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THE TWO-ACTIONS THEOREM AND ITS APPLICATION TO 
COMPOSITE MATERIALS 

In the present study a new energy theorem is proposed, "The two actions 
theorem", which is valid in linear elastostatic problems. A new formali sm 
concerning the works done by the external actions is introduced. Known energy 
theorems are proved using the proposed two-actions theorem. A composite 
materials problem is confronted in terms of the two actions theorem and energy 
relations are formulated. Finall y, it is presented a study on the problems of a 
composed two material holl ow cylinder under internal and external pressure, and of 
stretching of an infi nite plate with an inserted elastic disc of a diff erent material. 
The proposed energy relations are verifi ed in these applications. 

1. Introduction 

The known energy theorems have already been analyzed in the literature of 
Mechanics [I], [2], [3], [4], [5], [6] and have also been used in Variational 
Methods [6-9]. These theorems are the basis of many calculations in Mechanics. 
On the other hand, a very interesting problem in composite structures [ 10], [ 11], 
[ 12], [ 13], [ 14 ], [ 15], [ 16] is the variation of the energy in a composite 
constituent when there is a variation in the actions applied to the composite. 

The basic idea of this study is the introduction of a new energy theorem, 
"The two- actions theorem", based on the external actions' work. 

The originality of the present study is that the two-actions theorem is a 
general energy theorem applied only to linear elasticity problems in the absence 
of inertial forces. With the proposed theorem, and according to a new 
formalism, the known energy theorems have been proved in a simple way. 
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The two-actions theorem is also applied to a composite materials problem 
where energy relations based on the new symbolism are formulated. Finall y, two 
appli cations are made. The fi rst one concerns the problem of a hollow cylinder 
composed of two materials, with free ends under uniform internal and external 
pressure. The second one is connected with the problem of stretching of an 
infinite plate with an inserted elastic disc of a different material. The previously 
formulated energy relations of the two materials composite problem are verifi ed. 

The proposed formalism may play an important role in problem solving and 
may be more easily grasped by students or practionners. In the case of the 
composite materials problem, it is proved taking into consideration the 
superposition principle, how the variation in the actions applied to the 
composite may infl uence or not the strain energy of the composite constituents. 

The proposed two-actions theorem can also be used as a Variational Method. 
The formulation of this new energy theorem in the case of variational methods 
may be a subject of future research. 

2. Symbolism of the work of external actions 

Let an elastic body (D) subjected to a system of external actions (A). 
We defi ne WAA the work that would be done by the system of external actions 

(A) in acting through the displacements as going from the initial undeformed 
situation to the final deformed situation of equilibrium. (Fig. 1). 

---- undeformed situation (t=O) 
--------- deformed situation (t=to) 
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Fig. I. Elastic body (D) subjected to the system of external actions (A) 
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In case of lack of kinetic energy, WAA is transformed in strain energy U and 

it holds 

wAA = u = LU criJd£iJ }v, 
Because of the linearity and of the generalized Hooke's Law [2], [3] 

i,j=l,2,3. 

i,j,k,m=l,2,3, 

(I) 

(2) 

where 
dE 

au =au(t), Eu =Eu(t), fu= d/, O~t5ct0. 

Taking ito consideration the symmetry property of the elasticity tensor [ 1-6], 
relation (I) is written 

WAA =U= f ({auEiJ )dv = f U0dV, (3) 

where U O is the specifi c strain energy [3] of the elastic body (D). 

We define WA,B the work that would be done by the system of external 

actions (A) (in the state of equilibrium due to (A)) in acting through the 
displacements' field due to another system of external actions (B), acting on 
(D), as going from the initial undeformed situation to the final deformed 
situation of equilibrium (t = t0) (Fig. 2). 

