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CALCULATION OF TWO-DIMENSIONAL VELOCITY DISTRIBUTION 
BY SURFACE VORTICITY METHOD 

In the paper, the author presents a certain approach to interpretation of surface 
vorticity distribution on the airfoil surface, which leads to reduction of 
computational cost of surface vorticity distribution method (SYM). Some examples 
of the calculations are shown, and the results compared with solutions based on 
conformal mapping method as well as with experimental data. The calculations 
were done employing linear vortex distributions on each panel. The Neuman 
boundary condition was established at the collocation points. An unloaded trailing 
edge Kutta-Joukowski condition was applied in the present work. The interpretation 
of continuous vorticity distribution at the airfoil surface made it possible to reduce 
the number of panels on airfoil surface, and a satisfactory accuracy was maintained. 
In these circumstances one can do the calculations even by means of a 
programmable calculator. 

Nomenclature 

r 
u 
v =u-tw 
V, 
w 

influence coefficient, 
element of right hand-side vector in the system of equations, 
number of boundary elements, 
Radius, 

X, Z 

component of velocity vector in Ox direction, 
complex velocity, here: i=~, 
inflow velocity, 
component of velocity vector in Oz. direction, 
coordinates of Cartesian coordinate system, 
complex variable at xOz. plane, here: i=~, y=x+iz. 

greek symbols: 
a angle of attack, 
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/3 
y 

(-) 17= y,-x=re 
e 
subscripts: 
C 
C 
L 

Il 
p 
R 

panel inclination angle, referred to Ox axis of global reference 
frame, 
intensity of Vorticity, 
auxiliary complex coordinate at y-plane, 
polar coordinate of complex variable 77, 

referred to collocation point, 
referred to global system of coordinates, 
referred to left-hand side value of circulation intensity on 
boundary element, 
normal component, 
referred to the endpoint of boundary element, 
referred to right-hand side value of circulation intensity on 
boundary element, 
tangential component. 

1. Introduction 

The surface vortictty modelling (SVM) is one of the so-called panel or 
boundary element methods. The concept of the method was given by Martensen 
[IO] in 1959. Many other investigators have developed SVM computational 
algorithms for the flow past the airfoil, employing various types of vorticity 
distributions. There were also different forms of boundary conditions, as well as 
Kutta-Joukowski conditions for trailing edge. The most common form of 
boundary condition is vanishing of normal velocity at collocation points, placed 
in the middle of each panel [3], [4], [5]. However, sometimes the internal 
condition of zero tangential velocity is applied [ I 3], [ 15]. In some works, a 
panel methods based on stream function has been employed [2], [ 11]. Moreover, 
Babah [ 11] placed collocation point at the surface of the airfoil. In the method 
presented in [ 11], the author employs piecewise linear vorticity distribution. 
Stalewski [ I 5] has developed method based on linear surface distribution of 
sources and vortices. In this method, a Dirichlet boundary condition has been 
applied. Sorko presented [13] a similar method, however, a condition of zero 
tangential velocity at the internal side of contour wa applied. The method has 
been applied for isolated airfoil as well as linear cascades. 

Some authors, like Belotserkovskii [3], Xu and Yeung [ I 7] have also 
investigated separated flow around the airfoil. The computational algorithm in 
both cases is based on distribution of discrete vortices on airfoil surface and free 
vortices shed from separation points. A much more simplified method for 
simulation of separated flows around bluff two dimensional bodies was given by 
Chiu [4]. The author makes use of linearly variable vorticity distribution, and a 
prescribed rigid wake. The wake is attached at the boundary layer separation 
points. An extensive review of some other two dimensional panel methods may 



CALCULATION OF TWO-DIMENSIONAL VELOCITY DISTRIBUTION 7 

be found in the book by Katz and Plotkin [9]. 
In the present paper, the author employs an interpretation of surface vorticity 

distribution given by Martensen to obtain tangential (surface) velocity 
distribution over an airfoil. The similar approach was applied by Xu [ 16] for 
determination of velocity on airfoil. However, the method applied in [ 16] was 
based on piecewise constant vorticity distribution with boundary condition with 
zero tangential velocity at the internal surface. Moreover, tangential velocity has 
been calculated at the midpoints of boundary elements. 

