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ANALYSIS OF THE THICKNESS OF THE PLASTICIZED ZONE 
IN THE SURF ACE BURNISHING PROCESS 

The objective of this study was an analysis of the thickness of a plasticized zone 
that appears after surface burnishing of machine parts with a non-deformable roller 
of a torus contour. A function defining the plasticized zone thickness depending on 
burnishing parameters was determined. M. T. Huber's hypothesis of plastic 
deformation was used in the solution. It was found that the thickness of the 
plasticized zone depends principally on the pressure force and yield point, and it is 
insignificantly dependent on the geometrical dimensions of the workpiece and 
burnishing roller. 

1. Introduction 

In calculating bending stresses in reinforced-composite beams, one 
commonly assumes that all the tension is taken by the fibbers and all the 
compression by the matrix. 

In the machine parts operating in a fatigue mode under cyclical mechanical 
loads, the thickness of the plasticized zone is of great practical importance. Its 
value determines to a considerable extent the fatigue endurance of burnished 
parts. Figure 1 shows that the effect of anti-fatigue strengthening, /J.Z, for shafts 
of different diameters ( d < D) is different, that is t-.ZJ > t-.Zv for the same 
thickness of the hardened zone, <5. Hence, a conclusion arises that for the shaft 
of a larger diameter, D, a higher value of pressure force should be applied in 
order to achieve an identical anti-fatigue strengthening effect as that on the shaft 
of the smaller diameter, d. 

Thus, the aim of the present study is to find a relationship of F = /(<5) 
which could makes it possible to calculate of the proper value of pressure force 
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for different diameters of burnished shafts. The effect of fatigue strengthening 
as a function of the thickness of the plasticized zone that, for such parts as a 
shaft should be about 5 % of the diameter of the shaft being burnished, was 
discussed in detail in work [I]. 

Fig. I. Comparison of effect of anti-fatigue strengthening, 11Z, for shafts of different 
diameters (d < D) 

For solving the problem of the calculation of plasticized zone thickness after 
surface burnishing, the theory of the contact of two bodies was used. A general 
model of the contact of two bodies together with a distribution of elastic stresses 
along the axis of action of the pressure force, i.e. for x = y =O, is shown in 
Fig. 2a and in Fig. 2b. 

a) 
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z z 

Fig. 2a. Distribution of elastic stresses along Fig. 2b. Distribution of elastic stresses along the 
the axis of action of the pressure force for axis of action of the pressure force for 

general case, (i.e. for a< b) symmetrical case, (i.e. for a= b) 

Distribution of stresses for the general (nonsymmetrical) case 1s shown m 
Fig. 2a. State of elastic stresses is defined formula (I): 
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a = 3F z A+2G f ds 3F z x' .fi 
r 4Jr A+G '(a' +s)..j(a' +s)(b' +s)s 27' (a' +t)' ..J(a' +t)(b' +t) 
_________ 3F 

2
_A_f ds 3F _Sj_ 

a' x' b' y' 4Jr A+ G , s..J(a' + s)(b' + s)s 4;r A+ G 
(a' +t)' (b' +t)' 

I c1s [ 2x' y' ] 
'(a' +s)..J(a' +s)(b' +s) I- a' +s - b' +s -;===x=,===y=, =

I-----­ 
a' +s b' +s

(I) 

a = 3F z ,l+2G f ds _ 3F z y' 
2

-----,===.fi=t== 
Y 47' A+G '(b' +s).J(a' +s)(b' +s)s 27' (b' +t) ,J(a' +t)(b' +t) 
_________ 3F 

2
_..ł_f ds 

1 __ a_'x_' b_'y_'_ 4Jr ..ł+G, s,J(a' +s)(b' +s)s 47' ..ł+G
(a' +t)' (b' +t)' 

f ds [ x' 2y' ] 
'(b' +s),J(a' +s)(b' +s) I- a' +s - b' +s -----;::==x=,===y=, =

1-----­
a'+s b'+s 

3F G 

3F I
a,=-2;r.j(a'+1)(b'+t)1- a'x' - b'y' 

(a' + t)' (b' + t)' 

J 

[

2 2 ]'
I- a:+t-b;+t 

where: F - pressure force during the contact of two bodies,
a, b - semi-axes of contact area along axis x and y, 
t - positive root of equation of contact area contour,
,l, Ev - Lame constant,

(1-2v){l +v) 
G = _£_ - modulus of elasticity in shear,

2(1+v)

E - longitudinal modulus of elasticity (Young modulus),
u - Poisson ratio.

Formulas ( 1) are simplified considerably for the symmetrical case, i.e. for a= b 
and x = y =O, accepting the form:

3F ;i, + 2G f ds 3 F A f ds 
a-' =ay = 4;r z A+G i (a2 +s)2✓s 4;r z A+G i (a2 +s)s✓s-

3F G 
00J ds 

+ 4;r /4 + G i (a2 + s )2,

(2)
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3F I 
a=---- , 2,r a2 + t · 

Distribution of elastic stresses for the case of crx = cry is shown in Fig. 2b. 