---- undefo rmed situotion (t=O) 
--------- defo rmed situotion under (A) 

. - - . - - - .. - .... - deformed situation under (8) 

(B) 

(A) 

(A) 

(B) 

Fig. 2. Elastic body (D) subjected to the systems of external actions (A) or (B) 
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In case of lack of kinetic energy 

[ 

(B) l i) (A) (B) (A) (S) 
wA,B = i r (J'ij -« dV = i (J'ij £ij dV, i, j = 1,2,3 (4) 

According to the proposed formalism, if (A) denotes the system of external 
actions yielding the work and (B) denotes the system of external actions 
yielding the displacements' field, then "WAB" denotes that both systems of 

external actions (A) and (B) are progressing together from the initial 
undeformed situation to the final deformed situation of equilibrium whereas 
"WA,S" denotes that the system of external actions (A) is already in equilibrium 

while the system of external actions (B) is progressing from the initial 
undeformed situation to the final deformed situation of equilibrium. 

3. The two-actions theorem 

Consider an elastic body (D) and two conservative systems [5], [6], of 
external actions (A) and (B) beginning to act on (D) at t =O. 

Let us calculate the work WAB that would be done by the system of external 

actions (A) in acting through the displacements field due to the system of 
external actions (B) as both systems are progressing together from the initial 
undeformed situation to the final deformed situation of equilibrium. 

Supposing the validity of the infinitesimal of strains, the linearity of the 
elastic constitutive law and considering that the work WAB is a function of time, 

then from (I) it is obtained 

w AB= i (J'tA) ti)Bldv, 

thus the work WAB, is written 

f 
1111 

( f {A) -(B) ) WAB = 
0 

J.; (J'ij Eij dV dt, 

(5) 

(6) 

where tA the time of evolution of system (A), tB the time of evolution of 

system (B) and t111 = max(tA,tB). It is noticed that in relation (6) the external 

actions (A) and (B) begin to act at t=0, and if tli , =tA (tA >tB) then £i)B> =0 

for t» <t~tA =t111, while if t111 =tB (tA <ts) then E;)A) =0 (or O'tA) = const ) 

for tA < t <ts= tli,. 
Because of the conservativeness of (A) and (B), it follows 

WAB= i ( Jt O'tA)ttB)dt )dV. (7) 
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Applying integration by parts to relation (7) and considering that at t = O, 

o-<A) = O and E(B) = O we have u u ' 

i( J £tB) (J'(A)di8) ]dv = io-(A)iB)dV- i( J £t1) (J'(B)dE(A) ]dv 
0 

IJ IJ IJ IJ 
O 

km km 

or in terms of the proposed formalism 

WAB+ WsA = wA,s 

From relations (8) and (9), we have the following new energy theorem 

( 8) 

( 9) 

THE TWO-ACTIONS THEOREM: If on an elastic body with a Linear 
constitutive elastic law and an infinitesimal strain field law, two conservative 
systems of external actions start to act simultaneously without provoking kinetic 
energy, then the sum of the work done by the first system in acting through the 
displacements due to the second system as both systems are progressing and the 
work done by the second system in acting through the displacements due to the 
first system as again both systems are progressing, is equal to the work that 
would be done by the first system being already developed in acting through the 
displacements due to the second system as it is progressing from the initial 
undeformed situation to its final deformed situation of equil ibrium. 

Let A,B,r,Li conservative systems of external actions acting on the elastic 

body (D). 
Because of (9), a permutation property occurs 

wA,B = wB,A (10) 

Taking into consideration (4) and (9), a distributive prop~rty occurs 

wA,B + wA,r = wA,(B+r) 

WAB + WAr = WA(B+r) 
(11) 

In the case of displacements superposition from ( 4), (9) and (11 ), it is obtained 

wA,B + Wr,B = w(A+r),B 
( 12) 

Hence, in the general case, it holds 
w(aA+/JB),(cr+dt.) =acWA,r +adWA,t. + ,BcWs,r + ,BdWB,t.• a,/J,c,d ER, 

( 13) 

The properties (9) and ( 13), derived according to the proposed formali sm, have 
also been formulated by other investigators [3], [6], [IO]. 
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4. Formulation of the energy theorems in terms of the proposed 
two-actions theorem 

In this paragraph the known energy theorems [2], [3], [6] are proved in terms of 
the proposed two actions' theorem. 

The reciprocity theorem of Betti-Rayleigh is the permutation property of the 
two actions' theorem according to relation (10). 