The present paper is restricted to the two dimensional problems only. 
However, the panel methods have wide range of applications for three 
dimensional cases. A review of this applications in aerodynamics and flight 
mechanics may be found in [7], [8], [9]. 

2. Outline of numerical procedure 

Here we consider a method based on linear (trapezoidal) vortex distribution 
over each panel. Because vorticity distribution must be continuous over airfoil 
surface there is a need to establish the condition of equality the of values of 
vorticity at right-hand end of previous, and left-hand end of the current panel, 
respectively. This corresponds to continuous distribution of tangential velocity. 
Moreover, once vorticity distribution is calculated, the velocity at the panel 
corners is directly given. Note that this velocity is calculated at the airfoil surface. 
In the case of methods presented in [4], [5], [9] the velocity is calculated in the 
collocation points which lay inside or outside of the airfoil contour1 

_ Let us 
denote the following angles and radii in local (panel) coordinate system (Fig. I): 

+ iZ 
! 
I 
! 

+ J 
W1 / , I 

collocation '/ u · 
point /~lc(l;, Ze) 

vortex /.' · ! 
point // - i 
\ rt_,.,// / r2 \ / . 

Y, \ /'\. . . I 
L / "{ r /~"- 

-, \ --✓-( .\e R1e '- ::\~1:\i!~t'+J-~••-E- - ~ct 2 
·i ------- - ►

, XP-~ 'J ---;---"--- - - s=-• x2 X 
1----, dxf--- 

Fig. I. Local systems of coordinates for linear vortex distribution 

1 That depends on local curvature of airfoil surface. 
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(2.1) 

Now, let vorticity distribution over individual panel be given as a linear function 
in panel coordinate system (Fig. I.) 

y(x)=yL + yR-yL(x-x1). (2.2) 
X2 -X1 

To determine velocity field induced by linear vorticity distribution, it is 
convenient to decompose velocity distribution into constant and triangular part, 
as shown at Fig. 2. 

z z 
w2 a) w, w V2 

b) collocation C( Xc,Zc) collocation C( Xc,Zc) 
point u, point U2 

r, r, ,' r 2 

0 0 
r_,- r'{x-x) 

< /0 < 
0 x, --t~?c;Ci~ 

X2 
.... 

X X I X2 X►
dXr<- 

Fig. 2. Decomposition of linear vorticity distribution. Constant vorticity distribution (a) 
and triangular vorticity distribution (b) 

Derivation of equations for the velocity components would be simplified by 
expressing of the induced velocity as a complex variable. 
Let 

V = U - /W, (2.3) 
be a complex velocity at the complex plane: y=x+ iz, 
Now, let us assume that vorticity is distributed along x axis, as shown in Fig. 2a. 
The complex velocity generated by the constant vorticity distribution will be 
given by the expression: 

- . YL ·s'' dx v,=1- --. 
2n, Y, -x ., 

(2.4) 

Now, we introduce auxiliary variable 17 defined as follows 
i0 1J = Y, - x = re , 

after integration and substitution 
11, = fj e;e, ; 112 = r2i0~ , 

(2.5) 

(2.6) 
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we get

v; = łL[02 -01 - i In r2] .
2n ~ 

Hence, the components of the velocity generated by constant vorticity
distribution YL are:

(2.7)

u =łi.(0 -0)I 2IT 2 I ,

YL I r2 W1=-11-.
2n ~ 

Now, let us consider triangular vorticity distribution (Fig. 2b)
y(x)=y'(x-x1) for XE (x1;x2).

