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In such applications as in the case of feeders in which a slider-crank mechanism
equipped with a rotational spring on its crank is driven by a constant force and a
lumped mass at the crank-connecting rod joint center, the slider is required to take on
desired speeds and displacements. For this purpose, after obtaining and solving the
dynamic model of the slider-crank mechanism, the output of this model is subjected to
a modified Hooke-Jeeves method resulting in the development of a procedure for the
optimization of selected set of operating parameters. The basic contribution involved
in the so-called Hooke-Jeeves method is the procedure by which a cost-effective
advancement towards a target optimum point is accomplished in a very short time.
A user-friendly interface has also been constructed to support this procedure. The
optimization procedure has been illustrated on a numerical example. The validation
of the resulting dynamic model has also been demonstrated.

1. Introduction

Among many other applications, slider-crank mechanism utilized as a cutter
and feeder in the design of a uniform ice cutting device is shown in Fig. 1 [1].
There are two distinct phases for the material removing process: (1) The cutter
removes material from the raw material at a constant speed in its forward and
backward motion once it contacts the raw material (i.e., contact phase). During
the cutting process, the raw material is kept at rest by the feeder pushing it against
the cutter under a constant pushing force. (2) In the no-contact phase, the cutter
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Fig. 1. Uniform ice cutting device [1]

moves forwards and backwards leaving enough time for the feeder to displace the
raw material forward in the amount of uniform cutting thickness.
The design of the slider-crank mechanism performing cutting process at an

average constant slider speed between the identified cutting positions of the rawma-
terial has been realized in [2] as a kinematic synthesis problem, since acceleration-
free slider motion is necessary for a smooth cutting operation. For the stated
purpose, the recti-linear slider displacement in some part of the mechanism mo-
tion is required to be a linear function of the crank angular displacement in that
study [2]. How a desirable constant pushing force can be generated at varying
crank positions under static conditions at contact phase in a feeder slider-crank
mechanism has been explained in another work, [3]. On the other hand, in order
to properly realize the required slider speeds and displacements during no-contact
phase in such feeder mechanisms, recognizing their multi-body, time-dependent
and non-linear characteristics of their motion, there is a need first to develop their
dynamic model, and then to optimize their output. In this way, the problem can be
viewed essentially as a control problem by which the feeder motion is regulated
in the time-domain in accordance with the requirements of the process explained
above. Within such a context, here in this work optimum conditions are explored
for a cost-effective realization.
Although the slider position and speed control is involved in the design of

the feeder slider-crank mechanism of the problem described above, in view of
the fact that accuracy provided by an inexpensive open control would be sufficient
here to satisfy the requirements of obtaining uniform ice particles, closed speed and
position control solutions of the slider-crank mechanisms, abundant in literature [4,
5], are ruled out. Thus, in accordance with the principle of efficient use of resources
in this control problem, after fulfilling the dynamic requirements of the process, the
problem is reduced to finding the optimum values of the operating parameters of the
feeder system. This, in turn, makes it necessary to formulate the dynamic equation
of motion in its specific arrangement of the feeder slider-crank mechanism, which
contains operating parameters to be subjected to an optimization process.
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There are works in the literature which kinematically aim at finding the op-
timum values of the parameters pertaining to their specific systems. For instance,
by neglecting gravitational and inertial effects in [6] the best transmission angle,
maximummechanical advantage and minimum error of input/output linearity have
been shown in an inverted slider-crank (RPRR) mechanism, where slider is used
as oscillating-slide actuator. In [7], Hooke-Jeeves optimization method has been
applied to realize the synthesis of a four-bar mechanism in which the coupler point
follows a rectilinear trajectory with controlled deviations.
There are also works in the literature which aim at improving the dynamic

performance of the conventional slider-crank mechanisms. For example, dynamic
model of slider-crankmechanism in two-cylinder compressor is utilized in topology
optimization of crankshaft weight reduction [8]. In another example, dynamic
model of a slider-crank mechanism with a linear spring and damper on the piston is
used for observing the response of the system when an intermittent linear actuating
force is applied on the piston [9].
It is obvious that optimization methods play significant roles in the cost-

effective realization of the feeder problem described above. From among the avail-
able optimizationmethods in the literature,Hooke-Jeeves direct searchmethod [10],
consistent with the dominantly numerical character of this research, has been se-
lected as the most suitable one for the non-linear optimization to be implemented in
this study. Thus, a review of basic literature on Hooke-Jeeves direct search method
appears to be in order here.Within this context,Wu et al. [11] applied Hooke-Jeeves
optimization method to the calibration of seven soot model parameters used in the
model of soot formation and oxidation in diesel engines. Mazouz et al. [12] showed
application of Hooke-Jeeves method for the optimization of PI regulator gains in
offshore wind energy production with permanent magnet synchronous generator.
Benasla et al. [13] presented the application of Hooke-Jeeves method for the fuel
cost minimization in power generation (i.e., economic dispatch problem).
In addition to application of original Hooke-Jeeves optimization method, var-

ious modified Hooke-Jeeves methods as well as hybrid application of this method
involving other optimization methods have been presented. For instance, Li and
Rahman [14] suggested a modification to Hooke-Jeeves optimization method by
applying pattern move immediately after a successful pattern move instead of an
exploratory move first to maintain the movement in the optimum direction. Litv-
inas [15] utilized a hybrid optimization of Bayesian-based global search supported
with Hooke-Jeeves local search for multi-objective optimization. In that study, the
multi-objective problem was reduced to a single objective problem during the ap-
plication of Hooke-Jeevesmethod for local refinement process. Alkhamis et al. [16]
used modified Hooke-Jeeves method to stochastic simulation results such that the
confidence intervals associated with point estimate of the objective function are
optimized. Tabassum et al. [17] presented hybrid application of genetic algorithm
and Hooke-Jeeves method to the optimization of economic load dispatch problems
with equality constraints.
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In all these studies on Hooke-Jeeves optimization method [11–17], it is com-
monly shared that (i) an increment amount is randomly defined for exploratory
search by the user; (ii) a multiplier of one is taken for the pattern move from
the base point; (iii) the process is stopped as soon as no move is established by
repeatedly dividing the increment amount, which may not make sure that optimiza-
tion objective is mathematically achieved. However, all these quantities mentioned
above are numerically determined here in this work on a mathematical basis such
that finally the difference between the actual and desired objects, referred to as the
objective function, is practically zero, implying to the achievement of optimum.
To the best of authors’ knowledge, there is no other work in the literature that