From relations (I) and (9) and for (A)=(B), Clapeyron's theorem [3], [6] is 

obtained 
( 14) 

Applying relation (9) to the systems of external actions (A) and (B) = (óA), 

where (óA) is a system provoking only virtual displacements consistent with 

constraints imposed on the body and without creating stresses that change the 
equilibrium due to (A)(W(óA)A=O), and taking into account relation (I), the 

principle of virtual work occurs 

wA,ÓA = WA(óA) + w(óA)A = WA(óA) = óWAA = su ( 15) 

Applying relation (9) to the systems of external actions (A)= (óB) and (B), 

where (óB) is a system provoking only virtual stresses without creating 

displacements that change the equilibrium due to (B)(WB{bB) =O), and taking 

into account relation (I), the principle of complementary virtual work occurs 

WbB,B =W(bB)B +WB(bB) =W(bB)B =óU* (16) 

where u* is the complementary strain energy. 
Applying relation (9) to the systems (A) and (óA), where (óA) is a virtual 

system of external actions, a known property of the linear elastic body occurs 

su = wA.oA = w0A.A = su', (17) 

Let (A) and (A+ c5A) systems of external actions. With the use of relations 

(9) and ( 13), we have: 
I 

!:Y,.U = W(A+óA)(A+óA) -WAA =
2

W(óA),(2A+óA) 

In case that (óA) becomes infinitesimal small , it is obtained 

I 
au =2W(JA),(2A+JA) = w(JA),A 

From relation ( 19) if (JA)= JQ; (the i component of the load JQ ), the first 

theorem of Castigliano occurs 
au 
--=U· 
JQ; I 

From relations (IO) and ( 18), we get 

(18) 

( 19) 

(20) 
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I 
!1U =2W(2A+JA),(JA) 

Respectively in the limit when (JA)= Ju; (the i component of the 

displacement Ju), the second theorem of Castigliano occurs 

JU =Q (21) 
Ju; I 

If (A) is a system of external actions, then the potential energy in terms of 

the proposed symbolism is written 

TI(A)=WAA -WA,A 

Let (oA) be a system of external actions creating a virtual variation &iJ on 

the strain field and ocriJ on the stress field without changing the external forces 

(W(A+JA} ,(A+JA) = WA,(A+JA)), then 

rr(A + oA) = w(A+JA){A+JA) -wA,{A+JA) 

Hence 

11TI = fl ( A + 11A) - TI (A) = w( JA)( JA) > O , 

as virtual strain energy. Taking into consideration that (oA) 1s an arbitrary 

virtual system, the theorem of minimum potential energy occurs 

TT(A) =min. (22) 

5. The use of the two-actions theorem in the case of a composite body 

Let (D) = (D1) U (D2) a system of two linear elastic bodies (Fig. 3) and 

( 11) = ( 111) + ( 112) a conservative system [6], [7] of external actions acting on 

(D) except the bimaterial interface Sc(S1 n S2) and without the creation of any 

kinetic energy, where 
(/11) is the part of (/1) acting on the body (D1), 

(112) is the part of (11) acting on the body (D2). 

The body (D1) 1s 111 equilibrium, under the action of the system 

(A)= (111) + (t:1;), where (111) c (11) and ( ~o a system, considered as 

conservative [6], [7] in the present study, acting on the bimaterial interface Sc. 

Taking into consideration the superposition principle, let the body (D) be in 

equilibrium under the system of external actions 

a(11)=a(t1i)+a(t12), a>I, without the creation of any kinetic energy. 

Under the above assumptions, (D1) is in equilibrium under the action of the 

system (B)=a(111)+(11n, where a(111)ca(11) and (11n a system 
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considered as conservative, acting on the interface s; ( s; -:;:. Sc) where s; is the 

new bimaterial interface according to external actions a(~). Hence the body 

(D1) is finall y in equilibrium under the following system of external actions 

(B)=a(~1)+(~n ! (r)=(B)-a(A)=(~n-a(~;); (A)=(~1)+(~;). 