Where:
y' = (YR - Y L ) / ( X2 - Xi ) · 

(2.8a)

(2.8b)

(2.9)

(2.1 O)

Then complex velocity induced by vorticity distribution described by equation
(2.9) is given by

- - . y' ·st~ (X - xi ) dx 
V1 -l- . 
- 2-n: . Ye -x .,,

(2.11)

After substitution of an auxiliary variable 17 into (2.11) and integration by parts
we get

- . y' [ I 77? 77? lv2=t- 172-171-y, n-- +x1ln-- ,
2n 771 771

substituting (2.6) into (2.12) we get:

u2 = ;~ [ Z, I 11 ~; + ( X, - X1 ) (0 2 -01 )] ,

w2 = ;' [(x, -x1)1n r~ -z, (02 -01)+x2 -x1].
sr: I 1

Now, the induced velocity may be expressed as a sum of the components (2.8)
and (2.13):

(2.12)

(2.13a)

(2.13b)

U= U1 + U1, 

W= W1 + W2.
(2.14)

This allows us to decompose components of the induced velocities into parts
dependent on the values of vorticity at the edges of the boundary element.
Moreover, it is rational to put the origin of the panel coordinate system at the
beginning of boundary element. This will lead to further simplification of the
formulae for induced velocity, because x1 =O.
Now, substituting (2.1 O) into (2.13) and making use of (2.14) one may get:
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UR =-1E._[~1n3-- Xe (02 -01)]. 
2n x2 r2 x2 

In the mid-point of the panel ("self-induction"): 

UL =r.l+. UR =rR/4, u=(yl +rR)/4. 

(2. l Sa) 

(2.15b) 

(2.15c) 

For vertical component of induced velocity in the local (panel) coordinate 
system we have 

WL = _1.J,__[j _ ..s-_( 0
2 
- 0

1
) +(J - Xe )ln 3-_], (2. J 5d) 

2n x2 x2 r2 

YR [ Xe l 'i Ze (e e ) l WR=-- - n-+- -2 - -I -J , 
2n x2 r2 x2 

and self-induction of current panel: 

WL =-rL/2n, WR =yR/2n, 

(2.1 Se) 

(2. I Sf) 

The indices "L" and "R" denote that the velocity component in dependent on 
left end or right end value of vorticity distribution. Now, we may shortly 
describe computational algorithm. 

Step 1: Grid generation 
The airfoil is divided into N panels by N+ 1 points P with given coordinates. 
There, he points P (}) and P (N+}) correspond to the trailing edge point. Now, 
one should calculate N collocation points C with coordinates: 

Xci =(xPJ +xPj+1)/2, 

Zcj =(zPj+zPJ+l)/2, 
(2. 16) 

for j=l ... N. 

It is also necessary to know sine and cosine of angles between panel and 
direction of axis OXc in the global coordinate system: 

. /3 - Zp j+I - Zp j sm j - , 

✓(xi'j+I -Xi'jf +(zi'j+l -zi'jr 
(2.17) 

xi' j+i - xi' j cos/31=---;=============== o o 

( xi' j+I - x/'(j) r + ( z; j+I - z; jr 
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--" V co _.,/ ~/ __ / ,.., \ a 
_,./ -·--··· -·····- .. ". ····-···-·· 

Fig. 3. Panel grid of an airfoil surface. Schematic 

Step 2: Determination of influence coefficients 
For each collocation point ,,j" one should calculate velocities induced by panel 
number ,, i". For this purpose there is a need to transform collocation point to 
the system of coordinates of currently considered panel: 

lx;i = ( Xe i - x,,; )cos /3; + ( Ze i - z,,; )sin /3;, 
z;> =(zei -z,,;)cos/3; -(xei-x,,;)sin/3;, 

x2 = ( x,,;+i - x,,; )cos /3; + ( z,,;+i - z,,; )sin /3;- 

(2. I 8) 

Then, one may calculate velocities induced by each boundary element in 
collocation point, and decompose the velocity into parts dependent on left and 
right value of vorticity strength: 

(I) (1) 
uij = uLij Y; + uR ij Y;+1, 

(I) (I) 
wij= wLij Y; + wRiJ Y;+1· 

(2. I 9) 