The above problem described by formulae (I) and (2) for the model as shown in 
Fig. 2 within the range of elastic strains was solved by H. R. Hertz and 
N. M. Belaev. Formulas (1) and (2) derived from the theory of elasticity were 
used for the examination of plasticized zone thickness by dividing the upper 
layer into two deformation zones: the elastic zone and the plastic zone. 

2. State of stresses under the burnishing roller 

The matter of interest in machine parts operating in a fatigue mode is the 
maximum value of plasticized zone thickness after the burnishing process. This 
maximum value will occurs in the axis of action of the force pressing on the 
burnishing roller, i.e. x = y =O. Figure 3 shows a schematic diagram of surface 

F non-deformable roller 

D 

d 

k 

X 

-h- 
2 z 

y 
/j plastic de.formation 
- - zone 

elastic de.formation 
zone 

- ---t- - 

I 
I 
I 
\ deformable shaft burnished 

Fig. 3. Schematic diagram of surface burnishing used for the examination of plasticized zone 
thickness along the axis of action of force F pressing on the burnishing roller 

burnishing used for the examination of plasticized zone thickness along the axis 
of action of the force F pressing on the burnishing roller. After setting up the 
coordinate system (x, y, z) at the point of contact of the roller with the shaft 
(before burnishing), as per Fig. 3, one performed the analysis of plasticized zone 
thickness as a function of pressure force, F, yield stress (yield point, Re), and the 
geometrical dimensions of the contacting bodies (that is the burnishing roller 
and the part being burnished), as shown below. 
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3. Thickness of the plasticized zone 

According to the solution by Hertz, the surface area of contact during elastic 
deformation with the contact of two bodies of regular shapes (such as a sphere, 
torus, cylinder, etc.) is described by an ellipsoid with semi-axes a, b, c [2]. As a 
result of shifting the roller in the assumed coordinate system (x, y, z) by the 
value oft, the equation for the ellipsoid will take the following form 

x' y2 z' 
--+--+--=!. 
a'+t b'+t c'+t 

(3) 

Under the assumption that c is extremely small relative to a and b and 
c ➔O, from relationship (3) for the burnishing scheme as in Fig. 3, that is when 
x = y =O, we obtain the limit of integration t = z2• Furthermore, if the area of 
the projection of the ellipsoid is substituted with the area of a circle of the radius 
e = ra:-;;, the formulae (2) with a= b will take the form: 

3F 00 ds 3F 00 ds 3F 00 ds (4) 
a,=a,=-4 z2(1-u)f ( 2 )2.{s- -4 z2uf ( 2 ) ✓s--4 (l-2u)f-( 2 )2, 

· Jr ,, e + s s Jr ,, e + s s s Jr ,, e + s 

3F 3F 
a------ --- 

z - 2,r e2 + t - 2,r e2 + z2 ' 

,1 + 2G ,1 G because: --=2(1-u), --=2u, --=l-2u. 
,1+G ,1+G l+G 

After solving the integrals: 

f--d_s __ =_!_(.I_ arce tg~ - --=-) 
,'(e'+s)'✓s e' e e e2+z2' 

00 ds 2 ( I I z) f-:-----,-----= = - ---arcctg- ,'(e' +s)s✓s e' z e e ' 

00 ds I 
I ( )' = , , , ,' e' + s e + z 

formula (4) are transformed into formula (5): 

3F [ )(z z z' ) { z z) ( I ] a,=a =-- 2(1-u -arcctg---- -4 1--arcctg-· - l-2u)--, 
Y 4ml e e e2 + z' e e . e' + z' 

(5) 

3F I 
O"z = - --,--, . 

2,r e + z 

3.1. Thickness of the plasticized zone for the case of a-x = CYY 

According to the Huber hypothesis, the reduced stress a,-ed can be calculated 
from formula 
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where: Ox, ay, o;, - principal stresses along axes x, y and z. 
For the case of symmetric state of stress, i.e. a-x = a-Y, the formula for reduced 

stress takes the form 

For uniaxial state of loading we have a- pl =Re. Then, after substituting 

formulae (5) and making transformations, the following relationship for 
coordinate z along the action of pressure force Fis obtained 

3F [ (z z z2 ) ~ z z) e' 2e
2 

] R, =--2 2(1-u) -arcctg---,--, -4 1--arcctg- -(1-2u)-,--, +-2--2 . 
41lE e e e +z e e e +z e +z 

One can get a similar dependence using Mohr hypothesis 
{jX -(]'z 

(Ypl = 'max = Q,SR, = --- 
2 

that is 
R, =a-x -a-, 

Thus, both (Huber's and Mohr's) hypotheses with the symmetric state of 
stresses, or a- = a- , lead to the same conclusion that is Re = a-x - a-, . Hence, 
we obtain the known relationship for the thickness of the plasticized zone, 
published in work [3] 

R,= 
3F,r 3 

2+2(1+u)(.:..arcctg.:..-1), (6) 
4;re (z) e e I+ - 

e 
where, from both Huber's hypothesis and Mohr's hypothesis it follows that 
z=ó. 