(D)z(D1)U(D2) 
(l,)-(A1)+(A2) 

(D,) 

S2 

Fig. 3. A system (D) of two elastic bodies subjected to the external actions (b.) 

Applying relations ( 13), we have 
7 

Wrr = W(B-aA )(B-aA) = a-W AA - aWAB - aWBA + WBB 

and taking into consideration the two actions' theorem, it is obtained 

Wrr =W(B-aA)(B-aA) =a2WAA +Wsa -aWA.B (23) 

Relation (23) gives the strain energy of the elastic body (D1) under the 

superposition of the following systems of external actions 

(i) System: (B), 
(ii) System: -a( A), a> I. 

In the case that O< a- I << I , the quantity ( a - I )2 is approximately zero, 

thus relation (23) using relations (9) and ( 13), takes the approximate form 
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Wrr= (2a- l)WAA + W88 -aWA.B = 
=[1+2(a-1)]wAA +Wss-[ l+(a-l)]wAB = 

=WAA +Wss-WAB-WBA +(a-1)(2WAA -WAB-WBA)= 

=WA(A-B) +WB(B-A) +(a-l)(WA(A-B) +W(A-B)A)= 

=-WA(B-A) +WB(B-A) +(a-l)WA,(A-B) =W(B-A)(B-A) +(a-l)WA,(A-B) 

or 

W(B-A)(B-A) = W(B-aA)(B-aA) -( a- 1) WA,(A-B), 0 <a-I<< 1, 

(r)=(B)-a(A). 
Relation (24) gives the strain energy of the elastic body (D1) under the 

action of the system (B -A) . In addition, the variation of the strain energy in 

(D1) when the system of external actions ( L1) acting on ( D) is replaced by the 

system a( L1), would be 

(24) 

where 

(B)=(A)+(JA), (JA)=(a-1)(L11)+(L17-L1;); O<a-1<<1. 
In the case that (JA) is an infinitesimal variation of the system (A), it 

can be considered that 

(B)=a(A), (JA)=(a-l)(A); O<a-1<<1. 

Hence 

i1U = WBB -WAA = awA,(BA); (B) = (A) +(JA), O< a-I<< 1 (25) 

Relation (23), or in some cases the approximate relation (24), calculates the 
strain energy Wrr due to the superposition of the external actions 

r = ( B )- a (A), a> 1 . Ensuring that Wrr is equal or not to zero, an appropriate 

procedure can be chosen in order to study the behaviour of a particular constituent 
of the composite body, as it has been analyzed in Section 7. 

6. Applications 

Two applications are made in the case of a bimaterial composite body in 
order to verify the validity of the energy relations (23), (24) and (25). The 
importance of the results combined with an appropriate procedure, is analyzed 
in Section 7. 
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6.1. The axisymmetr ic deformation of a composed two mater ials hollow 
cylinder 

In this application we are going to express the energy relations (23), (24) and 
(25), in the case of the axisymmetrical deformation of a composed two material 
hollow cylinder with uniform internal pressure p and external pressure q and 

free ends in plane strain conditions (Fig. 4). The system of bodies 

( D) = ( D1) U ( D2) is consisted of the internal hollow cylinder ( D1 )( A, ,µ1) and 

the external hollow cylinder (D2)(~,µ2), where A, (i=l,2) is the Lame 

constant and µ; is the shear modulus. Let, S,, the bi material interface of radius 

p' between the two cylinders. 

The stress and displacement fields for the internal cylinder ( D1) are given [4] by 
n o p - p- 
-, -I I-- 

a,.,. (r) = -p r:? -q' < , p- p- 
-? -I 1--p-,2 p- 

n 
p- +I 

? 

<700 (r) = p~r-:-, - 
p 
-,-1 
p- 

and for the external cylinder ( D2) by the relations 

R2 n p- 
-, -I 1--, 

a,.,. ( r) = -q' ; ~ q ;:2 , 
-,, -I 1-- p- R2 

R2 n 
-+I l+p- 

2 2 

( )- , r r 
<700 r -q R' -q n• - p - 

-,, -I 1--, 
p" R" 

(26) 

(27) 

u0 ( r) = O, 

where q' is the uniform pressure acting on S,. 
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j (D)=(Dl)U(D2) 

----<c:> 

+- P'- - -+--- - P~ 
+---R--__... 

