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METHOD OF THE COORDINATE SYSTEM TRANSFORMATION IN 
THE STABILITY ANALYSIS OF A SANDWICH TRAPEZOIDAL 

PANEL 

The paper presents the stability analysis of a sandwich plate of the shape of an 
isosceles trapezoid, subjected to unidirectional in-plane compression. The critical 
load value of the trapezoidal sandwich plate was obtained by a combination of the 
Galerkin orthogonalisation method and the proposed method of the coordinate system 
transformation. An influence of plate material and geometrical properties on the 
critical load level was analysed. The obtained results were verified in a numerical 
experiment conducted with the FEM ANSYS software package. 

1. Introduction 

A structural concept of composites consists in combining elements made 
of materials with various mechanical properties, not necessarily extreme 
ones, into a new structure of properties different from the component element 
properties and with advantageous practical characteristics. Sandwich three­ 
layer structures are a special example of such composites. In the aerospace, 
building or automotive industry, the application of these structures is well 
known. Sandwich plates are built of two outer layers - faces that are usually 
characterised by identical mechanical properties, and a middle layer - a core 
made of a different material than faces. Depending on the strength 
characteristics of the core and its ability to carry normal loads in-plane, one 
can distinguish between soft and stiff cores. Among soft cores, polyurethane 
foams characterised by good thermal insulation and damping properties are 
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popular. Strength characteristics of a sandwich plate can be modelled not only
through a change in the thickness of the core at its constant stiffness, but also
through an alternation of the characteristics of the core itself, whose stiffness
is a function of density. The contemporary technology of polyurethane foam
manufacturing allows for modelling density in a broad range.

The studies devoted to multi layered plates and shells, both in the aspect of
strength issues as well as their stability, have presented numerous different
theories, hypotheses and computational models of these structures. The plate
analysed in this paper was solved on the basis of the theory of thin sandwich
plates with a soft core [1], [18), [26), [27).

In the literature, one can find the solutions of rectangular plates
concerning the following cases:
- uniform uni- and bi-directional compression [3], [5], [9], [10), [16), [25),
- unidirectional linearly-variable compression [12), [28), [29),
- pure in-plane shear [22), [23),
- unidirectional, uniform and non-uniform compression, combined with
uniform shear [4], [13),
- bi-directional compression and shear [19).

The stability analysis of parallelogram plates is presented in [2], [7], [ 17),
[20), [30) whereas the stability of circular plates is discussed in [ 14] and [24].

Similarly as the results from the literature survey devoted to the
stability of sandwich plates, these studies concern mainly thin rectangular
plates with a uniform or orthotropic, soft or stiff core subjected to
various conditions of in-plane loading. However, there is a lack of
solutions concerning the stability of load-carrying members of sandwich
structures of the shape of an isosceles trapezoid. Plates of such a shape,
subjected to in-plane loading, can be found in practical structural solutions
v e.g. girders, cranes, similarly as rectangular panels.

2. Formulation of the problem 

The subject of the present study is an analysis of the global stability of
a thin trapezoidal sandwich plate with a soft core, subjected to unidirectional
in-plane compression. The panel was described in the orthogonal system of
coordinates OXYZ in the way shown in Figure 1. The above-mentioned
description of the plate geometry by means of three parameters: a, b and an
angle a makes it possible to carry out a comparative analysis at the transition
from a trapezoidal plate to the rectangular one, that is to say, when H ➔ 00 

and m = tg a ➔ O.
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Fig. I. Sandwich trapezoidal plate subjected to uniform compression 

To describe the stress state of the plate under analysis before a stability 
loss, the author employed the solution to the problem of a flat wedge loaded 
with a concentrated force at the vertex, known in the theory of elasticity. The 
stress state in such a wedge, described in the polar coordinates Ore, can be 
determined by a function of forces in the form [6]: 

(1) 

Then, any element of the wedge truncated in the viciruty of the 
point whose coordinates are r and e is subjected to unidirectional, 
radial compression only. The radial force per unit length is determined 
by the formula: 

N, = - ,( a + ½ sin 2 a} 
Pcos8 

(2) 