addresses itself essentially as an economic and simple solution to the problem of
obtaining required uniform slider motion over a time domain or required speeds
and displacements in desired time intervals in feeder slider-crank mechanisms.
The main contribution of this work is an integrated process by which selected
parameters of a given feeder slider-crank mechanism are optimized to satisfy
the desired objectives. In the first stage of this process presented in Sections 2
and 8, the dynamic model of the slider-crank mechanism operating under special
circumstances has had to be developed and the resulting non-linear differential
equation has had to be solved by numerical methods. Based on the output of this
dynamic model, the optimization of the selected parameters has been realized by
a modified Hooke-Jeeves Method through a particular procedure developed, as
described in Section 3. The basic novelty involved in the modified Hooke-Jeeves
method is the procedure by which a cost-effective advancement towards a target
optimum point is accomplished in a very short time. A user-friendly interface
has been set up to support the optimization procedure, in Section 4. A numerical
example is presented to illustrate the procedure, in Section 5. Validation of the
results thus obtained has been demonstrated, in Section 6 together with conclusions
in Section 7.

2. Theory

The slider-crank mechanism used as a feeder, shown with all of its parameters
in Fig. 2, is the subject of this study. In this design, forward translational motion
of the slider (C) is secured by a constant force (𝐹𝐵) parallel to the gravitational
acceleration (𝑔) and a lumped mass (𝑚𝐵) applied at the crank-connecting rod
joint centre (B). The rotational spring attached to the crank at its center (O) is
assumed to have a suitable spring constant (𝑘) evaluated according to a required
output/input force ratio [3]. When the mechanism is set to motion at a particular
position for feeding raw material, the slider will develop, in general, a non-linear
motion involving positions and speeds varying with time. Hence, the problem is
how to optimize selected operating parameters so that a desired uniform slider speed
within a desired displacement can be obtained such that feed rate can practically
be kept at a constant level under a predetermined error value.
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Fig. 2. Slider-crank mechanism parameters

In Fig. 2, the physical dimensions of the mechanism characterizing the lengths
and the centers of gravity of moving arms, crank (2), connecting rod (3) are 𝐿2,
𝐿3 and 𝑟𝐺2, 𝑟𝐺3, respectively while the eccentricity between the slider (4) line of
motion and the crank center (O) is designated by 𝐿4. Crank, connecting rod, slider
masses are symbolized by𝑚2,𝑚3 and𝑚4, respectively while the mass-moment-of-
inertias for crank and connecting rod are represented by 𝐼𝐺2 and 𝐼𝐺3, respectively.
The symbols 𝜃 and 𝛽 designate independent crank angle and dependent connecting
rod angle, respectively, with corresponding sign conventions (both measured pos-
itive clockwise). 𝐹𝐵 represents the constant basic external load applied to secure
motion while 𝑚𝐵 stands for externally added mass at point B having both static
(i.e., gravitational) and dynamic (i.e., inertial) effects. Sliding friction between the
ground and slider is taken into account by the coefficient of friction 𝜇. The parame-
ter 𝜙 defined as the angle between the horizontal and the sliding axes is introduced
to enhance the scope of applications. In Fig. 2, “𝑋−𝑌” coordinate system located
at the crank center (point O) represents the horizontal and vertical reference axes,
while “𝑥−𝑦” coordinate system located also at the crank center is defined by “𝑥-
axis” parallel to the slider sliding direction and “𝑦-axis” perpendicular to it. Hence,
the raw material being loaded in front of slider, crank being positioned at an initial
angle 𝜃0 and the spring suitably acting on the crank, the system is driven by the
application of a suitable external force 𝐹𝐵 coupled with the suitable mass𝑚𝐵 effect
for feeding the raw material in the direction of “𝑥-axis”.
Dynamicmodel of the feeder system described above is derived in the appendix

and is given in the form of a second order non-linear differential equation as shown
below:

𝐴2(𝜃) ¥𝜃 + 𝐴1(𝜃) ¤𝜃2 + 𝐴0(𝜃) = 0, (1)
where 𝐴2, 𝐴1, 𝐴0 are variable coefficients defined in the Appendix.



68 Mehmet Ilteris SARIGECILI, Ibrahim Deniz AKCALI

From among the possible direct numerical methods, the so-called 4-th order
Runge-Kutta Method [18] has appeared to be well-suited to the solution of Eq. (1)
with assigned conditions of initial crank angle (𝜃0) and initial crank angular speed
(𝜔0). It should be added that this method yields low truncation error, in the order
of 𝑂 (ℎ5) where ℎ is the step size, and better accuracy when compared with other
alternatives.
It is neccesary to underline tacit assumptions made in this section, as crank

need to start motion at most from a vertical position and end its motion when
the slider speed approaches zero and that the slider has only, whenever required,
a unidirectional forward displacement. Furthermore, initial crank position (𝜃0)
should at least be equal to or larger than spring neutral position (𝜃∗0).

3. Optimization of operation parameters

3.1. Preliminaries

A readily available slider-crank mechanism has the design parameters such as
𝐿2, 𝐿3, 𝐿4, 𝑟𝐺2, 𝑟𝐺3, 𝑚2, 𝑚3, 𝑚4, 𝐼𝐺2 and 𝐼𝐺3, which are all fixed. The angle 𝜙
between the horizontal and the sliding axes as well as the coefficient of friction 𝜇
between the slider and ground have not been regarded as practically controllable
parameters; they have been considered as application-dependent parameters and
thus they have been kept fixed for the application at hand. Hence, five operating
parameters (𝐹𝐵, 𝑚𝐵, 𝑘 , 𝜃∗0 and 𝜃0) which can easily be implemented during the
operation of the system have been selected as parameters to be optimized to yield
the desired average slider speed over a predetermined displacement.
Recalling that the required energy to actuate the slider-crank mechanism is

provided by the vertical force and lumped mass applied at point B, a forward
feeding is to be satisfied under the following geometric constraints (Fig. 2):

𝜙 < 𝜃 < 𝜙 + 90, (2)

sin−1
(

𝐿4
𝐿2 + 𝐿3

)
< 𝛽 < sin−1

(
𝐿2 cos 𝜙 + 𝐿4

𝐿3

)
, (3)