Fig. 4. A two material cylindrical pipe under uniform internal and external pressure 

Taking into account the continuity of stresses and displacements between the 

two cylinders ( D1) and ( D2) and the relations (26) and (27), it is finally obtained 

I ! " ## $%"##
& = 

"
(28) 

where 

" ## = p2 ( R2 - pn ) ( A, + 2µ1 ) '( ) * + µ2 ) , 

"## = R2 (P12 -p2)(~ +2µ2 )µ1 (Ai+ µI), 

" = (p'2 - p2 )[ ~Rl + µ2 ( R2 + p'2) ]µ1 (A,+ µI)+ 

+ ( R2 - p'2 )[ A,P2 + µI (pl + p'") ]µ2 ( ~ + µ2). 

The strain energy of the internal cylinder ( D1) per unit length, is given by the 

formula 

+ , ff - 0rd0dr = 2tr r +0rdr 

where the elastic potential (specifi c strain energy) + . is given [4] by: 

A, ( )2 ( 2 2 ) U; =- E,.,. +Eee +µ1 Err +Eee = 
2 

= I [ (pp2-q'p12)2 (p-q')2p4p,4] 
1 + 4 . 

2(p'2 - p2 r A,+ µI µIr 

(29) 

(30) 
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Hence, relation (29) is finally written: 

U ! " = ,r [(PP2 #$%&%' () *&#+%(' p2p,2] (31a) 
AA ( ) , - ( ) + , 2 &# #&# ,.'1 + µI µI 

or 

U=¾[ ' -.&&/ - (P) + ' -.&%*#+%(/ - (p')] = 0 12 A 

where (A)=(L11)+(Ll;), (L11)=p, *345(! $%6

Let ( B) a system acting on ( D1), consisting of an internal uniform pressure 

7&*78 1) and a uniform external pressure $9 due to ( D2) . Hence, the 

superposition (r)=(B)-a(A) is consisted only from the uniform external 
:

pressure qH - aq' acting on ; -6 Applying the relation (31 a) for the systems 

(A), (B) and (r), we get 

- ,r( +9#7+%(' &< = p'2 p2 ) 
Wrr - ( ,, , ) ) + , 

2 P - - &# ,.'1 + µI µI 

w = >. [(PP2 #$%&%' () + *&#+%?p2p'2 l (32) 

AA 2(p'2 -p2) Ai +µI µI j' 

Wss = ,,,r , [( 7&&' #$9p'2 )2 + ( 7&#+9(' p2 p'2 il, 
' *&##&#( Ai+µI µI 

(31 b) 

and because of the definition of " 26@ (§ 2) 

" 26@! ' ).&&/ -#6*&(#' ).&%$%/ -
0 

*&%(!

). lr 2 ( , , ,, ) ( , ,, ,, ) = ( ,2 2) ) &&##$&# 7&&##$&# + (33) 
2 p -p ,.'1 +µ1 

+2 p2 p'2 *&#+%(*7&#+9(A#
µ1 

Using relations (32) and (33), relation (23) is proved. 
Let consider now the system ( A - B) acting on ( B1) and consisting of an 

internal uniform pressure ( I - a) & and an external uniform pressure $%#$9

with O< a-1 << 1 . Applying the relation (31 a) for the system ( A - B) and the 

superposition system (r) = (B )- a( A), we obtain 

>. = A Bl 
~A-B)(A-B) := ' *&%' Cp2) Ai+ µI + ~J' (34) 
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$ %&' &

! " #$%&$' () %* ()*+,*-./ +0 ,0)1,2. ) ) %+,

B 3 )*+,*-.($%&$' ,0)1,2. ) +) *) %*,
245

- &- & 6' () *- &. / %(* ) %0 #$' &. / %(1 ) * / +07 )! 8.
(B-aA)(B-aA) - rr - 2)/ +-9 ) *( !234, + 4,