The plate under analysis is treated as a part of the wedge truncated by two 
parallel sections that are perpendicular to the axis OX and located at the 
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distances Hand H+a from the vertex O (Figure 1). Employing expression (2),
after the transformation of the polar coordinates Ore into the rectangular
coordinates OXY, one can express the sectional forces N0 Ny and Nxy that act
in the region of the wedge section by the following formulae:

p x3 
N,, = - (arctgm 1 ) (x2 + y2)'

m ---+ ? m 1 + m- 

p .xy2
Ny= - m(arctgm + 1 ) (x2 + y2)'

m 1 + m2 

p x2y
N = - ------~---.

.ry m (arctgm + 1 ) (x2 + y2)
m 1 + m2

(3) 

These forces can be treated as the components of the load state of the plate
in its arbitrary point, before a stability loss. The values of load state
components of the plate on its edges parallel to each other, i.e. on the bases of
the trapezoid, are obtained from formulae (3) by substitution of respective
coordinates of these edges into them. A distribution of the above-mentioned
components on the plate edges x = H and x = H+aa, after normalising their
values with respect to the value of the force N.= Nx(x=H, y=mx), is presented
in Figure 2. The components ofNx, Ny and Nxy, which are the loads of the plate
bases x = H and x = Ił+a, can be expressed in practice by means of one
parameter of the load, i.e. by means of the compression force P. 

The stability problem of the trapezoidal plate under analysis is considered
for the case of simply supported four edges of the plate. The presence
of edge stiffeners connecting the upper and bottom face of the plate,
along all edges, is assumed.

The analysis of the buckling of the trapezoidal sandwich plate is
conducted also on the assumption that the core and faces are made of isotropic
materials that are subject to Hooke's law. The introduced plate deformability
factor k, defined by the relationship:

rc2 Efth 
k = (1 - µ2)Gcb2'

(4) 

is not a constant quantity but can be a function of two coordinates x and y, i.e.
k = k(.x,y), and, in particular, of one coordinate only, i.e. k = k(x) ork= k(y).
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The factor does not depend on the coordinate z, however. The above­ 
mentioned assumption follows from the possibility of rational modelling 
changes in mechanical properties of the core, in particular of its modulus of 
rigidity Ge, which is a function of material density in the case of foamed 
plastics [11]. 

1,2 

<~ 1,0 

- >, <>( 0,8 

<~ - 0,2 <>, 
<~ 0,0 - <>( 

-*-* 

a I b = 1 a= 7.5° 
■-•- -•-· 

*-*--*-* 

-t+ffii--N x=H 
y 

* x=H+a 

■ N x=H 
X * x=H+a 

- _..rll~ -- 
_r11- -"" d::::.~-- 

... -­ ~-- :::r.:11 ~-- :::1:1-­ 
-- --[I -- - - -O 2 ~-------+----..----.--...---------""""'I ' 

0,00 

-{I-N x=H 
xy 

-*- x=H+a 

0,25 0,50 O, 75 1,00 

ylb 
Fig. 2. Distribution of loads on the trapezoid bases - normalised forces N,. N,. and N,, .. 

The present analysis concerns the problem of a global stability loss, that is 
to say, the case of buckling of the plate as a whole, without considering the 
issue of a local stability loss. Then, the deformability of the core in the 
direction perpendicular to the plate middle surface is neglected, which means 
that the distance between the plate faces remains constant, also after plate 
buckling. This implies a limitation of the deformability factor k ~ 1 [21], 
[22]. It is assumed that the following relationship is satisfied [21], [26], [27]: 

Ech -E < 0.1, 
:ft 

(5) 

which means that E1 >> E0 whereas tlh << 1. Stability problems of such 
plates are solved by means of the zig-zag theory [1], [18], [21], [27], while the 
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relationships between displacements and deformations of plate members
under small deflections are determined according to the linear theory.

