis [RAO, SRINIVAS 2006]. 

RESULTS AND DISCUSSION 

The analysis began by defining a global regression model using 
the stepwise regression method. The initial regression model 
consisted of five variables. Then, to avoid overestimation, the 
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variables were manually verified and these variables (three 
variables) that had the least influence on the performance of 
the model were all rejected (R2 decreased from 65% to 59%) and 
the resulting model is defined by Equation (7). Watercourse 
length (L) and median catchment elevation (Hme) were found to 
be the most relevant variables for low flow regionalisation. The 
model parameters (L and Hme) are statistically significant at the 
0.05 level. The coefficient of determination for this model was 
59%, while R2

adj was 57%, and R2
cv was 45%. 

q95 ¼ 0:352þ 0:011Lþ 0:0048Hme ð7Þ

The residuals were tested against the general assumptions of 
multiple regression, non-linearity and homoscedasticity. The 
model assumption of normality of residuals and heteroscedasti-
city was checked using the Shapiro–Wilk test (p-value was 0.263), 
the Anderson–Darling test (p-values were 0.41) and diagnostic 
plots (Fig. 2), and from these, it can be concluded that the 
residuals have a normal distribution. The White’s test showed 
homoscedasticity of the residuals (p-value was 0.375). 

The residual map is shown in Figure 3. It was observed that 
the specific low flow discharge q95 for the catchments analysed in 
this study had low values, and therefore the differences between 
them were not large, in contrast to e.g. LAAHA and BLÖSCHL [2006] 

or VEZZA et al. [2010]. Therefore, for further analysis, the low 
residuals were assumed to be 20% of the average specific low flow 
discharge q95. 

The approach using residuals suggests that the analysed 
catchments can be divided into two major sub-units. The first one 
included lowland catchments and upland catchments. In this 
group, the residuals were mostly small (<0.5 dm3·s–1·km–2), and 
their distribution seemed to be random. The second group 
consisted of catchments located in mountainous and upland areas 
of the Upper Vistula Water Region. This group was characterised 
by higher values of residuals (>0.5 dm3·s–1·km–2) and the 
distribution of residuals was random. Regression models were 
developed for the groups obtained using the RPA method 
(Tab. 2). The parameter that influenced low flow in both 
regression models was the median catchment altitude. The value 
of the coefficient of determination calculated for the second 
group was high, at 82% (R2

adj = 81%). In contrast, a much lower 
value of R2 = 47% was found for group 1. On the other hand, the 
cross-validation coefficient of determination calculated for the 
RPA method and all catchments was R2

cv of 47% and 
RMSEcv = 0.69 dm3·s-–·km–2. Figure 4 shows the classification 
of the groups determined by the RPA method. An overestimation 
of low flows (PBIAS has a negative sign) was noted in the models 
obtained. For group 1, the PBIAS value was ten times higher 

compared to the second group. According to the criterion 
proposed by VAN LIEW et al. [2007], the model for the first group 
was unsatisfactory, and for the second one, it was classified as 
very good. The Nash–Sutcliff E-coefficient for group 1 gave 
a good model fit (E = 0.47), while for group 2 the model fit was 
excellent (E = 0.82) – Table 2. Taking into account that the 
grouping of catchments in the RPA method is based on the 
calculated residuals (their size and sign), while the catchment 
characteristics are omitted, it is suggested that uncontrolled 
catchments should be assigned to a given group based on their 
geographical location. For the catchments located in the central 
Vistula River basin, it is proposed to allocate the catchment to 
group 2. Whereas the catchment, which is located within the 
Upper Vistula Water Region, should be allocated to group 1. 

The second clustering method used in this study was cluster 
analysis. According to LAAHA and BLÖSCHL [2006] and VEZZA et al. 
[2010], the best is Ward’s method. Euclidean distance was 
adopted as the measure of distance between clusters. It gives the 
most preferable classification of clusters. Ward’s method resulted 
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Fig. 2. Global regression model: a) scatter plot of regression model, b) residuals normal plot; A = the value of the 
Anderson–Darling test, F = cumulative distribution function; source: own study 

Fig. 3. Residual pattern of the global regression model: source: own study 
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in the agglomeration of the analysed catchments into five clusters. 
Cluster 1 included 7 catchments, the 2 included 27 catchments, 
and the 3 included 10 catchments. For clusters 4 and 5, the same 
number of catchments was recorded: 3 catchments. SMAKHTIN 