: &; 2<=&>?@%&5&?A4A@A>4 >? WA.B )B 2) 

- " * ,5,) ) 6 #) (&*,5,) %$%6 #) %( )! C.
A,(A-8) '(A-B) '(A-Bl 

D=A4E ' &F2@A>4= )! G.6 )! 8.6)! C. 245 )0C. @%&' &F2@A>4 )0G. A= / '>H&5I

JA42FFK6 F&@<= ; >4=A5&' 2 =K=@&L ): . = a(A), 0< a-1<<1, 2; @A4E >4 ) 7 ,(
245 ; >4=A=@A4E >? 24 A4@&'42F <4A?>' L / ' &==<'& ap 245 24 &M@&'42F <4A?>' L

/ ' &==<'& *- = aq". N4 @%A= ; 2=&6 @%& =</ &' / >=A@A>4 =K=@&L (r) A= O&'>6 245 @%&

=K=@&L ): ., )P.3 )QP. A= ; >4=A=@A4E >?24 A4@&'42F / ' &==<'& (a-I) ) 245 24

&M@&'42F / ' &==<'& (a-I) $%8 P/ / FKA4E ' &F2@A>4= )! 0.6 $ &E&@

9 6') . &I) [ I ( 0 6 60 .0 I ( +.0 0 607
WBB - WAA 3 60 2 ;J ) ) &$ ) + - ) &$ ) )

) &) -1 + 4, 4,
)! R.

S2TA4E A4@> ; >4=A5&'2@A>4 @%& 5&?A4A@A>4 >? WA.B )B0. 245 ' &F2@A>4= )0C.6 @%&

' &F2@A>4 )08. A= ?A42FFK / '>H&5I

6.2. Stretching of an infinite plate with an inserted bonded elastic disc 

U&@24 A4?A4A@&L &5A<L 7 * (µ*, 9*( $ A@%2 ; A' ; <F2' %>F&>?'25A<= : * A4@> $ %A; %

24>@%&' ; A' ; <F2' &F2=@A; 5A=; $ A@%5A??&'&4@&F2=@A; / '>/ &'@A&= V 1 )W16X1. 245 $ A@%24

>' AEA42FFK F2'E&' '25A<= Y1 3 Y0 + Z )Z [ \ . A= A4=&'@&5 )JAEI 8.6 $ %&' & 4; #23 160.

A= @%& =%&2' L >5<F<=6 K; 3 ! , GH] ?>' / F24& =@'2A4 >' 9; 3 ) ! , GH]. )̂ 1 3<;( ?>'

E&4&'2FAO&5 / F24&=@' &== ; >45A@A>4= 245 <; A= @%&_>A==>4+= '2@A>I S%& A4?A4A@&L 2@' AM

V0 A= 2F=> =<`a&; @&5 @> ` A2MA2F @&4=A>4 2@A4?A4A@KI

S%& =@' &== 245 5A=/ F2; &L &4@?A&F5= ?>' @%& A4;F<=A>462' &EAH&4 ( 1R7 ` K

CY 3 p + q Pb p - q M ; >=20- P, 
1
" 0 0

CY 3 p + q P , = &q > ; >=20 - =,
I,., 0 0

CY 3 , p - q M =A4 20 ,,. 2 , 
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p+q p-q p 
2µ1u1_ =-

4
-A(K1 -l)r+-

2
-Mrcos20-2(Ki -I)r, 

p-q . 
zu», =---Mrsm20, 

H 2 

(38) 

where 

. A= µ1(K2+I) , M=µ1(K2+l) P= 4µ2AE. 