The upper index "/" denotes value of the velocity for unit strength of vorticity, 
y=L. 
Now after transformation to global coordinate system OXcZc, we have: 

(I) - (1) (I) 
uij -uGLijYi +ucR;1Y;+1• 

(I) (I) (I) 
wij = wGLiJ Y; + w GR iJ Y;+1, 

(2.20) 
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where ,,G" denotes global system of coordinates. The components of velocity 
induced by boundary element number i at collocation point number j for unit 
circulation strength y= 1 are equal: 

(I) _ (1) /3 (1) . /3 
UGLij-ULijcos ;-Wlijsm ;, 

(I) _ (1) /3 (1) · /3 
llGRij - URij COS i - WRij Sll1 i' 

(1) _ (I) , /3 ,(1) /3 
WGLij - ulij sin i+ \1,Lij cos ;, 

(1) _ (1) , /3 (1) /3 
WG/'ij-URijSII1 ;+wRijcos i· 

(2.21) 

Making use of the above equations, one may write boundary condition at point j 

~,i= -V= (sina cos /31 +cosrz sin /31 )+ ( w~L cos /31 -u~L sin /31) y1 + 
N 

"[( (1) (1) ) /3 ( (1) (1) ) · /3 ] + L. wcRJJ-1 + wGLJi cos i - ucRJ.H +ucLp sin i Y; + 
1='2 

(2.22) 

( 
(1) /3 (1) · /3 ) _ . 

+wcRJNcos 1-ucRJNsm 1 YN+1-0, i.] = I ... N. 

The form of the boundary condition results from fact that left-hand side 
value of circulation strength for the current panel number i must be equal to the 
right-hand side value of circulation strength for panel number i-1 The condition 
results from continuity of vorticity distribution over airfoil surface (Fig. 3) This 
is valid for panels with numbers ranging from 2 to N. Because the boundary 
condition may be written for N panels, expression (2.22) represents a system of 
N linear equations with N+ J unknowns. 

To close the system, one applies a Kutta-Joukovski condition. For the 
purpose of calculations presented below, it was assumed that trailing edge 

. . ? 
corresponds to stagnation point 

y1 + Y N+I = Q · (2.23) 

Now, the influence coefficients take form: 

(1) /3 (1) . /3 
Qjl WGL _il COS j - UCL jl Sll1 j, 

(l) /3 (1) . /3 
aj.N+I WGR jN COS j -UGR jN SII1 j, 

a1; ( w~~ _i.i-I + w~l Ji )cos /31 -(u~~ _i.i-I + u~l Ji )sin {31, 
aN+1.1 I, 
aN+1.; = O, 

CIN+I N+I = I. 

.i= !...N 

.i= !...N, 

.i= 2 ... N, (2.24) 

i=2 ... N, 

2 There is not the only possible form of Kutta-Joukowski condition. One may find a 
review of this conditions for example in [ 16]. 
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Note that the influence coefficients for the first N equations are normal 
components of velocities induced by unit strength vorticity distribution y;= I at 
collocation point number j. 
The right hand side vector is given by: 

bi= V= (sina sin f3i -cosa sin f3i ), j = I._.N, 

bN+I = O. 
Now, one may complete the set of N+ I equations with N+ I unknowns. 

N+I 

LaJiy;=b1 for i=I ... N+I. 
i=I 

(2.25) 

(2.26.) 

Step 3: Solution of the linear system of equations (2.26.) 
The solution may be obtained by standard methods of linear algebra. 