The analysis of the thickness 5 of the plastically deformed layer was 
performed for the scheme shown in Fig. 3, under the assumption of non­ 
deformable roller and using the following reasoning. 

Let us assume that the shaft material for the optional pressure force F is 
deformed elastically beneath the plastic deformation layer. The state of stresses 
in the upper layer is undetermined. This state is illustrated in Figure 3 by 
discontinuous curve of reduced stress a,-eJ• In the upper layer, above k-k line, 
plastic deformation occurs, while elastic deformations occur bellow the k-k line. 
In fact, two such deformation zones occur in the burnished material. However, 
their separation is not so clearly defined as it is shown in Figure 3. In terms of 
the yield stress value, the zonation is as follows: yield stresses ( a-reJ > Re) occur 
above the k-k line, elastic stresses ( a,-ed < Re) occur in the zone below the k-k 
line, and stresses a-red= Re occur on the k-k line. Therefore, the coordinate z= 5 
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separates two zones - the upper plastic deformation zone and the lower elastic 
stress zone. Assuming that the state of stresses in the upper plastically deformed 
zone does not significantly change the state of elastic stresses in the lower zone, 
formulae from the theory of elasticity can be used for the calculation of 
coordinate z that divides the both zones. Then, the coordinate z = S and 
relationship (6) will take the form of 

R, a.:, r,+(!r +2(1+u)(!anclg!-1) l 
which defines plasticized zone thickness Sas a function of pressure force F, the 
yield point Re of the material, and substitute semi-axis e = M. The above 
relationship can be shown in the dimensionless coordinates as below 

F 4;rr 3 (J ó ) _, 
R,e' = 3 

1 
+( !)' +2(1 + v) v=»> t (7) 

As the form of this relationship for the calculation of thickness <5 is implicit, 
an auxiliary diagram for solving relationship~= 1(~) is shown in Fig. 4. 

R,« e 

~------------ -----··--··---------- -------------···-- 

150 +---l---1-----+ --- - ~-~~ -f----1 ~-- -- ---~- -4 j 
QI ,___ --+--+-I--·- i ~ hl--- 

"'r:r:.. f---lf---1----+--+- I ' I/ 
~ f--- f---1--t l--t l--t--+----+ ----+1--t l--t f--- i----l ---f--- --I- -- f-­ 
u: ---+----l-+---f---f---+--l-4- f----<f---f---4----+hl __ J_f--_ v.__ I i 

100 :~:~~~-+----+-+--~-+---+-t- _:I--~------+------+-- ---+--_,__ f.1__ __ -- --- -~ 

e-- __ _,_ _,_ _,_ _,_,__~ _,_,__ __ _,_e- __ +_-_+-7- __ +~~-r! 

------,-7--·--- ·-·-- --------- 
50 -+---+--+--l- -+--+--~-+--➔-7---- --------- 

f---lf----t---t---~~,-----,+-~--+ · - ,;rl - -1 - -,- - - 
'"--, ~~-~- --.-----1-Tt_

1 
t ------- o-:- , __ _l_'------1-~--- -+- .L __ - . ------ 

o 2 4 6 8 <5/e 
---------·--··-·---·-·-··-----------------·--···-···---·-··-- 

Fig. 4. Diagram of relationship~= 1(~) for symmetrical case 
R,e e 
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Parameter e (Hertz semi-axis) can be calculated from Formula (8) 

3(1-u2
) 

e=3---FR E , 

where: F - force pressing on the roller, 
R - substitutional curvature radius of contacting bodies, 
E - longitudinal modulus of elasticity (Young modulus), 
u- Poisson ratio. 

In case of burnishing shafts, the substitutional curvature radius, R, can be 
calculated from Formula (9) 

I I 2 2 I 
-=-+-+-+- (9) 
R r D d oo' 

where: r - radius of burnishing roller, 
D - diameter of burnishing roller, 
d - diameter of burnishing shaft. 

Finally, after calculating Hertz semi-axis e from Formula (8) and establishing 
yield point Re for the burnished material, one can calculate the plasticized zone 
thickness Jfor any arbitrary force F. 

(8) 

3.2. Thickness of the plasticized zone for the case of a- -:1- a- x y 

According to the Huber's hypothesis, the reduced stress a-,ec1 can be 
calculated from formula 

«.: = ✓½RO"x - o-)+ (o-y - o-}+ (o-= - o-j] · 
On the other hand, the state of elastic stresses along the axis z (i.e. x = y =O) is 
defined by formulae: 

3F ~ ds 3F x ds 
(J'x =-z2(1-u)f------;======- -z2uf----;:=====+ 

4Jr ,' (a' + s).J(a' + s)(b' + s)s 41l" ,' s.J(a' + s)(b' + s)s 
_3F(1-2u)f ds , 

4!l" ,, (a2 + s).J(a' + s)(b' + s) 
3F ~ ds 

<Y, =-z2(1-u)f----===== 
· 41l" ,' (b' + s).J(a' + s)(b' + s)s 
_3F(l-2u)f ds , 

41l" ,, (b' + s).J(a' + s)(b' + s) 
3F 1 

(J' = - - --;:::====== 
' 21l" .j(a' + z')(b' + z') 