2µ1 + µ2 ( Kl - I) µ2 + K2µ1 ' R2 ( K2 + I) 

Let, (A) the stress and displacement fields at the boundary of the inclusion 

( r = R1 = R2) due to the biaxial tension at infinity (Fig. 5), given by 

N(A) = (T(A) = p + q A+ p - q M cos 20- P, 
(11) I,, 2 2 

T(A) = cr(A) = - p-q M sin 20 
(11) l,H 2 ' (39) 

F 

l l 11 l l l l l lTI-1TlJT l ill 
q 

Fig. 5. Stretching of an infinite plate with an inserted elastic disc 



! " # ! $ %&' ( !) %* + ! " # %, # - ' * . )! + ' / / 0)( ' ! )%* ! % ( %- / % 1! # - ' ! # , )' 0+ 23 3

Let, ( B) the stress and displacement fields at the boundary of the inclusion 

( r = R1 4 R2) due to the actions ap (a> I) and q at infinity, given by 

N(BJ = cPl 4 ap+ q A+ ap - q M cos 20- P 
(8) )55 6 6 5

!5789 & (Bl - ap-qM . 20 
7: 9 &CT1," - 6 sm , 

7; <7 a p+q ( ) ap-q P( 2µ1u1, R2,0)= 
4 

AR2 K1-I =
2 

MR2cos20-2 K1-l)R1, 

(BJ( )- ap-q . 2µ1u1• R2,0 -- 
6

MR2sm20. 

If the loading 7><47?<&@7' <7@A)< is considered as the superposition of the 

actions (B) and -a(A) at the boundary of the inclusion, we have 

(40) 

7>< 7B< 7' < 7 < q ( 20) ( )<N(eJ = N(Bl - aN(8l = P a - I - 2 A - M cos a - , 

7>< C 7B< D' < C q ( ) · 20 
~8l -~8i -a~0l --2M @&)8E 5

2µ
1
F7G7R2, 0) 4 p; 2 

( K1 - )<7@&)<&q: 2 
[ A ( HI &)<&2M cos 20] 7@&)<5

7>< 7 < C qR1 ( ) . 2µ1u1• R2,0 --6 @&) Msm20. 

7J1<

Taking into consideration the relation for the strain energy 

U =½Jc~"[ N ( 0) u1, ( R2, 0) = T ( 0) u1,, ( R2, 0) ]R2d 0, 

we obtain for the different actions (A), ( B) and 7><

7 = )2 R21r 
F7' <4$ =P K 2 ' 27L&)<=

AA 16µ1 I 

= 7p - q <6 R; ,r M 6 = p R; ,r ( K
1 
- )<7P - ( p = q) A) , 

8µ1 4µ1 

( )

1 1 a = & R- 1r 
u(B)=w 4 P K 2 ' 27L&)<=

88 16 I 
µI 

7 <
M N 6a - - R- ,r PR ,r 

= P q 2 M 2 =_2_ ( K1 - )<7P - ( a P = q) A), 
8µ1 4µ1 

7J6<

(43) 

(44) 
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!" #$$ !% &' %( #) * " +," - ," +. / 0%( #( &!" % / ' ( &/ " ( " 1" - , " +

234567
PR!

!"
U(r) =Wrr= 

4 
7 (K 5 4862* 49#6:

; !

#$ 567 2R21r 
: 4I %& 2 [ ( Kl - I) A 2 : 2M 2], 

and because of the definition of WA.s (relation (4)) 

WAs = ' ()" #*+, -#$*+, -. 2#/ 1 4!6: ' (0"#*12-#$*1, -3 ! :
8µ1 4µ1 

PR1
!"

:42 (K1 - 5627* 4<23: !6p : 79=#6'
4µ1 

Using relations (43), (44), (45) and (46), relation (23) is proved for the inclusion 
when the infinite matrix is subjected to biaxial tension at infinity. 

Let ( A - B) the stress and displacement fields at the boundary of the 

2>?6

(46) 

inclusion ( " @A1 @A2) due to the unidirectional tension at infi nity 

O< $ 1l << I . Applying relations (38) with (1- $- p and q =O, we obtain 

N(A-s) @2!4362# : 3 cos20)- 4
( e) 7 B

5)IA-s) 61#01$-43 7 20 
(e) 7 sm , 

(A-s)( 6C28436DA2[ ( ) ] PR8# -2µ1u1, R2,0 - 
>

# / 1 4! : 2M cos20 -7 Xj - ! .

(A-s) ) #01$-4 7
2µ1u1• #' 8)9 = 

2 
3 ' 8: ; 897

In a similar way, and taking into account that 234! 67 =O, we may obtain the 

following relations 
PR8

!"
~A-B)(A-s) @T( K1 - !6<41#!1$- *. <) (48) 

; !

wA,(A-sJ = ' (!" #01$- 4 =#4 : E6# 7 2K1 - !6: 72D49 -3 8 47* #2K1 456=:
8µ1 (49) 

PR8
!"