Step 4: Determination of velocities and pressure distributions 
Once the solution is obtained one may calculate velocity distribution on the 
airfoil. It could be done by equating strength of the vortices at the corners of the 
panels (nodes) to the tangential velocity: 

V ={yj for 
IJ o for 

)=2, ... ,N, 

j=l, ... ,N+I. 
(2.27) 

In the present approach, the velocity is calculated exactly at the surface of 
the airfoil (see Fig. 12) Hence, there is no need to find tangential velocity in 
such a form as in the method presented, for example, by J. Katz and A. Plotkin 
in [9], where the velocity is calculated by projection of components of inflow 
and induced velocity on tangential direction in the collocation point. When the 
surface velocity distribution is known, the pressure coefficient may be 
calculated from formula 

L'lC = I - (V /V )" . /lj IJ oo 
(2.28) 

3. Numerical results 

In this section, a results of numerical calculations will be shown. The first 
example shows solution for a circular cylinder with no circulation. Calculations 
were done for the number of panels as low as 8, 12, and 24, and then compared 
with well-known exact solution for circular cylinder. The results are presented 
at Fig. 4. The maximum error is shown in Table 1. 

Table I. 

Number of panels Max. error of velocity% 
8 0.381 

12 0.129 
24 0.073 
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1.5 

1.0

0.5

O.O

-0.5

-1.0 

-1.5 

-2.0 

EXoct ✓- 

.:-::t:, 'JC.,. 
24'ponels 

..l ć-ponets ·
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xlc 

-2.0 -1.5 -1.0 -O 5 O.O 0.5 1.0 1.5 2.0 

Fig. 4. Comparison of exact solution for circular cylinder with SYM results

As one may see, there is an astonishingly good agreement between analytical
and numerical solution even for the number of panels as low as eight. The next
solution shows (Fig. 5) results obtained for symmetrical airfoil NACA 0012 for

1.25 

1.00 

0.75 j
0.50 

0.25 

O.DO

-0.25 

-0.50 

-0.75 

-1.00 

-1.25 

NACA 0012 

• 20 panels 

- G 198 panels 

-:- <)- 50 panels 

EB , Abbot & v: Dóenhoff 
t o&h-oa.oo~oo&b9:i9';oo 
»-. ~--&b'o-~~•~o"~..,,.""

a=O [deg] 

xlc 
I I I 

O.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. :i. Comparison of SVM for various numbers of panels for NACA 0012 airfoil (I)
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20, 50 and 198 panels compared with theoretical velocity distribution based on 
conformal mapping method given in [I]. 

Ain this figure a coarse grid (20 panels) is also depicted. The results show 
again good agreement even for 20 boundary elements. The next example (Fig. 6) 
depicts the velocity over the same airfoil, for number of panels ranging from 10 
to 25. Even for a such small number of panels as 10, one may find a good 
agreement between the results of calculations and the data from [ 1] Fig. 7 shows 
results for the same airfoil at angle the of attack a.=4.0 [']. The difference 
between results obtained for different grids are negligible except of N= 198 
where the influence of small, but finite trailing edge radius results in peak in 
velocity distribution for pointsj=2 andj=l97. 

The next example shows results for laminar symmetrical airfoil NACA 63 ., - 
O I 8. The airfoil has cusped trailing edge, and velocity at trailing edge has non­ 
zero value (the case of so-called "loaded" t.e.) However, with exception of the 
trailing edge point, the velocity distribution agrees very well with that given in 
[ 1] for symmetrical inflow as well as for design lift coefficient Cu1=0.32. 

It is worth to note that the coordinates of ends of panels in the analysed case 
corresponded to the ones from [I], except of two points added at leading edge. 
This was done for a better description of leading edge curvature. This 
discrepancy between velocity distributions is caused by the assumed form of 
Kutta-Joukowski condition (2.23.), which is equivalent to placing a stagnation 
point at trailing edge of the airfoil. 