[2001] states that the catchment characteristics and meteorolo-
gical parameters that most frequently influence low flows include 
catchment area, precipitation, and the presence of areas covered 
by forest or underlain by surface standing water. Equally 
important are lithological parameters, existing soils or the density 
of the river network. GUSTARD and IRVING [1994], in their study, 
linked soil data with hydrological data, dividing the soils 
presented in the United Kingdom into classes. They distinguished 
12 classes, for which they defined regression models for low flow 
[SMAKHTIN 2001]. The parameters which influenced catchment 
grouping in this study were catchments’ area, length of the 
watercourse, mean catchment slope and mean annual precipita-
tion. Also, in terms of soil, differences between clusters were 
observed. Clusters 1 and 2 were dominated by luvisols and 
clusters 4 and 5 by cambic arenosols. 

Then, after identifying clusters, a map of their localisation in 
the analysed area was made (Fig. 4). It can be observed that the 
catchments forming a given cluster are adjacent to each other, 
and only in the case of mountain catchments included in the 
cluster 1 and lowland catchments, their location is dispersed. This 
provides information that, in the case of cluster analysis, there is 
a link between the continuity of the region and the catchment 
characteristics in spatial terms. For the clusters obtained, the 
models were influenced by different parameters (Tab. 3). For 
cluster 1, the parameter that had the greatest influence on the 
variability of the low flows was the median catchment altitude, 
and was statistically significant at the 0.05 significance level. The 
model parameters for cluster 2, selected by the regression analysis, 
were median catchment altitude and luvisols, and they were 
significant in statistical terms at the 0.05 significance level. For the 
models in groups 1 and 2, it can be seen that the specific low flow 
discharge q95 was affected by the median altitude of the 
catchment. Also, the soils for groups 2 and 3 proved to be 
significant parameters included in the regression equation 
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Table 2. Models based on residual pattern approach (RPA) method 

Group Model R2 (%) R2
adj (%) RMSE  

(dm3∙s–1∙km–2) PBIAS (%) E 

1 q95 = 0.982 + 0.004Hme 47 44 0.893 -28.2 0.47 

2 q95 = 0.344 + 0.01L + 0.004Hme 82 81 0.305 -2.23 0.82  

Explanations: R2 = coefficient of determination, R2
adj = adjusted coefficient of determination, RMSE = root mean sum of squares error, 

PBIAS = percentage bias, E = Nash–Sutcliffe efficiency, q95 = specific low flow discharge that occurs for 95% of the analysed time. 
Source: own study. 

Fig. 4. Groups of catchments based on: a) residual pattern approach 
(RPA) method, b) cluster analysis; source: own study 

Table 3. Models based on cluster analysis 

Group Model R2 (%) R2
adj (%) RMSE 

(dm3∙s–1∙km–2) PBIAS (%) E 

1 q95 = –1.74 + 0.0084Hme 71 65 0.84 –6.34 0.71 

2 q95 = 1.514 + 0.0042Hme – 0.0098S1 36 31 0.52 –14.6 0.36 

3 q95 = 2.29 – 0.018S2 38 30 0.49 –5.09 0.46  

Explanations: Hme, S1, S2 as in Tab. 1, the other as in the Tab. 2. 
Source: own study. 
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(luvisols and cambisols, respectively). However, for clusters 4 and 
5, due to the small number of catchments (3 catchments per 
group), it was not possible to determine the regression relation-
ships. Clusters 2 and 3 are rather poorly explained by the 
respective multiple regression models (groups 2 and 3 with 
R2

adj = 31% and R2
adj = 30%). This suggests that the models do 

not completely reflect the forecasting characteristics for ungauged 
catchments. In the case of cluster 1, however, model performance 
was good (R2

adj = 65%), suggesting that there may be 
heterogeneity in processes associated with low flow in this group. 
The catchment characteristics used in the cluster analysis did not 
fully reflect the regional anomalies in the low flow pattern. Also, 
the E-coefficient for cluster 1 was 0.71, which corresponds to 
a very good model, but for clusters 2 and 3, the models were 
classified as good (E was 0.36 and 0.38 respectively). Under the 
classification suggested by VAN LIEW et al. [2007], the regression 
models for clusters 1 and 2 are classified as very good and for 
cluster 2 as satisfactory. The cross-validation procedure for cluster 
analysis gave a predictive efficiency (R2

cv) of 33% and 
RMSEcv = 0.81 dm3·s–1·km–2. The result obtained was signifi-
cantly worse than the method based on the residuals. For models 
obtained by cluster analysis, an overestimation of the predicted 
values of low flows was observed (PBIAS had a negative sign). 
According to VAN LIEW et al. [2007], the model for clusters 1 
and 3 was classified as very good, while for cluster 2, it was 
classified as good. 