𝜃max = 90 + sin−1
(

𝐿4
𝐿2 + 𝐿3

)
, (4)

𝜃0 > 𝜙, (5)
𝜃0 ≥ 𝜃∗0 , (6)

𝐿2 sin 𝜙 +
[
𝐿23 − (𝐿2 cos 𝜃0 + 𝐿4)2

]1/2
< 𝑋𝐶 <

[
(𝐿2 + 𝐿3)2 − 𝐿24

]1/2
. (7)

The slider velocity against its position, from the start to the end of its motion,
in the mechanism of Fig. 2, can graphically be represented as depicted in Fig. 3.
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Fig. 3. Graphical representation of slider speed vs. slider position

Since the feeding has to be performed at a particular uniform speed, a theoreti-
cal error (𝑒theo) relationship can be defined between theminimum (𝑉min), maximum
(𝑉max) feeding slider speeds and a desired feeding speed (𝑉desired ave) as:

𝑒theo =
𝑉max −𝑉min
𝑉desired ave

. (8)

In this way, the variable error can be confined to a desirable value set at (𝑒theo).
For an estimation purpose, it is suitable to rewrite Eq. (8) in the form of theoretical
maximum ((𝑉max)theo) and theoretical minimum ((𝑉min)theo) speeds as follows:

(𝑉max)theo = (2 + 𝑒theo)
𝑉desired ave
2

, (9)

(𝑉min)theo = (2 − 𝑒theo)
𝑉desired ave
2

. (10)

Since an optimization process to be selected in conformity with the numerical
nature of the problem will require a series of iterations, the maximum actual speed,
on the other hand, has to be obtained from the solution of the governing differential
equation of Eq. (1) with the corresponding design and operating parameters for
each iteration. By representing the operating parameters of 𝐹𝐵, 𝑚𝐵, 𝑘 , 𝜃∗0, 𝜃0 with
Y𝑖 =

[
𝑦𝑖1, 𝑦

𝑖
2, 𝑦

𝑖
3, 𝑦

𝑖
4, 𝑦

𝑖
5
]
, respectively, actual maximum speed, 𝑉 𝑖

act{Y𝑖}, evaluated
with 𝑦𝑖𝑗 ( 𝑗 = 1−5) parameter value at 𝑖-th iteration step is defined as follows:

𝑉 𝑖
act

{
Y𝑖

}
= max

{ ¤𝑋 𝑖
𝐶 (𝑡0), ¤𝑋 𝑖

𝐶 (𝑡1), . . . , ¤𝑋 𝑖
𝐶 (𝑡𝑛)

}
, (11)

where slider speeds ¤𝑋 𝑖
𝐶 (𝑡𝑘) are evaluated at time (𝑡𝑘), 𝑘 varying from 0 to 𝑛, at 𝑖-th

iteration step.
For optimization purposes, an actual error 𝑒𝑖act is defined as follows:

𝑒𝑖act =
𝑉 𝑖
act

{
Y𝑖

}
− (𝑉max)theo

(𝑉max)theo
. (12)
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Once the operating parameters are optimized to yield the unique theoretical
maximum slider speed, it will be possible to directly determine the two slider
positions (i.e., 𝑋min and 𝑋max in Fig. 3) and hence the theoretical slider displace-
ment (i.e., Δ𝑋𝐶 = 𝑋max − 𝑋min, the maximum feeding zone) corresponding to the
theoretical minimum speed, calculated by Eq. (10), as is evident from the curve of
Fig. 3. However, this theoretical minimum speed may not match the desired slider
displacement. In that case, in order to find out the actual minimum speed corre-
sponding to the desired slider displacement (feeding span), a quadratic curve is
fitted, through regression, with the available actual data resulting from the solution
of the nonlinear equation in themaximum feeding zone. Using the equation of fitted
quadratic curve, the minimum slider position (𝑋𝑚𝑖𝑛) and the actual minimum speed
value will be determined such that the quadratic curve gives the same minimum
speed value at 𝑋max and at 𝑋min, where the difference (𝑋max − 𝑋min) is set equal to
the desired slider displacement.
In order to assess the optimum result, definition of error (𝑒𝑉 ) at the slider speed

given below will be used to see deviation of the actual slider speed ( ¤𝑋𝐶 (𝑡𝑘))) from
the specified average speed (𝑉desired ave) at each slider position inside the given
displacement domain.

𝑒𝑉 =
¤𝑋𝐶 (𝑡) −𝑉desired ave

𝑉desired ave
. (13)

3.2. Modified Hooke-Jeeves optimization method

It is observed that Hooke-Jeeves method is essentially a direct numerical op-
timization method, which has been reliably and extensively implemented in many
industrial problems such as these [11–17, 19]. Due to the fact that numerical data are
available from the numerical solutions of a highly non-linear differential equation,
minimization of the errors defined previously requires the use of a commensurate
method. In this regard, Hooke-Jeeves method has appeared to be very well-suited to
the problem in question. It is necessary to note that unlike the semi-analytical meth-
ods such as Taylor’s series expansion [10, 20], whereby the higher order derivatives
of the objective function, which significantly increase the volume of computations,
are not analytically needed here. Moreover, the unique way by which the objective
function is defined (i.e., Eqs. (11), (12)) does not provide any convenient basis for
such approaches.
Hooke-Jeeves method has basically two steps for the error minimization pro-

cess: one being a search for a suitable set of increment values for the parameters
subject to change to indicate a unit step size in the desired direction and the other
being to move by multiples of the unit step size to affect a considerable reduction
in error. A suitable set of increment values is found by incrementing/decrementing
each parameter by an amount (Δ𝑦 𝑗) until a decrease in actual error value is satisfied
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as follows:

𝑦𝑖+1𝑗 =


𝑦𝑖𝑗 + Δ𝑦 𝑗 , if 𝑒𝑖+1act < 𝑒𝑖act ,

𝑦𝑖𝑗 − Δ𝑦 𝑗 , if 𝑒𝑖+1act < 𝑒𝑖act ,

𝑦𝑖𝑗 , if 𝑒𝑖+1act > 𝑒𝑖act

𝑗 = 1, . . . , 5, (14)

Δ𝑦 𝑗 = 𝑦𝑖+1𝑗 − 𝑦𝑖𝑗 , 𝑗 = 1, . . . , 5. (15)