1.50 -+-~-~-~-~-~-~-~-~-~--1 

1.00 

0.50 

O.DO 

-0.50 

-1.00 

V,IV;n, a=O [deg.] 
~+--~.....----...._ ~~- 

airfoil contour 
for 1 O panels 

::: 
NACA 0012 

-1.50 -+-~-~--.----.----,------'-p-...,---,- 

O 00 0.20 040 

• 10 panels 

o 12 panels 

o 14 panels 

• 16panels ... + 20 panels 

X 25 panels 

I. Abbot & A. v. Doenhoff 

0.60 0.80 1 00 

Fig. 6. Comparison of SVM for various numbers of panels for NACA 0012 airfoi I (2) 
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-1.00 

-125 

-1.50 

-175 

-2.00 
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NACA 0012 
o 
o 

\ 
~0~~1~x::@:I:~~~~ 

♦ 50 panels 

O 198 panels 

EB 20 panels 

a.=4,0 [deg] 

xlc 

O.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 7. Comparison of SVM for various numbers of panels for NACA 0012 airfoil (3) 
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0.75 
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0.25 

0.00 
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-1.25 

-1.50 
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xlc 
' I 

O.O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Fig. 8. Comparison of SVM with conformal mapping solution [I) for NACA 63 3 -O 18 airfoil 
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O .50 

-~CP . mm 
a==O [ deg. ] 
NAGA 0012 

Pessure coefficient vs. number of panels 

present method 

- - - data from Abbot & V. Doenhoff 

O .40 

O .30 
8 10 12 14 16 18 20 22 24 26 28 30 32 

Fig. 9. Influence of the number of panels on LJC1,,,,;,, for NACA 0012 airfoil 

'Hydrofoil E 818 

o - 

• 
present method 

R. Eppler 

~pp/er~ --------- 

o -1 -2 -3 -4 -5 -6 -7 -8 

Fig. I O. Minimum pressure coefficient as a function or angle of attack. Calculations for E 818 
9,35% thick hydrofoil. 64 panels 
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The next example, shown in figure 9, illustrates influence of the number of 
panels on calculated value of minimum pressure coefficient. One may see that 
number of panels exceeding N=20 gives sufficient accuracy of the value of 
minimum pressure on the airfoil. 

Figure 1 O, shows the minimum pressure coefficient as a function of 
incidence. Calculations are done conducted for 9,35% thick hydrofoil E 818 The 
angle of attack is measured from zero lift angle. For this hydrofoil, zero lift 
angle is equal to a.0= -4.42 [deg]. The results are compared with available data, 
presented in [6] The calculations were done for hydrofoil contour coordinates 
given in [6]. The predicted behaviour of L1C"111;11 versus angle of attack, shows 
very good agreement with experimental data. 

-1. 5 ----!---__L_---~-----'-----'------+- 

t,.,.Cp CF1,50 [deg.] 

-1.0 

-0.5 

O.O 

0.5 

a =0,65 deg.] 

experimental data 
a =1,50 [deg.] 

xlc 
1. O ---<~--------------~-~-~--+- 

O.O 0.2 0.4 0.6 0.8 1.0 

Fig. l l. Comparison of calculated and measured [ 14] pressure distributions for wind turbine 
airfoil NLF(l )-0416. Number of panels: 64 

It is worth to note that the accurate prediction of mirnmurn pressure 
coefficient is very important in aviation technology. It makes it possible to 
predict a critical Mach number from incompressible flow calculation It is also 
applicable to marine engineering, because it facilitates proper estimation of the 
beginning of cavitation. 

The last example shows comparison between experimental pressure data and 
pressure distribution obtained by the presented method. The experimental data 
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were obtained [ 14] at Reynolds number Re= J • J 06. The pressure distributions are 
in a good agreement with experimental data for angle of attack a=l,50 [deg]. 
However, the numerical results fit better to the experimental data for angle the 
of attack equal 0,65 [deg] accepted in the calculations. This discrepancy may be 
a result of the uncertainty of measurement of the angle of attack, as well as 
model geometry (the theoretical contour of the airfoil was used to the 
calculations). 

4. Conclusions and final remarks 

The outlined approach to calculation of tangential velocities over airfoil 
surfaces, based on Martensen' s interpretation of surface vorticity distribution 
allows us to get a better quality of numerical solution in comparison with the 
results presented in [9] the order of the number of panels given by Katz and 
Plotkin to obtain satisfactory results for linear vortex distribution method was 
about JOO. 