3F 2 ~f ds 
-z u -----;:===== + 
41l" ,, s.J(a' + s)(b' + s)s 

After solving the integrals for the case of b > a formulas are transformed into 
the form: 
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3F [ 2h rl ) 2 rl ) 2z I ] 
o;,= 4JZ"z2(1-v) (b2-a2)a1 E,\(f),k (b'-a')br\<p,k - a' ,.J(b'+z')(a1+z') + 

3F { 2 a' +z' 2 ( )j 3F 2 ( b' +z' --
4 

z2 -,- -b1 , --,----bE<p,k --
4 

(1-2v),-----b1 1- -2--2 , 
Jl" a z +z a Jl" a - a +z 

3F 2 [ ] 3F { 2 a' + z' 2 rl )] o-,= 4JZ"z2(1-v\b'-a')b F{rp,k)-E(rp,k} - 4JZ"z2 a'z b'+z' - a'b1:,\rp,k + 

3F 2 [ 
- 4JZ" ( I - 2v) b1 - a' I - 

3F 1 
(j =- 
' 2JZ" '1(a' +z1)(b' +z')' 

where: E(rp,k) - elliptic integral of 2nd type, 
F( tp, k) - elliptic integral of l " type, 

m = arcsin JT = arcctg!_ k = ✓b' - a
1 

dla b > a .,, V~ b' b1 . 

Completing the expansion of the E(rp,k) and F(rp,k) functions on the 2nd term, 
we obtain: 

( ) z ( I 2 3 ') z I [ I 2 3 , ] , i 
E tp.k =arcctgb· 1-4k - 64 k +b-(z)' 4k + 64 k + 32 k (=)' , 

I+ - I+ - 
b b 

( ) Z ( I 2 9 ') Z I l I 2 9 , 3 , Frp,k ==, 1+4k +64k -b (z)' 4k +64k +32k -(-2-)-2 I+ - I+ - 
b b 

Let us assume the scheme of plastic deformation described in chapter 3.1 (i.e. 
z= ó and a-red = R. on k-k line). Then, by grouping equivalent expressions in 
the formulas for Ox, ay, (7,, and additionally by introducing auxiliary variable 

2 
w=!!_< 1, we can derive the following: 

b2 

a-,= 3F I {!_[I-wu E(rp,k)-(1-v)F(rp,k)]+ l-2v(I- b~'w++b~' + 
JZ"b'(l-w) b w 2 l u 

I-w b'wv+5' ) 
w .J(b'w + <5' )(b' + <5') , 
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CY = 3F I {!_[u-w E(<p,k)+(I-v'F(<p,k)]- 2u-w b'w+5' _ l-2v} 
y ff b'(I-w) b w l 2w b'+o' 2 ' 

3F I J b'(l-w) I l 
CY,= ff b'(l-w) r 2 ,.j(b'w+o')(b' +5') , 

In the above formulas, the functions £( (f), k) and F( (f), k) are reduced to take 
the forms of: 

E(<p,k) = arcctgi·(l-_!_(1-w)-~(1-w)') + 
b 4 64 

15 I l l ( ) 3 ( )' I ( )' + b (15)' 4 I-w+ 64 I-w + 32 1-w -(-15)-, 
I+ - I+ - 

b b 

F( rp, k) = arce tg§__· ( I + _!_ ( I - w) + -2_ ( I - w)') + 
b 4 64 

_!._ 1 [_!_(1-w)+_2._(t-w)2+]_(!-w)2 , 

b (o)' 4 64 32 (o)- 1 + - I+ - 
b b 

because k 2 = I - w . 
Then, the formula for reduced stress O"red according to the Huber's hypothesis 
can be transformed to following form 

F ~ ~ nR,b'(l-w{[ f (1-vf' :w) E(e,k)-2F(e, k) ]• l-2v+ 

b2w(l+w)(l-2v)-252[v(1+w)-I]l
2 

[5[v-w ( ) ( )rf )] ----==========-~ + - --E tp.k: + 1-v r\rp,k + 
2w.J(b2w+5')(b' +15') b w 

l-2v w(b' +52)-2v(b2w+5')]' [15[1-wv ( ) ( )rf )] ---+---'----;::::======- + - --£ tp.k - 1-v r\rp,k + 2 2w,.j(b'w+5')(b' +15') b w 

(I O) 

l-2v bi w' (2v- !) +5'[2(wv-1) +w]]']-o.5 
+--+----=======~ 

2 2w,.j(b2w+52)(b2 +152) 

In Formula (IO), pressure force Fis a function of <5, w, b. Other quantities, i.e. 
Re and v, can be assumed constant for a specified steel grade. 
For the purpose of relating F to <5, formulas ( 11) and ( 12) will be retained. These 
formulas were derived by L. D. Landau and E. M. Lifshitz in [4]: 