These increments (Δ𝑦 𝑗) are user defined in the regular method and the amount
of reduction in error for each increment depends on the value of the increment.
Also, if an error reduction is achieved in the first iteration of increasing an operating
parameter by an increment amount (Δ𝑦 𝑗) in Eq. (14), then the second iteration of
decreasing the same operating parameter by an increment amount (Δ𝑦 𝑗) is not
tried. If neither increasing nor decreasing an operating parameter reduces the error
then the corresponding operating parameter (Δ𝑦 𝑗) is kept at the same level. In this
way, the increment vector is formed as such:

𝚫Y = [Δ𝑦1, Δ𝑦2, Δ𝑦3, Δ𝑦4, Δ𝑦5] . (16)

The user defined increments (Δ𝑦 𝑗) directly affect the state whether or not
optimized operating parameter values are eventually to be secured, or how many
or more iterations will be run to that end. This means that differently selected user
defined increment (Δ𝑦 𝑗) amounts, for the same initial operating parameters, can
yield completely different results. Thus, this selection has to be standardized by
finding the amount of increments that will cause unit change at maximum speed.
One of the novelties contributed to the Hooke-Jeeves pattern search is the

selection of the values of the parameters involved in the increment vector ΔY.
Within this context, finite difference between the actual maximum speed values
corresponding to a change of (Δ𝑦 𝑗) in one parameter 𝑦 𝑗 is considered to numerically
calculate the partial derivative of actual maximum speed with respect to each
individual operating parameter (𝜕𝑉 𝑖+ 𝑗

act /𝜕𝑦 𝑗) by the following formula:

𝜕𝑉
𝑖+ 𝑗
act

𝜕𝑦 𝑗

=

𝑉 𝑖
act

{
𝑦𝑖
𝑗
+ Δ𝑦 𝑗

}
−𝑉 𝑖

act

{
𝑦𝑖
𝑗

}
Δ𝑦 𝑗

, 𝑗 = 1, . . . , 5. (17)

Using this value, the increment (Δ𝑦 𝑗), by which each parameter is changed,
corresponding to a unitary change in the actual error value is determined according
to following relation:

Δ𝑦 𝑗 =
1(

𝜕𝑉
𝑖+ 𝑗
act /𝜕𝑦 𝑗

) . (18)

Since the sets of values in Eq. (16) are determined on a magnitude basis to
reduce error defined by Eq. (12) in the absolute sense, the direction to move closer
to the target point should take into account where the value of 𝑉 𝑖

act{Y𝑖} stands with
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respect to the value of (𝑉max)theo at any iteration step. Thus, instead of iterating
Eqs. (14)–(15) for increment vector given by Eq. (16), it will be directly determined
by Eq. (19), whereby Δ𝑦 𝑗 values are calculated by Eq. (18):

ΔY = −sign
(
𝑒𝑖act

)
[Δ𝑦1, Δ𝑦2, Δ𝑦3, Δ𝑦4, Δ𝑦5] , (19)

where

sign
(
𝑒𝑖act

)
=

{
+1, if 𝑉 𝑖

act > (𝑉max)theo ,
−1, if 𝑉 𝑖

act < (𝑉max)theo .
(20)

Once the correct direction is determined on a unitary basis, the next step is to
estimate a positive multiplier 𝜆𝑖 by which a point potentially closer to the target
point is reached as follows:

Y𝑘+1 = Y𝑖−5 + 𝜆𝑘ΔY, 𝑘 = 𝑖, 𝑖+1, 𝑖+2, 𝑖+3, . . . , 𝑖 > 5. (21)

Y𝑖−5 in Eq. (21) represents the point of operating parameters for which the
increment vector (ΔY) is calculated based on Eqs. (15) and (19).
Another novelty contributed to theHooke-Jeeves pattern search is to be found in

the estimation ofmultiplier𝜆𝑖. The idea bywhich a suitablemultiplier is determined
for cost effective optimization is based on forcing the error defined in Eq. (12) to
zero in two consecutive steps. In the first step, multiplier 𝜆𝑘 values are set to
(𝜆𝑖 = 1) and (𝜆𝑖+1 = 1.5) in Eq. (21) to find Y𝑖+1 and Y𝑖+2. Errors 𝑒𝑖+1act and 𝑒𝑖+2act
corresponding to Y𝑖+1 and Y𝑖+2, respectively are found by reference to Eq. (12). By
extrapolation using pairs of points (𝜆𝑖, 𝑒𝑖+1act ) and (𝜆𝑖+1, 𝑒𝑖+2act ), the suitable 𝜆𝑖+2 value
is calculated for 𝑒𝑖+3act = 0 as follows:

𝜆𝑖+2 = 𝜆𝑖 +
(
−𝑒𝑖+1act

) 𝜆𝑖+1 − 𝜆𝑖

𝑒𝑖+2act − 𝑒𝑖+1act
. (22)

Then, operating parameters Y𝑖+3 are found by substituting 𝜆𝑖+2 in Eq. (21),
followed by calculation of the actual error 𝑒𝑖+3act by means of Eq. (12). In case any
negative operating parameters are encountered in Y𝑖+3, the latest multiplier 𝜆𝑖+2
value is taken half of itself and the new operating parameter set (Y𝑖+3) is determined
by means of Eq. (21) assuring all non-negative operating parameter set. Although
the aim of the first step is making the error 𝑒𝑖+3act zero, it does not factually make
the error zero. Thus, the idea of forcing the error 𝑒𝑖+4act to zero will be continued
in the second step. Although in the second step the error may not end in zero
value, it will certainly provide the new multiplier that will cause a reduction in
the error. It should be noted that interpolation implies a sign change in error while
extrapolation indicates to the same sign in error. To that end, an interpolation or
extrapolation is carried out between the pairs of (𝜆𝑖+1, 𝑒𝑖+2act ) and (𝜆𝑖+2, 𝑒𝑖+3act ) to find
the pair (𝜆𝑖+3, 𝑒𝑖+4act ) such that 𝑒𝑖+4act will be zero:

𝜆𝑖+3 = 𝜆𝑖+2 +
(
−𝑒𝑖+3act

) 𝜆𝑖+2 − 𝜆𝑖+1

𝑒𝑖+3act − 𝑒𝑖+2act
. (23)
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Final novel contribution to the Hooke-Jeeves pattern search can be mentioned
in improving the efficiency of calculations i.e., forcing zero error on finite difference
of the maximum speed with respect to the change only in force 𝐹𝑏 (i.e., 𝑦1)
value when the actual error (𝑒𝑖act) gets values less than 0.01. It is observed that
when navigating around small error levels (i.e., when 𝑒𝑖act < 0.01 the process
generally wastes too many iterations before reaching optimum results. Therefore,
the necessary value of force 𝐹𝑏 (𝑦𝑖+11 ) corresponding to error level (𝑒

𝑖+1
act ) value

of zero is then calculated, by keeping the rest four operating parameters fixed, as
follows:

𝑦𝑖+11 = 𝑦𝑖1 + 𝑒𝑖actΔ𝑦1 . (24)

3.3. Optimization procedure

The following series of steps have come out as an appropriate procedure by
which optimum values of the operating parameters in question are determined:
1. Enter the parameters 𝐿2, 𝐿3, 𝐿4, 𝑟𝐺2, 𝑟𝐺3, 𝑚2, 𝑚3, 𝑚4, 𝐼𝐺2, 𝐼𝐺3, 𝜙 and 𝜇.
2. Enter the desired feeding speed (𝑉desired ave) as well as the allowable speed
error 𝑒theo.

3. Calculate (𝑉max)theo and (𝑉min)theo from Eqs. (9) and (10).
4. For 𝑖 = 0, define 𝑘 = 𝑖 and choose an initial point for operating parameters

Y0 =
[
𝑦01, 𝑦

0
2, 𝑦

0
3, 𝑦

0
4, 𝑦

0
5
]
that satisfies the constraints of Eqs. (2)–(7).

5. Solve the governing differential equation Eq. (1).
6. Find the maximum speed 𝑉 𝑖

act{Y𝑖} and the actual error 𝑒𝑖act by Eqs. (11)
and (12).

7. If
{��𝑒𝑖act�� < 0.00001} then Yoptimized = Y𝑖 and go to Step 22.

8. If
{��𝑒𝑖act�� ≥ 0.01} then If {𝑘 = 𝑖 then go to Step 9} or {𝑘 = 𝑖 + 1 then go to

Step 13} or {𝑘 = 𝑖 + 2 then go to Step 16} or {𝑘 = 𝑖 + 3 then go to Step 20}.
a. Calculate the necessary increment amount (Δ𝑦1) and the new force
(𝑦𝑖+11 ) by Eq. (24).

b. With the new Y𝑖+1, calculate the actual error 𝑒𝑖+1act .
c. If {

��𝑒𝑖act�� < 0.00001} then Yoptimized = Y𝑖+1 and go to Step 22.
9. For 𝑖 = 𝑖 + 𝑗 , 𝑗 = 1, 2, . . . , 5 find increment amount (Δ𝑦 𝑗) corresponding
to a unitary change in the actual error value by Eqs. (17) and (18).

10. Find increment vectorΔY of themodifiedHooke-Jeevesmethod byEq. (19).
11. For 𝜆𝑖 = 1 define 𝑘 = 𝑖 + 1 and calculate Y𝑖+1 by Eq. (21).
12. Go to Step 5 with Y𝑖+1 values.
13. For 𝜆𝑖+1 = 1.5, define 𝑘 = 𝑖 + 2.
14. Calculate Y𝑖+2 for 𝜆𝑖+1 by Eq. (21).
15. Go to Step 5 with Y𝑖+2 values.
16. If

{
sign

(
𝑒𝑖+1act

)
≠ sign

(
𝑒𝑖+2act

)}
calculate a new 𝜆𝑖+3 for 𝑒𝑖+4act = 0 by interpolating or extrapolating.
Else calculate 𝜆𝑖+2 value by Eq. (22).
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17. Define 𝑘 = 𝑖 + 3 and calculate Y𝑖+3 for 𝜆𝑖+2 by Eq. (22).
18. If {any value of Y𝑖+3 is less than zero} then
choose a new 𝜆𝑖+3 = 𝜆𝑖+2/2 such that {Y𝑖+4} have non-negative values for
each operating parameter.

19. Go to Step 5 with Y𝑖+4 values.
20. If {𝑖 > 100000} then go to step 4 (i.e., choose a new initial point for
operating parameters Y𝑖).

21. Define 𝑘 = 𝑖 and go to Step 9 with the latest Y𝑖 operating parameters.
22. End

4. Development of user interface

In order to free the user’smind off the background details and to direct his or her
attentionmore onto the input-output relationships for a conveniently implementable
result, an interface is developed written in Visual Basic language, and shown
in Fig. 4.

Fig. 4. The user interface of position-speed calculations in slider-crank feeder mechanism

Input (a total of 18 parameters that appear in the mathematical model) as well
as numerical solution parameters of initial time (𝑇𝑖), final time (𝑇 𝑓 ) and discrete
time interval (ℎ) are entered to the user interface in Fig. 4 through the boxes on
its left-hand side. Following the entry of all the parameters, outputs from the user
interface are obtained as the numerical values of crank position, crank angular
speed, connecting link position, connecting link angular speed, slider position and
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slider speed in terms of time increments, which result from the solution of the
differential equation as well as from the associated equations for each individual
iteration, in a table at the bottom (Table A – Fig. 4) simultaneously transferring
them to an Excel worksheet. Also, the operation parameters (𝐹𝐵, 𝑚𝐵, 𝑘 , 𝜃∗0, 𝜃0)
together with the resulting actual maximum slider position and speed as well as the
actual error for each individual iteration are collected in a second table (Table B
– Fig. 4) simultaneously transferring them to an Excel worksheet, too. Hence,
the optimized operating parameters can be read directly from Table B of the user
interface whereas individual solutions of each iteration can be found in Table A of
the user interface with respect to the corresponding iteration number.

5. Numerical example

The optimization procedure integrating all the elements mentioned so far,
i.e., the mathematical model of the mechanism, its numerical solution, constraints
and modified form of Hooke-Jeeves pattern search is applied on a slider-crank
mechanism which is described by the data given in Table 1. The slider is desired to
move with a uniform speed of 0.9 m/s over a 0.09 m displacement with a maximum
allowable error of 5%. Therefore, the maximum and minimum theoretical speeds
which are required to be attained in the optimization process are 0.9225 m/s and
0.8775 m/s, respectively.