Determination of flow characteristics in uncontrolled 
catchments based on regional correlation models is one of the 
most frequently used methods. It uses the relationships between 
a given low-flow characteristic, e.g. specific low flow discharge 
q95, and catchment parameters [VEZZA et al. 2010]. The regression 
model determined for all catchments, without catchments 
grouping, gave R2

cv = 45% for cross-validation and was lower 
compared to the calculated coefficient of determination, which 
was 59%. Considering the two clustering methods, it should be 
noted that it was clear that the residuals method gives better 
results compared to the cluster analysis method. The R2

cv value 
for the RPA method was slightly higher than the global regression 
model across the study area. The RPA method gave a slight 
improvement in performance (R2

cv = 47%) compared to the 
global model. We also obtained a lower R2

cv value for the RPA 
method than VEZZA et al. [2010], which was 53% for their study, 
and much lower compared to LAAHA and BLÖSCHL [2006], who 
obtained R2

cv = 63%. For cluster analysis, we obtained a cross- 
validation coefficient of determination (30%) and this was twice 
as low compared to other studies. VEZZA et al. [2010], in their 
study, obtained 68% while LAAHA and BLÖSCHL [2006] obtained 
59%. 

The final step in the evaluation of catchment pooling 
methods was to examine scatter diagrams of predicted and 
observed specific low flow discharge q95 (Fig. 5). The scatter 
diagrams provide detailed information about the results for each 
analysed catchment, such as the existence of outliers and possible 
heteroscedasticity in the observations and forecasts [LAAHA, 
BLÖSCHL 2006]. It should be stated that the scatter plots developed 
for the catchment grouping methods used in this study 
correspond to the coefficient of determination calculated on the 
basis of the cross-validation method for these methods. Clearly, of 
the two methods, the residual pattern approach performed better 
than the cluster analysis. Also, for the cross-validation method, it 

was checked whether the models produced underestimated or 
overestimated results. For the RPA method, the PBIAS was –10%, 
which indicated an overestimation of specific low flow discharge 
q95 and according to van LIEW et al. [2007], it gave a good model. 
For the cross-validation method and models obtained using 
cluster analysis, the PBIAS was –13.8% and also indicated 
overestimation of specific low flow discharge q95 so the model 
was classified as good. 

CONCLUSIONS 

The paper compares two catchment pooling methods in terms of 
their performance in predicting specific low flow discharges q95. 
The analysis was made using the RPA method, and cluster 
analysis, i.e. Ward’s method. The analysis carried out showed that 
the residual pattern approach had a better fit between calculated 
and observed values. Based on this method, the catchments were 
divided into two groups. The first group included lowland 
catchments and some hilly catchments, and the second group 
consisted of upland and hilly catchments. The predictive 
efficiency of the regional regression model for the RPA, 
tested by the R2

cv cross-validation method, was 47% and 
RMSEcv = 0.69 dm3∙s–1∙km–2. In contrast, five clusters were 
obtained using Ward’s method. However, in the case of clusters 
2 and 3, the obtained coefficient of determination had a low value 

© 2022. The Authors. Published by Polish Academy of Sciences (PAN) and Institute of Technology and Life Sciences – National Research Institute (ITP – PIB). 
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Fig. 5. Cross-validation scatter plots observed and predicted 
specific low flow according two methods: a) residual pattern 
approach (RPA), b) cluster analysis; source: own study 
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(about 40%). For region 1 the model performance was good. The 
cross-validation procedure gave a predictive efficiency of 33% and 
RMSEcv = 0.81 dm3∙s–1∙km–2. This was significantly worse than 
the RPA. Comparing the results obtained from the two methods, 
it can be concluded that the RPA method is more optimal for use 
in Polish conditions. 

The conducted analysis allows us to conclude that methods 
of low-flow regionalisation may give promising results of low flow 
calculation in ungauged catchments in Polish conditions. 
However, in our opinion, it will be very interesting to use other 
clustering methods to support the critical analysis of the results 
and to select the best model, as well as analyse the accuracy of the 
results obtained. Another thing is that in our study we studied 
one low flow index (q95) to see if the effectiveness of the grouping 
methods will be the same if other features are analysed. 
Furthermore, considering climate warming that affects the water 
cycle and, consequently, water resources, it will be interesting to 
examine in future studies whether it affects low flows. 
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