:47 (K 5 456<7* 42D+, -. <7
4µ1 

with 

(47) 

It is also obtained from relation ( 45) with ( $1! -2 
=O, that 

Wrr :::O. (50) 
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Thus 

PRJ1r(l-a)( )[ ] 
Wrr -(a-l)WA.IA-B) = 

4
,¼ K1 -I ! " #$%&' () *

Taking into consideration relations ( 48) and (51 ), relation (24) is val id if 
P=0¢=1£=0. 

(5 I) 

(52) 

From relations (43), (44) and in the case that (a-1)2 =O, we get 

_ Rf 1r ( +#1) p [ 2 ( ) ( ) 2 ] 
WBB -WAA =----'----'--- A Xj-1 %&' &! , $%#' (#! " ) $- . -1) . 

/ 0.
(53) 

In addition, from relation ( 49) and for ( B) - (A)= ( 1(A) , we have 

231r ( +#1 ) p [ 0 ( ) 2 ] 
awA.JA = - 

8 
A- - . -1 $%&4(&! , $%#4(#! " ) $-5 -1) - 

~ ( 5~ 
aPR;1r # # $- . -1)(2P-(p+q)A). 

60.
From relations (53) and (54), relation (25) is valid if 

P=0¢=1£=0. (55) 

7. Discussion and conclusions 

The proposed two-actions theorem and the introduced formalism (equation 
(9)), because of their generality and simplicity, may play an important role in 
understanding and an important practical role in the application of the energy 
theorems. The presented methodology simplifies the energy analysis, as it has 
been proved in Section 4, because all the known energy theorems are derived 
easily from the application of the two-actions theorem. On the other hand, the 
simplicity of the proposed formalism and the two-actions theorem, result in new 
energy relations in the case of composite bodies. 

Based on the new formalism and the superposition principle, the new energy 
relations are introduced in Sections 5 and 6 in the case of a two material 
composite body. From the two applications it is concluded that the strain energy 

7 88 due to the superposition of the external actions ( 9 (#a( ) (. a> 1, is nil in 

the composite constituent ( D,) only in the case that: 

The action (B) on (D,) caused by the external action a(~) on the 

composite body (D), is an exact multiplier of the action (A) on (D,) due 

to ( ~), in the case that at the interface between the two bodies ( D1) and 

( D2), there is not any imposed deformation. 

Hence, there is no difference between the following two procedures: 
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• At fi rst the action on the composite body ( D) is increased, and secondly the 

( D1) body is separated from the composite. 

• At fi rst the (D1) body is separated from the composite ( D) and secondly the 

action on (D1) is increased. 

Namely, the procedure "increase and separate" is equivalent to the procedure 
"separate and increase" for a constituent of the composite. 
On the contrary Wrr is not nil in the cases that: 

(i) The action (B) on (D1) caused by the external action a(~) on (D), is 

not an exact multiplier of the action (A) on ( D1) due to ( ~). 

(ii) There is some imposed deformation at the interface between the two 
bodies. 

In this case, there is a diff erence between the previously mentioned procedures. 

Namely, "increasing the action on the composite (D) and after separating the 

( D1) body" is diff erent from "separating the ( D1) body from the composite 

( D) and after increasing the acti on on ( D1 ) ". 

The proposed energy relations help the investigator to select the appropriate 
procedure in order to study the behaviour of a constituent of the composite 
when the external actions on the composite vary. Evidently, the proposed energy 
relations may also be applied to the case of a composite consisting of more than 
two different bodies or for analyzing a part of a composite. 

Manuscript received by Editorial Board, March 12, 2002; 
final version, December 22, 2002. 
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