Table 1. Design parameters for example slider-crank mechanism

𝐿2 (m) 0.4500 𝑚2 (kg) 0.9600

𝐿3 (m) 0.4500 𝑚3 (kg) 0.9600

𝐿4 (m) 0.0000 𝑚4 (kg) 0.7600

𝑟𝐺2 (m) 0.2250 𝐼𝐺2 (kg m2) 0.0178

𝑟𝐺3 (m) 0.2250 𝐼𝐺3 (kg m2) 0.0178

𝜙 (°) 0.0000 𝜇 0.3000

Against an initial solution satisfying the geometric constraints of Eqs. (2)–
(7), the results of modified Hooke-Jeeves method optimization process have been
collected in Table 2. Totally 19 iterations have been sufficient to optimize the
operating parameters.
In Table 2, the extrapolated multiplier value (𝜆7) for the 8th iteration results in

a change of sign in error. Hence, a new multiplier value (𝜆8) has been interpolated.
The iteration yields a reduction in error with the same sign. The procedure is
continued. At the 18th iteration, the operating parameters yield an error of 0.033%,
which is less than 1%, as the limit determined in the procedures for fine-tuning
force 𝐹𝐵. Hence, the necessary change in the force to make the actual error zero is
calculated as Δ𝐹𝐵 = −0.036 N. This change reduces the actual error to a value of
3.1E-05% which is less than 0.001% that is the limit to stop iteration.
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Table 2. Optimized operating parameters for example slider-crank mechanism
𝐹𝐵
(N)

𝑚𝐵

(kg)
𝑘

(Nm)
𝜃∗0
(◦)

𝜃0
(◦)

V𝑖
act{Y𝑖}
(m/s)

𝑒𝑖act
(%)

Y0 50.000 20.000 80.000 20.000 30.000 1.4410 56.204

ΔY (Inc. Vector) –0.196 –0.058 0.149 –0.042 0.038

For 𝜆5 = 1; Y6 49.804 19.942 80.149 19.958 30.038 1.4358 55.641

For 𝜆6 = 1.5; Y7 49.706 19.912 80.223 19.937 30.057 1.4332 55.358

For 𝜆7 = 99.410; Y8 30.546 14.186 94.779 15.802 33.745 0.5957 -35.427

For 𝜆8 = 61.203; Y9 38.023 16.420 89.099 17.415 32.306 1.0354 12.236

ΔY (Inc. Vector) –0.129 –0.020 0.088 –0.025 0.039

For 𝜆14 = 1; Y15 37.894 16.400 89.187 17.390 32.345 1.0304 11.692

For 𝜆15 = 1.5; Y16 37.829 16.390 89.231 17.377 32.365 1.0278 11.418

For 𝜆16 = 22.344; Y17 35.141 15.971 91.067 16.850 33.184 0.9169 –0.608

For 𝜆17 = 21.289; Y18 35.277 15.993 90.974 16.876 33.143 0.9228 0.033

ΔY (Inc. Vector) –0.036 – – – –

Y19 35.241 15.993 90.974 16.876 33.143 0.9225 3.1E-05

As a final step, a graph of 𝑉𝐶 vs. 𝑋𝐶 is drawn from the solution of the
last iteration listed in Table A for the optimized operating parameters listed in
Table B of the user interface. In this way, a displacement value of 0.1174 m for the
maximum feeding zone is found in between two slider positions corresponding to
the theoretical minimum speed. For the required feeding displacement of 0.09 m,
a quadratic curve is fitted with the actual data of the maximum feeding zone as
follows:

𝑉𝐶 = −0.013𝑋2𝐶 + 18.598𝑋𝐶 − 5725.4 where 𝑅2 = 0.9986. (25)

From the equation of the curve (Eq. (25)), the minimum slider position and
minimum slider speed value are calculated as 0.6703 m and 0.8959 m/s, respec-
tively, for an exact feeding displacement of 0.09 m. Actual error (𝑒𝑉 ) in slider speed
( ¤𝑋𝐶) with respect to the desired average speed of 0.9 m/s is drawn with respect to
slider position in Fig. 5. In this figure, the maximum, minimum and corresponding
average speed values of 0.9225 m/s, 0.8959 m/s and 0.9092 m/s as well as their
corresponding actual error values of 2.5%, 1.024% and –0.452% are presented for
the feeding zone in question, respectively.
From the example presented above, it can clearly be observed that the proce-

dure yields the optimum result in a notably small number of iterations, which is an
indication of effectiveness and efficiency of the proposed procedure. This observa-
tion can be explained by contributionsmade in different phases of the Hooke-Jeeves
pattern search, namely how the increments are decided in the first step and how
these increments are magnified by a suitable step size selection technique and how
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Fig. 5. Actual error in slider speed for the required feeding zone

in the final step the efficiency increase is ensured by reducing the number of vari-
ables of pattern search to a single one which has a physical meaning of being the
major driving force of the dynamical system. From this observation, it is possible
to characterize the solutions as energy-efficient due to the fact that smaller values
of force (𝐹𝐵) and added mass (𝑚𝐵) are obtained by the procedure, as can clearly
be seen from the results of example with respect to its initial values.
Curve fitting operation had to be applied following the optimization process,

in order to adjust the optimization results to be consistent with the correct desirable
feeding zone. However, this operation has modified the values of actual average
and actual minimum slider speeds (Fig. 5). Nevertheless, thesemodifications, being
limited in magnitude, do not cause the bounds to be exceeded and they never lead
to higher values of error greater than the allowable error value.

6. Validation and simulation

The optimized dynamic model and the results therefrom are validated by the
SolidWorks motion analysis tool. For comparison purposes, a solid model of a
slider-crank mechanism is formed firstly based on the design parameters listed in
Table 1 and the optimized operating parameters by the modified Hooke-Jeeves
method listed in Table 2. The analysis is carried out and the result of slider speed
vs. slider displacement is plotted. The depiction of the two results under the same
parameter values, i.e., one from the SolidWorks designated by “SW-Vc” and the
other from the developed user interface designated by “Int-Vc”, is shown in Fig. 6,
where the two resulting curves are observed to be in good agreement with each
other.
At this point, it could be misleadingly thought that the optimized operating

parameters would be simply obtained by several analyses in the SolidWorks motion
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Fig. 6. Comparison of slider position vs. speed values

analysis tool. However, the optimization of the operating parameters cannot be
guaranteed for controlling themotion under energy efficiency by using solidmodels
and CAE software, since a trial-and-error method with CAE software will not
provide any mathematical proof for optimum.