ANALYSIS OF THE TH ICKNESS OF THE PLASTICIZED ZONE I 15 

3F 1- u' 00 ds 
A=---f--,====, 

2ff E 11 (a' + s)✓(a' + s)(b' + s) 
3F 1- u' 00 ds 

B=---f---====- 
2ff E 11 (b' + s)✓(a' + s)(b' + s) 

( 11) 

( 12) 

In the above formulas, A and B are known quantities, related to the geometry of 
pressure surfaces by relationship ( 13): 

!
2(A+B)=-1 +-1 +-1_ +-1_. (13) 

R, R, R, R, 

4(A-B)' =(-1 --1 J' +(-1. --1.)2 +2cos2«p(-
1 
__ l J(-1 --1.). 

R, R, R, R, R, R, R, R, 

Formula (14) determines the value of A and B in shaft burnishing (diameter d) 
by means of a torus-profiled roller (diameter D, radius r). 

D d 
R, = -, R2 = r, R,· = -, R2' = co, rp = 180°, 

2 2 

that is to say 
1 1 1 

A=-+- B=-. 
D d' 2r 

Two additional equations ( I 5) and ( 16) can obtained after solving the integrals 
in equations ( 11) and ( I 2) for the case of b >ab> a. 

1 1 -+- 
F = !!__E_b(b' -a') D d 

3 l - u' ~ E( k )- K( k) . 
a 

F = ff_E_b(b' -a') l 
3 1 - u' 2r[ K( k) - E( k) ]' 

( 14) 

(15) 

( 16) 

where: E(k) - full elliptic integral of2nd type, 
K(k) - full elliptic integral of I st type, 

k=~dlab>a. 

By finishing expansion of the K(k) and E(k) functions on the 2nd term, we 
derive: 

K( k) = ff ( 1 + _!_ k' + J_ k') , 
2 4 64 

( ) ff ( 1 2 3 ') Ek=- 1--k --k 
2 4 64 ' 

Equations ( 15), ( I 6) will take on the form ( 17), ( 18) after assuming w= a' < I 
b' 

and k2 = 1- w: 
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I I 
~ - -+- 

F = !:__t-_b'(I - w) D d 
3 I - u' 1 [ I ( ) 3 ( ) , ] [ I ( ) 9 ( ) 2] ' w- 1-4 I-w - 64 I-w - 1+4 I-w+ 64 I-w 

( 17) 

F = 3__E_b'(1- w) 1 

31-u' [I( ) 3( )']. 2r - I - w + - 1 - w 
2 16 

Thus, a system of three equations ( l O), ( l 7), ( 18) has been obtained. The 
variables F, a, b, S occure in these equations. This system of equations can be 
solved for a desired thickness of the plasticized zone, ó. It should be noted that 

Q2 
the system of equations ( 1 O), (17), ( 18) has a solution w= - < l only if 

b2 

( 18) 

· 1· ( 1 1) · mequa tty 2r D + d > 1 ts true. 

The analysis of possible solutions of Equations ( l O), ( 17), (18), which are 
sets of numbers (F, o, a, b) obtained with the preset values of (Re, D, d, r) and 
established values of(£, u), has shown that expanding functions E(k), K(k) to 
successive degrees (expansion to the first, second, third and fourth terms was 
analyzed) causes a decrease of variable w calculated from Equation ( 17) 
transformed by substituting F from Equation ( 18), while the value of these 
negative increments .1w decrease with increasing of degree expansion. The 
accuracy of the calculation of variable w - understood as the accuracy resulting 
from assuming either the first or the fourth degree of expansion of functions 
E(k), K(k) - has no significant effect on the accuracy of calculation of force F, 
provided that the degree of expansion of functions £( <p,k), F( <p,k), E(k), K(k) is 
the same (this can even be the first degree). On the other hand, for very accurate 
calculations of semi-axes a, b, expand it may prove necessary to these functions 
to the fourth and further terms, while retaining the same degree of expansion of 
each of them. 

Moreover, a reasonably accurate solution of semi-axes a, b is provided by 
Hertz semi-axis e = ~, which has a value close to the one that can be 
calculated from Formula (8) by substituting pressure force F with the value 
computed numerically from the system of Equations (IO), ( 17), ( 18). 

Below are shown, in the form of tables, examples of the results of the 
numerical solution of the system of Equations ( 1 O), ( 17), ( 18), performed in 
order to determine F, Re, D, d and r on the required thickness Sof the plasticized 
zone of the shaft material. These relationships have been determined for the 
elastic solution provided in the present study, whose accuracy in a general case 
is not known. 