The components u,,, v,, and w,, of the displacement state of any point of the
upper face sheet (index u) and the components ub, vb and wb of the
displacement state of any point of the bottom face sheet (index b) are
expressed by the following formulae:

( t) dwi u,,= Ui - z+ h + 2 dx ' ub = u 1 - ( z - h - !_) a w2 
- 2 dx ' 

vb= V2 -( z - h - ½) aa7' (6) 

where u,, v1, w1, u2, v2, w2 denote the displacement components of points of the
middle surface of the upper and bottom face sheet, respectively.

The displacement w of any point of the plate in the direction of Z axis is
equal in all three layers of the plate:

W = W,, = W1 = Wb = Wz = We. 

The components Uc and Ve of displacement of any point of the core are
expressed as follows:

z ( t Jw) 
Uc = u., - Ji Uf3 - 2 ax , 

z( t Jw) 
Ve = Va - h Vf3 - 2 dy , 

where:

(7)

(8.a)

(8.b)

(9.a) 

(9.b) 

When expressions (6,7,8,9) are taken into account in the geometrical
relationships and physical equations, we obtain a differential equation of
stability with respect to the function w(x,y) in the form [15], [27]:
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(10) 

B stands for compression (tension) stiffness of the face, expressed by the 
formula B = Er t/1-µ2, whereas D = £1 t3/12(1-µ2

) denotes the flexural 
rigidity of each face with respect to its middle surface. 

In the case of all simply supported plate edges, as shown in Figure 1, the 
function of deflection w = w(x,y) has to fulfil the following conditions on 
these edges [26), [27]: 

l
x=H _ ly=-mx _ O 

W x=H+a - W y=mx - , (11) 

ax2 - - axz = O. 
x-H+a x=H+a 

(12) 

If the presence of edge stiffener is assumed, then for the function of 
displacements up(x,y) and vp(x,y), further boundary conditions in the 
following form: 

av/3 au/3 _ 01y=-mx _ x=H :i--+ -S--- - y=mx - Vpl = O, (13) 
UX oy x=H+a 

(
au/3 + V av/3) x=H = (av13 + V au13) y=-mx = O (14) 
ax ay x=H+a d y ax y=mx 

have to be satisfied. 

3. Transformation of the coordinate system 

In the above-presented theory for description of the geometry of the panel 
under analysis, as well as of its strain and stress state, a rectangular 
coordinates system OXYZ (Figure 1) has been introduced. In this system, all 
basic differential equations of equilibrium of the sandwich plate with a soft 
core were formulated. 

In the system OXYZ, all points of the plate middle surface lie within the 
trapezoid T region (Figure 3a) and thus the coordinates x and y of these points 
fulfil the conditions: 
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H $ x $ H + a, and - mx $ y $ mx (15)

A new frame ofreference OĘ'r,Z, whose origin coincides with the origin of
the system OXYZ, was introduced. The transformation of points (x,y) that lie
within the trapezoid T region (Figure 3a) into a flat pattern of points ( Ę, 7])
situated within the region R (Figure 3b) was determined by means of the
following functions:

Ę = !!(x + a - !!_),
a 2m

(16)

Transformation (16) maps the region T into the region R, which is
a square with the side n, in a one-to-one mapping way. Functions (16) satisfy
the conditions of existence of the inverse transformation to transformation
(16) that maps the region R into the region T.

a) b)
Tl.ł.

y

\
\

J?. Q __ ... --\ii· . _>. 

C .-- __ .--

___ T_. __ ___,,_~ b . X►

I 
H 13··----------J'.':':'?l,!

~◄------.i~,-◄--◄ a__--.:

Fig. 3. Transformation of the coordinate system

Thus, the following relationships hold:

a
x = -

2
- [2mĘ + n(A - 2m)],
mn 

a
y = 2n2[2mĘ + n(A - 2m)](27] - n).

7t>-----
D' C

A' B' I;~--~---►
0 TC

(17.a)

(17.b)

In relations (17), A = bla stands for the edge length ratio.
Transformation ( 16) allows one to simplify significantly the plate

geometry and the description of the region in which the differential equation
of stability is determined. This equation is expressed by means of the new
variables Ę and n and the partial derivatives with respect to these variables.
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For instance, the partial derivative of the deflection function w with 
respect to the variable x, expressed with the new variables Ę and TJ,
assumes the form: 

ow ow oĘ ow orJ
-=--+-- ox oĘ ox ory dx' (18) 

which in the light of relationships (16), after the differentiation, leads to the 
following form of this derivative: 

ow n[ o m(2T] - n o] 
ox = a oĘ- [2mĘ + n(A - 2m)] drJ W. 