7. Conclusion

In this study, dynamic behavior of a slider-crank mechanism, which has a
helical spring assembled on its crank and a constant force together with a lumped
mass acting on its crank-connecting rod joint centre, has been modeled to realize
the inexpensive open speed control of the slider over a predetermined slider dis-
placement. A procedure for optimizing the proper values of operating parameters
is devised. Then, the procedure has been illustrated on a particular example. Due
to the repetitive character of calculations involved, a user interface has been instru-
mental in realizing the optimization objectives corresponding to a selected list of
parameters. The results of the model developed in this work have also been proven
to be in close agreement with a SolidWorks output.
Several contributions can be mentioned in obtaining energy-efficient operation

of an available slider-crank mechanism supposed to act as a uniform-speed feeder
providing controlled slider velocities over given domains. Primarily, the question
as to how the optimum values of the driving forces, namely the magnitudes of the
constant force and the inserted mass acting on the mechanism through the crank-
coupler joint are to be attained finds its answers in this work. The results of this
research also indicate how the optimum values of spring parameters, (i.e., spring
constant, starting and neutral positions) associatedwith conceived feeder design of a
slider-crank structure are to be determined to achieve the desired control objectives.
The contributions cannot be fully explained without referring to the numerical
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solution of the non-linear dynamic model of the conceived feeder mechanism,
since the application of an effective optimization procedure is completely based
on the numerical results of this dynamic model. Within this context, one of the
novelties imbedded in the optimization process is the unique formation of an
objective function formulated as a rational error function between the maximum
of a numerical set and a single specified value, as displayed in Eqs. (11) and (12).
Commensurate with the numerical nature of the optimization process here, the
so-called Hooke-Jeeves method has been implemented to the problem in question
in a modified form.
The basic novelty involved in the modified Hooke-Jeeves method is the pro-

cedure by which a cost-effective advancement towards a target optimum point is
accomplished in a very short time. Instead of carrying out pattern search in arbi-
trary increments of parameters subject to change, the values of the increments are
standardized in such a way that they are supposed to provide unit change in the de-
sired direction of the unique maximum speed value. In this process, the increments
have been calculated as the inverses of the partial derivatives of the optimization
error function with respect to each parameter subject to change. Since abundant
data are available from the solution of the differential equation of the dynamical
system, these partial derivatives are approximated as the finite differences of the
optimization error function with respect to each parameter subject to change. An-
other contribution is to be seen in determining the multiples of a suitable step size,
which is obtained from the idea of forcing the error to zero. In view of the fact that
advancement towards the optimum target point slows down as the process comes
nearer to the target, computational burden is significantly reduced by basing the
procedure on only the most effective single parameter, ending in the accelerated
arrival at the optimum. Thus with all of these novel features, the overall efficiency
of the classical Hooke-Jeeves optimization method, as implemented in this work,
has been demonstrated to be improved.
Here in this work, the parameters subject to the optimization process have been

limited only to those related with the direct operation of a feeder system assumed
to be already available for direct implementation. However, it is worth noting that
due to the abundance of parameters imbedded in the model it is possible to extend
the optimization algorithm to other parameter sets as well, which may selectively
include as many as 18 parameters.

8. Appendix A

From the free body diagrams of moving links, i.e., slider (4), connecting rod
(3) and crank (2) in Fig. 2, D’Alembert equations are written, with reference to the
𝑥-𝑦 coordinate system attached to ground link (1), as follows:

𝐹34𝑥 − 𝜇𝐹14 − 𝑚4 ¥𝑋𝐶 − 𝑚4𝑔 sin 𝜙 = 0, (26)
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𝐹34𝑦 + 𝐹14 − 𝑚4𝑔 cos 𝜙 = 0, (27)
− 𝐹34𝑥 + 𝐹23𝑥 − 𝑚3𝑎𝐺3𝑥 − 𝑚3𝑔 sin 𝜙 = 0, (28)
− 𝐹34𝑦 + 𝐹23𝑦 − 𝑚3𝑎𝐺3𝑦 − 𝑚3𝑔 cos 𝜙 = 0, (29)
− 𝐹34𝑦𝐿3 cos 𝛽 − 𝐹34𝑥𝐿3 sin 𝛽 − 𝑚3𝑎𝐺3𝑦𝑟𝐺3 cos 𝛽 − 𝑚3𝑔 cos 𝜙𝑟𝐺3 cos 𝛽

− 𝑚3𝑔 sin 𝜙𝑟𝐺3 sin 𝛽 − 𝑚3𝑎𝐺3𝑥𝑟𝐺3 sin 𝛽 + 𝐼𝐺3 ¥𝛽 = 0, (30)
− 𝐹23𝑥 + 𝐹12𝑥 − 𝑚𝐵𝐿2 ¥𝜃 cos 𝜃 + 𝑚𝐵𝐿2 ¤𝜃2 sin 𝜃 − 𝑚2𝑎𝐺2𝑥

− 𝐹𝐵 sin 𝜙 − 𝑚𝐵𝑔 sin 𝜙 − 𝑚2𝑔 sin 𝜙 = 0, (31)
− 𝐹23𝑦 + 𝐹12𝑦 + 𝑚𝐵𝐿2 ¥𝜃 sin 𝜃 + 𝑚𝐵𝐿2 ¤𝜃2 cos 𝜃 − 𝐹𝐵 cos 𝜙

− 𝑚𝐵𝑔 cos 𝜙 − 𝑚2𝑎𝐺2𝑦 − 𝑚2𝑔 cos 𝜙 = 0, (32)
𝑇 + 𝑚𝐵𝐿

2
2
¥𝜃 + 𝐹23𝑥𝐿2 cos 𝜃 − 𝐹23𝑦𝐿2 sin 𝜃 − 𝑚𝐵𝑔 cos 𝜙𝐿2 sin 𝜃

+ 𝑚𝐵𝑔 sin 𝜙𝐿2 cos 𝜃 − 𝐹𝐵 cos 𝜙𝐿2 sin 𝜃 + 𝐹𝐵 sin 𝜙𝐿2 cos 𝜃
− 𝑚2𝑔 cos 𝜙𝑟𝐺2 sin 𝜃 + 𝑚2𝑔 sin 𝜙𝑟𝐺2 cos 𝜃 + 𝑚2𝑎𝐺2𝑥𝑟𝐺2 cos 𝜃
− 𝑚2𝑎𝐺2𝑦𝑟𝐺2 sin 𝜃 + 𝐼𝐺2 ¥𝜃 = 0. (33)