Figure 5 illustrates the effect of the magnitude of radius r on the values of 
roller pressing force F necessary for obtaining the required thickness ó. The 
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Fig. 5. Diagram of relationship F = j{ó, r) for fixed quantities: Re= 350 MPa,£= 2· 105 MPa, 
u= 0.3, D = 40 mm, d= 20 mm 

diagram shown in this figure was plotted based on numerical computations 
performed for the following geometric and material values: R, = 350 MPa, 

E = 2 · I 05 MPa , u= 0.3 , D = 40 mm , d = 20 mm . The curves shown on the 
diagram indicate a very small effect of variations in the value of roller radius r
on the magnitude of pressure force F that is necessary for shaft deformation, 
while maintaining the required thickness of the plasticized zone, 5. This effect is 
more significant for larger pressure forces ( of an order of magnitude of a dozen 
or so kN and above). However, pressure forces of such a magnitude are used 
very seldom in the burnishing of machine parts. 
Similar effect on the value of pressure force F necessary for obtaining a 
plasticized material zone of the required thickness 5 is exhibited by the two 
remaining geometrical parameters of the burnishing process, i.e. roller diameter 
D and shaft diameter d (a summary of numerical computation results is given in 
Table 1). 
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Table I. 
Relationship of selected values of thickness o as a function of pressure force F for different values 

of roller diameter D and shaft diameter d 
(fixed quantities: Re= 350 MPa,£= 2· 1 os MPa, u= 0.3, r = I O mm) 

F[N] F[N] 

o[mm] D=40 mm o[mm] d= 20 mm 

d=l6 mm d=20 mm d=24 mm d=30 mm d=40 mm D=30mm D=40mm D=50 mm 

o 111,21 139,69 164,14 193,9 229,35 o 119,75 139,69 153,76 

0,25 61,43 62,3 63,07 64,1 65,54 0,25 61,69 62,3 62,74 

0,5 213,95 215,6 217,09 219,08 221,88 0,5 214,44 215,6 216,44 

0,7 400,63 402,98 405,1 407,95 411,99 0,7 401,33 402,98 404,18 

1 787,31 790,78 793,93 798,2 804,28 I 788,33 790,78 792,56 

1,5 1714,15 1719,7 1724,76 1731,64 1741,46 1,5 1715,79 1719,7 1722,56 

2 2992,13 2999,94 3007,1 3016,83 3030,78 2 2994,44 2999,94 3003,99 

3 6596,74 6609,55 6621,31 6637,38 6660,47 3 6600,52 6609,55 6616,2 
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Fig. 6. Diagram of relationship F = fio, Re) for fixed quantities: £ = 2-1 os MPa, 
u= 0.3, D = 40 mm, d = 20 mm, r = I O mm 
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Figure 6 shows the effect of changes in the value of the yield point Re of the 
burnished shaft material on the value of pressure force F required for obtaining 
the required thickness <5 of the plasticized material zone (with the remaining 
parameters used for numerical computations being as follows: £ = 2 -105 MPa, 
u= 0.3, D = 40 mm, d = 20 mm, r = 1 O mm). A close relationship apparently 
exists between F and Re, e.g. an increment of the value of Re by 50 %, (from 
300 MPa to 450 MPa) will require that the pressure force F needed for 
obtaining a plasticized zone of the thickness <5 = 1 mm (5 % of the shaft 
diameter, d = 20 mm) be increased by 56 % (from 668 N to I 044 N). For 
example (for comparison), when burnishing a shaft of steel with R. = 350 MPa, 
in order to obtain the identical plasticized zone thickness <5 = l mm after 
changing roller radius r by 50 % (from 8 mm to 12 mm), pressure force F 
should only be increased by 2.5 % (from 781 N to 80 l N). However, the 
increase of roller diameter D, as well as shaft diameter d, by 50 %, causes the 
necessity of increasing force F by less than I % (Table I). Thus, it has been 
shown that the thickness, J, of the plasticized zone is very strongly affected by 
the values of pressure force F and yielding point R, of the burnished shaft 
material, while the effect of the geometrical dimensions of the roller and shaft is 
smaller. 

Both diagrams show that, within small values of plasticized zone thickness J, 
there appears a lack of uniqueness, that is for one value of pressure force F two 
different values of thickness <5 are obtained. This is due to the fact that for small 
pressure forces plastic strains occur at the Belaev point (i.e. in the nucleus of 
plastic strains), where the maximum stresses occur and, simultaneously, there 
exists an elastic state of stress around this region that is very small compared to 
the shaft dimensions. The solution of the system of Equations ( l O), ( 17), ( 18) 
has been developed based on the plastic deformation hypothesis, and hence, for 
purely elastic strains, the above mentioned ambiguity occurs. From the technical 
point of view, the solution occurring on the left side of function F = /(<5) 
should be rejected, as it is physically meaningless, because of the fact that with 
increasing pressure force the thickness of the plasticized zone decreases. 

Because of very complex form of the system of Equations ( l O), ( 17) and ( 18) 
its solution is possible, above all, by a numerical method. To allow for a wider 
application of the presented method in machines design and technology, a 
graphical solution of the equations has been proposed. 