(19) 

Partial derivatives of higher orders have more and more complex forms, 
for example: 

o2w a (aw) n2[ o2 m(2T] - n) o2

ox2 = ox ox = a2 oĘ2 - 2 [2mĘ + n(Ji, - 2m)] JĘory + 

m2(2rJ - n)2 02 m2(2ry - n) a] 
+-~-----~--+4-~-----~--w 

[2mĘ + n(A - 2m(]2 OrJ2 [2mĘ + n(A - 2m)]2 OT}
(20) 

Dealing similarly with the partial derivative of the deflection function 
w with respect to the variable y, we obtain the following expressions: 

ow 1[ 1[ ow (21) 
oy = a [2mĘ + n(A - 2m)] dn'

o2w 1[2 1[2 a2w
(22) Jy2 = a2 [2mĘ + n(Ji, - 2m)]2 Jy2.

Partial derivatives of higher orders and mixed derivatives of each 
displacement function up, vp and w can be determined similarly. As a result, it 
allows one to replace the expressions that are functions of the coordinates 
x and y by the respective expressions which are functions of the coordinates 
Ę and rJ in equation (10). The expressions for the sectional forces determined 
by equations (3) can also be transformed. Then, stability equation (10) 
becomes a differential equation only with respect to the deflection function 
w= w(Ę,ry) in the region R. 

In order to maintain the general character of the considerations under­ 
taken and to create a possibility of a comparison of the computational results 
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obtained for special cases with the solutions presented in the literature and
referring to rectangular plates, the author introduce additionally the following
dimensionless quantities, traditionally used in the analysis of sandwich
structures [21], [27]:

plate deformability factor:

face rigidity factor:

buckling coefficient:

1
r=---~ 

(
h 1)2

'
12 t + 2

(23)

(24)

(25)

After applying the transformation procedure to equation of sandwich
plate stability (10) and after introducing dimensionless quantities (23-25), we
obtain the following, transformed form of this equation with respect to the
system of coordinates 0!;17Z: 

(1 )'74 k,2"76 lf/(2n4 iPw 2n4m2(217 - n)2 iPw 
+ r V w - r A V w + (f) A WM ax2 + WM ay2 +

+ 4n3m(21] - n) a2w - ,,12 kWM2) = O (26)
WM d xd y 

In order to simplify the form of equation (26), the following, not defined
before quantities are introduced:

If/= arctg(m) 1 
m + 1 + m2

(27)

WM= [2ml; + n(A - 2m)l[n2 + m2(21] - n)2]2 (28)

The dash over the expressions that denote partial derivatives or operators
has been used only to shorten the notation of the terms, which are in fact far
more complex expressions of the form similar to derivative (20) with respect
to the variables ć and 1]. The term WM2 stands for a multi-element expression
including products of (28)-type polynomials and of derivatives of the

· deflection function w(!;, 17) with respect to the coordinates !; and 17. It has not
been given here for the sake of clarity of the notation of equation (26) [15].
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In order to solve the differential equation of stability (26), the Galerkin
orthogonalisation method is used. For the case when all the plate edges are
simply supported, the deflection function is assumed in the form of a double
trigonometric series as follows:

w(Ę,f]) = L, L, fil sin(igsin(j7]),
i

(29) 

in which fil are unknown parameters. This function fulfils the boundary
conditions corresponding to the assumed plate edge simple support, whereas
the functions wJi = fil sin (igsin(j7]) have to fulfil the orthogonality
conditions.

4. Computational results 

Some computational results of the buckling coefficient <Per as a function
of material and geometrical parameters for a few trapezoidal plates,
obtained on the basis of the author's software (TRAP) are presented
below. In these computations, the face flexural rigidity D, which corresponds
to the assumption t/h = O, was neglected. The error analysis shows
that in sandwich structures used in the engineering practice, for which
the quotient t/h << 1/5 (this quotient is most often close to 1/10 or
smaller), the error does not exceed 2%.