The presented approach to the problem leads also to simplification of the 
numerical code, because once the system of equations for vorticity distribution 
is solved, the values of tangential velocity are also known. Another advantage 
offered by the presented method of calculation of velocity and pressure consists 
in the fact, that one obtains velocity at the real contour of the airfoil, Fig. 12. 
In the case of conventional panel methods, the velocity is calculated in the mid­ 
point of the panel (collocation point), which lays inside or outside of the given 
contour of airfoil. One should note that calculation of the tangential velocity in 
grid nodes is also employed in potential based panel methods [9]. However, this 
requires numerical differentiation of velocity potential, which might lead to the 
numerical errors. 

normal vector 
at collocation 
point 

true contour 
of an aifoil 

----------- 

collocation point 

rectilinear panel 

Fig. 12. Tangential velocity at grid points. Schematic 
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The comparison between velocity and pressure distributions based on
theoretical (Figs. 4-:-9) and experimental (Figs 10 and I I) data show good
agreement. The influence of the number of boundary elements on minimum
pressure distribution has also been investigated. This quantity is specially
important, because it allows for prediction of critical Mach number from
incompressible flow calculations (aviation technology), as well as for the
prediction of cavitation (marine engineering). It also can be treated as a measure
of accuracy of pressure prediction. The number of panels N=20 gives sufficient
accuracy of the value of minimum pressure on the airfoil. For rough estimate of
velocity distribution, even lower number of panels would be sufficient (see:
Figs. 4, 6 and 7) This allows us to do calculations even by means of a
programmable calculator.

Manuscript received by Editorial Board, March 14, 2001;
final version, February 12, 2002.
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O pewnej metodzie wyznaczania rozkładów prędkości w metodzie panelowej
wykorzystującej ciągły rozkład wirów

Streszczenie

W pracy przedstawiono zastosowanie interpretacji ciągłego rozkładu wirowości na
powierzchni profilu podanej przez E. Martensena w celu uproszczenia obliczeń rozkładów
prędkości w płaskim przepływie potencjalnym. Dla celów obliczeniowych wykorzystano metodę
panelową z liniowym rozkładem natężenia cyrkulacj i wzdłuż panelu, z warunkiem brzegowym
Neumana i warunkiem Kulty-Żukowskiego równoważnym umiejscowieniu punktu spiętrzenia na
krawędzi spływu.

W artykule przedstawiono również szczegółowo użytą procedurę numeryczną. Główną różnicą
pomiędzy spotykanymi dotąd realizacjami metody wykorzystującej powierzchniowy rozkład
wirów (SVM) jest wyznaczanie prędkości stycznych nie w punktach kolokacji, a w narożach
wielokąta aproksymującego profil. Powyższe podejście pozwala na redukcję kosztu
obliczeniowego metody SVM_ dzięki możliwości zastosowania stosunkowo niewielkiej liczby
paneli. przy poprawie jakości rozwiązania. Dodatkową korzyścią jest, iż rozwiązanie otrzymuje się
na rzeczywistej powierzchni profilu, a nie w punktach kolokacji, leżących (zależnie od lokalnej
krzywizny profilu) wewnątrz lub na zewnątrz konturu.

W pracy przedstawiono wyniki obliczeń numerycznych ilustrujące zastosowanie opisywanej
metody. Wyniki porównano z zarówno ze znanymi wynikami teoretycznymi jak i danymi
doświadczalnymi. Uzyskano dobrą zgodność rozkładów prędkości i ciśnień na powierzchni
wybranych profili. W dwóch przykładach służących za ilustrację prezentowanej metody uzyskano
dobrą zgodność rozkładów prędkości nawet w przypadku tak niskiej liczby paneli jak dziesięć. Ta
ostatnia okoliczność pozwala na zastosowanie opisanego tu podejścia do wykonywania zgrubnych
obliczeń rozkładów prędkości. nawet przy pomocy kalkulatora programowanego.