Figure 7 shows relationship w= 1( 2r( ~ + ~)) . The diagram represents the 

graphical solution of the system of equations ( 17) and ( 18) and, after fixing (D, 
d, r), makes it possible to determine of the value of the auxiliary variables 

a2 
w= - < J. To obtain high accuracy of solution, the functions E(k) and K(k) 

b2 
occurring in equations (17) and (18) have been expanded up to the fourth term. 
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Fig. 7. Diagram of relationship w= 1( ~+~)for general case (i.e. a< b) 
In turn, by employing relationship 

{ 

0
2 

w=-<l e 
b2 ⇒ b=- Vw' e=M w 

<) <) 
-;;=-;Vw, (I 9) 

one can transforme equation (IO) into equation (20) as the following 

relationship R:
2 
= 1( ! , w). The unknown b has been eliminated from equation 

(20), as well as from equations for E((f),k), F((f),k) by replacing it with known 
parameters - the auxiliary variable w as defined in Figure 7 and the semi-axis e 
(Hertz semi-axis). The equations are expanded to the fourth term (in 
conformance with the adopted rule saying that the degree of expansion of the 
functions E((f),k), F((f),k), E(k) and K(k) must be the same). The value of 
parameter e can be obtained by using formulas (8) and (9) for required force F. 

F ..fi. 1-w[[t5,, [!+w ( ) ( )] R,e' =371' ,J; -;:Yw(l-u)--;-E<p,k -2F<p,k +l-2u+ 

(20) 
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1
_

2
u w(!+(!)'✓w)-2u(w+(!)\1;)

---+ 2 2w (w+(!)'✓w)(1+(!)'✓w) [
o,d1-wu ( ) 

+ -;"wł-w-£ tp.k +

1_2u w2(2v-I)+(!)'✓w12(wu-l)+w]
-(1-u)F(cp,k)]+--+----;========~2 2w (w+(!)'rw)(1+(!)'✓w)

2 -0,5

where: E(ą;i,k) =arcct~~;J;)-(,-±(l -w)- :
4

{I-w)'+.. )+

+'w 1+(ir,/wr¾(1-w) +i(l-w)' + 3~ (!-w)' 1+(~)'✓w +... 1
F(cp, k) = arcctg( !;J;) ·(I +±(1- w)+ :4 {I-w)'+.. .)+

+rw I +(ir,'w l ¾(!-w)+:. (1-w)' + :2 (1-w)' I +(iJ'✓w + J
The solution of equation (20) for the case a< b is a pencil of curves in Fig. 8
(each curve for a different value of w). The feature shared by these curves is
their very weak dependence on the value w< I . That means that, for a particular

value of the expression i the increase of w by several hundred percent causes a
e

drop in the value of the expression R:' by a few ppt. Therefore, the graph of

relationship R:' = 1( ! . w) for the case a< b is very close to that obtained for

symmetrical case (a= b ) in Fig. 4.
To verify the results, i.e. the dependence of plasticized zone thickness 5 on

pressure force F, yielding point Re and the geometry of the workpiece and tool,
computations were performed by using the ANSYS 5.5.3 program that utilizes
the finite-element method.

The analysis of the diagrams of elastic stresses CJx=CJy and a, and reduced
stresses CJ,ed=CJ.r-Clz obtained from the ANSYS program and the solution
presented in this study, based on the theory of the compression of two bodies,
allows one to observe that the curves have a very similar behaviour in certain
depth intervals z.
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R,e' e 

Figure 9 shows examples of the variations of reduced stresses in an ideally 
elastic material (£=2· 105 MPa) and an elastic-plastic material with a 1.5 percent 
plastic reinforcement (£=2· l 05 MPa, Re = 400 MPa and I OOO MPa) along the axis 
of action of pressure force F = I O kN during pressing of balls of different radii 
( r = 5 mm, 15 mm) into the half-space. These plots were obtained by using the 
ANSYS program and then compared with the results obtained from the solution 
presented in this study. It can be seen that according to each of the plots, at 
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Fig. 9a. Diagrams of reduced stresses UreJ = j(z) obtained from the AN SYS program and the 
solution presented in this study during pressing of non-deformable ball (of radius ofr = 5 mm) 

into ideally elastic material (half-space, E = 2-1 os MPa) and the elastic-plastic material 
(half-space, 1.5 percent plastic reinforcement, Re= 400 MPa and 1 OOO MPa) 
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Fig. 9b. Diagrams of reduced stresses u,.,J = j(z) obtained from the ANSYS program and the 
solution presented in this study during pressing of non-deformable ball (of radius of r = 15 mm) 

into ideally elastic material (half-space, E = 2· los MPa) and the elastic-plastic material 
(half-space, 1.5 percent plastic reinforcement, Re = 400 MPa and I OOO MPa) 
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a,eJ = R,, = 400 MPa and 1 OOO MPa, the coordinate z= o is slightly greater 
than that for the elastic-plastic body with 1.5 percent reinforcement Therefore, 
when pressing the ball of r = 15 mm into the material with Re = 400 MPa , the 
difference is + 0,56 mm, which makes up ~ 16,5% of the expected value 
(3.39 mm). In the second case (the material with Re = 1000 MPa) the difference is 
+ O, 18 mm, which constitutes ~ 9% of the expected value ( 1.97 mm). Moreover, 
coordinate z= t5 decreases its value with increasing r. 