It follows from the analysis of the diagrams shown in Figs 4-7 that the
common feature of all trapezoidal sandwich plates with a soft core - at a fixed
value of the inclination angle a of trapezoid side edges - bottom values of the
coefficient </Jer correspond to higher values of the deformability factor k. The
behaviour of more rigid trapezoidal plates, i.e. those characterised by the
deformability factor k smaller than 0.2-0.3, is however more varied in
comparison with deformable plates for which k > 0.3. In the case of the
former group of plates, the values of the coefficient </Jer grow along with the
increase in the inclination angle a of trapezoid sides and with the increase
inthe number of half-waves of the buckling surface in the O~ direction axis.
An increase in the value of the angle a and the plate deforrnability factor k is
accompanied by a shortening of buckling half-waves length in the OĘ
direction axis. For deformable plates, when k > 0.3, the tendency of changes
in the coefficient <Per is reverse, that is to say, an increase in values of k and in
the plate length is followed by a decrease in the coefficient <Per value. For alb
close to alb1;m, again an increase in values of the critical load occurs (e.g.
Figure 7) that results from the fact that the plate shape approaches the shape of
a triangle.
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In the case of deformable plates, a distinct dependence of the value of (/Jc, 
on the buckling half-wave value in the O~ axis direction disappears as well. It
takes place also for long plates with lower inclinations of side edges (angle
ex< 5°-7°).

5. FEM solution 

There was a need to verify the results of analytical solutions obtained for
sandwich plates with the assumed types of cores. A comparison with the
existing literature data was possible only for several particular cases of
rectangular plates with soft cores characterised by constant rigidity and for
homogenous trapezoidal plates (Table 1). Trapezoidal sandwich plates with
various characteristics of a core have not been analysed before, however.

Table I.
The analytical solution results versus literature data

a k --1. (f};rfRAp, ({J Iil

oo 0.00 I.O 4.000 4.000
O.IO 0.9 3.305 3.306 [20],
0.30 0.7 2.369 2.367 [26]
0.50 0.6 1.778 1.780

50 0.00 0.9 4.369 4.37

10° 0.00 0.8 4.783 4.77 [7]

15° 0.00 0.7 5.256 5.10

The ANSYS version 5.7 software package was used to carry out the
verification. The ANSYS 5.7 program offers four specialised multi-layer
elements [31]. These are two shell elements: SHELL91 and SHELL99, and
two solid elements: SOLID46 and SOLID91. Among these elements, only
SHELL91 has a special option of sandwich logic that allows for a direct
analysis of sandwich plates and shells. This possibility resulted in an
application of this element to develop a numerical model (2D) of the
sandwich trapezoidal plate under analysis.

Computations were carried out for numerous geometrical dimensions of
the plate and for different materials of faces and a core, assuming the
inclination angle a of trapezoid side edges within the range 0°-15°, to agree
with the range taken into account in the analytical solution. A grid with 256
finite elements was generated for this model.

For a group of plate models, we conducted the computations in which the
core was treated as homogenous and isotropic. In the second group of models,
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in order to approach more closely the assumptions of the zig-zag theory, the 
core was modelled as transversely isotropic (antiplane). In the FEM model, it 
followed from the assumption of orthotropic properties of the core material 
and the appropriate selection of material constants for individual principal 
directions of orthotropy. The differences between the results obtained for 
both the models did not exceed 6-7%. However, due to the form of the matrix 
of material properties of the SHELL9 l element (32], in which the Young 
modulus was set to zero in the Z axis direction, it was possible only to model 
the non-di lata ti on strain of the core through a selection of values of Kirchhoff 
moduli in the planes XY, XZ and YZ of the coordinate system describing the 
plate (Figure 1). In Table 2, the computational results of the critical force of 
several trapezoidal plates with the deformability factor k = 0.3 and the edge 
length ratio alb = 1.2, obtained in the analytical solution, are compared with 
the results obtained with the ANSYS program for 2D models with 
transversely isotropic cores. However, for the geometrical dimensions and 
material properties of cores and faces, at the angle a > 7° assumed in these 
models, a local buckling of faces and not a global buck.ling of the whole plate 
was observed in the FEM solution. It of course exerted an influence on the 
differences in the load values obtained in the solutions under comparison 
what is shown in the right most column of Table 2. 

Table 2. 
The comparison of analytical and FEM solution results 

angle a author's software ANSYS (20) I',,_ 

[deg) [NJ [NJ [%] 

k = 0.3 alb= l.2 

o 32575 30528 6.28 

2.5 32216 30196 6.27 

5.0 32055 30026 6.33 

7.5 32203 28528 11.41 
local 

IO.O 31288 24987 20.14 
local 

12.5 29970 21470 28.36 
local 

IS.O 25726 17849 30.62 
local 

In the light of the zig-zag theory assumptions that were the basis for the 
analytical solution obtained in these investigations and the material structure 
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of actual sandwich plates with a soft core, it seemed that a three-dimensional
model would be more proper to represent such a plate. A 3D model in which
the plate core was modelled by means of SOLID73 solid elements was
developed. The plate faces were modelled with SHELL43 shell elements.
Moreover, on the plate edges, we introduced stiffeners connecting the faces,
as it would be in real sandwich plate structures with a soft core, . They were
also modelled with the SHELL43 element. In the three-dimensional model,
there were no limitations with respect to the ratios between the thickness of
individual layers and material properties of these layers that the 2D model
with the SHELL91 element imposed. We performed the calculations of the
buckling force for many variants relating the plate geometry to different
values of material constants of its members. Some exemplary results of these
calculations (3D), referred to the analytical values (TRAP) and the results for
the shell model (2D), are presented in Figure 8.

The results obtained have confirmed the assumption that the three­
dimensional model represents a sandwich plate with a soft core in
a better way.

Moreover, the numerical solution of the ANSYS program has confirmed
the correctness of the selection of function (29) for description of the buckled
surface of the plate (Figure 9).

6. Conclusions 

The stability problem of a sandwich trapezoidal plate with a soft core was
solved by means of the zig-zag theory. A combination of the Galerkin
orthogonalisation method with the proposed method of the coordinate system
transformation was used. The transformation method of the coordinate system
can be an effective tool in solving the problems concerning plates whose shape is
different from a rectangle. A solution to the stability problem of a sandwich
trapezoidal plate meets serious analytical and numerical difficulties. They result
from the plate geometry that complicates the description of the plate load state
and the predicted plate surface after a stability loss.

The obtained solutions for particular cases - rectangular plates with a soft
core of a constant rigidity and homogeneous trapezoidal plates - are
consistent with the solutions found in the literature survey. The results of the
FEM solution carried out for a high number of models support the obtained
numerical solutions.

The ranges of alternations in geometrical and material parameters of
trapezoidal sandwich panels assumed in the theoretical analysis and in the
numerical solution correspond to sandwich structures met in practice. The
formulae derived for critical forces and the diagrams presented can be
employed in design computations of such structures.
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Fig. 8. Comparison of values of critical forces of trapezoidal plates with the factor k = 0.5, obtained 
analytically and for several FEM models: a) a/b=0.6, b) a/b= lD. c) a/b=Ló. 
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Fig. 9. Buck.ling mode of the trapezoidal plate with the side edge inclination angle a= 7°.
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Metoda transformacji układu współrzędnych w analizie stateczności trójwarstwowej
płyty trapezowej

Streszczenie

W pracy przedstawiona jest analiza stateczności sprężystej trójwarstwowej płyty o ksztalcie
trapezu równoramiennego poddanej jednokierunkowemu ściskaniu. Wartość obciążenia krytycz­
nego trapezowej płyty typu sandwich uzyskano przez połączenie metody ortogonalizacji Galerkina
i zaproponowanej metody transformacji układu współrzędnych. Przeanalizowano wpływ własności
materiałowych i geometrycznych płyty na poziom obciążenia krytycznego. Dokonano weryfikacji
uzyskanych wyników w eksperymencie numerycznym z wykorzystaniem programu MES ANSYS.