The FEM-based solution covered in a total of 36 cases of pressing the non­ 
deformable ball ( r = 5 mm, I O mm, 15 mm) into the half-space (the ideally 
elastic steel body and the elasto-plastic steel body with a 1.5 percent 
reinforcement with plastic points of Re=I OOO MPa and 400 MPa, respectively) 
with a force of F=5 kN, 10 kN, 15 kN and 30 kN. 

It has been found that the depth at which occurs stress a,ed =Re, computed 
based on the a,-ed plots from the ANSYS program, is by maximum 0.2 mm 
smaller than that calculated according to our formulas for ideally elastic bodies. 
It is larger, on the average, by 12% and 19%, for elasto-plastic bodies 
1.5 percent reinforcement with Re = I OOO MPa and 400 MPa, respectively. 
Smallest differences (by 8% on average) were obtained for the body of the 
highest yield point with pressure forces of F = 5 kN and I O kN (for the body 
with the higher yield point - by 17% on the average). Thus, the calculated 
differences between the values of coordinate o should be considered the 
maximal. The differences are primarily due the fact that, in the zone of stresses 
a,ed slightly exceeding Re (Fig. 9), a small increase in stress is associated with a 
corresponding step change in thickness. For this reason, for stresses a,ed only 
slightly exceeding Re (by less than I%), a clearly lower depth of z= o and a 
large (even several percent) reduction of the differences between the two 
solutions takes place. 

Thus, within the range of stresses a,eJ ::::: Re , the formulas based on the 
theory of the compression of two bodies and computations performed using the 
FEM allow a sufficiently similar result to be obtained for materials with high 
yield points (and in the case of low yield point materials - primarily with small 
pressure forces). This agreement is sufficient for the calculation of the thickness 
of the upper layer deformed plastically after surface burnishing, performed 
according to our solutions, where plasticized zone thickness o is assumed to be 
defined by the depth of the occurring stress a,eJ =Re. 

Figure I O shows relationships o= f (F) (curves) obtained for pressing a ball 
(of radii of r = 5 mm, I O mm, 15 mm) into the material ( E = 2-105 MPa, 
Re= 400 MPa and 1000 MPa), according to the authors' solution based on the 
theory of the compression of two bodies. In the same graph, these are compared 
with the results for the elasto-plastic body with 1.5 percent reinforcement 
obtained by using the FEM (the ANSYS program). Small differences in the 
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above-mentioned regions confirm the validity of the analytical solution by the 
authors. 

It has also been found that increasing pressure force or decreasing ball radius 
leads to an increase of the differences between the solution, which means that 
the relative error of the method grows with the increase in the required depth of 
the plasticized zone, o (Fig. I O). 
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Fig. I O. Diagrams of relationship F = j( O) during pressing of non-deformable ball of different radii 
into the half-space with different plastic points of Re. Results obtained according to the authors' 
solution compared with the results for the elasto-plastic body with 1.5 percent reinforcement 

obtained by using the FEM (the ANSYS program) 

Thus, both methods of solving the system of Equations ( 1 O), ( 17), ( 18) for 
the case a< b, that is the numeric method and the graphical method, provide 
practically the same result, i.e. the required pressure force F in a wide range of 
the magnitudes of w, o. In addition, this result is identical with the result 
obtained for the case of symmetrical loading, where a = b = e. This means that 
plasticized zone thickness o after surface burnishing with a non-deformable 
roller of a torus profile, for the same pressure force and the same material, 
slightly differs from the value obtained in burnishing with a ball. Thus, in the 
calculations of the thickness of the plastically deformed layer, the symmetrical 
case, ( O'x = O'Y ), does not differ much from the asymmetrical case, ( O'x -::1: O'Y ). It 
should be emphasized that the method of calculating plasticized zone thickness 
o based on the theory of elasticity, proposed in this study, has been verified for 
a material of characteristics O'= f(c) close to that of an elasto-ideally plastic 
body. Verification of method was accomplished for the symmetrical case only, 
or it is limited to pressing-in balls of different radii, while the theoretical 
solution applies also to the asymmetrical case. 
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Analiza grubości strefy uplastycznionej w procesie nagniatania powierzchniowego

Streszczenie

W pracy dokonano analizy grubości strefy uplastycznionej powstałej po nagniataniu
powierzchniowym części maszyn nieodksztalcalną rolką o zarysie torusowym. Wyznaczono
funkcję określającą grubość strefy uplastycznionej od parametrów nagniatania. W rozwiązaniu
zastosowano hipotezę odkształcenia plastycznego M. T. Hubera. Stwierdzono, że grubość strefy
uplastycznionej w głównej mierze zależy od siły docisku i granicy plastyczności, natomiast w
małym stopniu zależy od wymiarów geometrycznych przedmiotu obrabianego i rolki
nagniatającej.