In equations (26) to (33), seven joint forces between the links of interest
are represented by 𝐹12𝑥 , 𝐹12𝑦 , 𝐹23𝑥 , 𝐹23𝑦 , 𝐹34𝑥 , 𝐹34𝑦 , 𝐹14; ¤𝜃 and ¥𝜃 are crank
angular speed and angular acceleration, respectively; ¥𝛽, 𝑔 and ¥𝑋𝐶 are connecting
rod angular, gravitational and slider linear accelerations, respectively; 𝑎𝐺2𝑥 , 𝑎𝐺2𝑦 ,
𝑎𝐺3𝑥 , 𝑎𝐺3𝑦 are linear acceleration components along 𝑥, 𝑦 axes associatedwithmass
centers of crank (𝐺2) and connecting rod (𝐺3), respectively. Basic dependency
relationships can typically be signified by equations (34) and (35) shown below:

𝛽 = sin−1
[
𝐿2 cos 𝜃 + 𝐿4

𝐿3

]
, (34)

𝑋𝐶 = 𝐿2 sin 𝜃 + 𝐿3 cos 𝛽. (35)

It should be noted that the torque (𝑇) induced on the crank by torsional spring
in Eq. (33) is formulated in terms of the spring constant (𝑘), crank angle (𝜃) and
spring neutral angle for crank (𝜃∗0) as such:

𝑇 = 𝑘
(
𝜃 − 𝜃∗0

)
where 𝜃 > 𝜃∗0 , (36)

After eliminating all the joint forces and substituting the relevant joint force,
torque, speed and acceleration quantities into equation (33) as well as collecting
all the terms under common denominator (𝐿3 cos 𝛽 − 𝜇𝐿3 sin 𝛽), together with the
condition that (𝜇 tan 𝛽) is different than 1, the following second order non-linear
differential equation is obtained:

𝐴2(𝜃) ¥𝜃 + 𝐴1(𝜃) ¤𝜃2 + 𝐴0(𝜃) = 0, (37)
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where 𝐴2, 𝐴1, 𝐴0 are variable coefficients defined below:

𝐴0(𝜃) =
{(
𝐿3 cos 𝛽 − 𝜇𝐿3 sin 𝛽

) [
𝑘
(
𝜃 − 𝜃∗0

) ]
+ cos 𝜃 cos 𝛽

(
𝑚𝐵𝑔 sin 𝜙𝐿2𝐿3 + 𝐹𝐵 sin 𝜙𝐿2𝐿3 + 𝑚2𝑔 sin 𝜙𝑟𝐺2𝐿3

+ 𝜇𝑚4𝑔 cos 𝜙𝐿2𝐿3 + 𝜇𝑚3𝑔 cos 𝜙𝑟𝐺3𝐿2 + 𝑚4𝑔 sin 𝜙𝐿2𝐿3 + 𝑚3𝑔 sin 𝜙𝐿2𝐿3
)

+ sin 𝜃 cos 𝛽
(
− 𝑚𝐵𝑔 cos 𝜙𝐿2𝐿3 − 𝐹𝐵 cos 𝜙𝐿2𝐿3 − 𝑚2𝑔 cos 𝜙𝑟𝐺2𝐿3

+ 𝑚3𝑔 cos 𝜙𝑟𝐺3𝐿2 − 𝑚3𝑔 cos 𝜙𝐿2𝐿3
)
+ sin 𝜃 sin 𝛽

(
𝜇𝑚𝐵𝑔 cos 𝜙𝐿2𝐿3

+ 𝜇𝐹𝐵 cos 𝜙𝐿2𝐿3 + 𝜇𝑚2𝑔 cos 𝜙𝑟𝐺2𝐿3 + 𝜇𝑚4𝑔 cos 𝜙𝐿2𝐿3 + 𝑚4𝑔 sin 𝜙𝐿2𝐿3
+ 𝑚3𝑔 sin 𝜙𝑟𝐺3𝐿2 + 𝜇𝑚3𝑔 cos 𝜙𝐿2𝐿3

)
+ cos 𝜃 sin 𝛽

(
− 𝜇𝑚𝐵𝑔 sin 𝜙𝐿2𝐿3

− 𝜇𝐹𝐵 sin 𝜙𝐿2𝐿3 − 𝜇𝑚2𝑔 sin 𝜙𝑟𝐺2𝐿3 + 𝜇𝑚4𝑔 sin 𝜙𝐿2𝐿3 + 𝜇𝑚3𝑔 sin 𝜙𝑟𝐺3𝐿2
− 𝜇𝑚4𝑔 sin 𝜙𝐿2𝐿3 − 𝜇𝑚3𝑔 sin 𝜙𝐿2𝐿3

)}
/
(
𝐿3 cos 𝛽 − 𝜇𝐿3 sin 𝛽

)
, (38)

𝐴1(𝜃) =
{
cos 𝜃 sin 𝜃 cos 𝛽

(
− 𝑚4𝐿

2
2𝐿3 − 2𝑚3𝑟𝐺3𝐿

2
2 + 𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

)
+ cos 𝜃 sin2 𝜃

(
− 𝑚4𝐿

3
2 − 𝑚3𝑟𝐺3

𝐿32
𝐿3

)
+ cos2 𝜃 sin 𝛽

(
𝑚4𝐿

2
2𝐿3

+ 𝑚3𝑟𝐺3𝐿
2
2
)
+ cos 𝜃 sin2 𝜃 sin2 𝛽 sec2 𝛽

(
− 𝑚4𝐿

3
2 − 𝑚3𝑟𝐺3

𝐿32
𝐿3

)
+ cos 𝜃 sin2 𝜃 sin 𝛽 sec 𝛽

(
− 𝜇𝑚3𝑟

2
𝐺3

𝐿32

𝐿23
+ 𝜇𝑚3𝑟𝐺3

𝐿32
𝐿3

)
+ cos2 𝜃 sin2 𝛽 sec 𝛽

(
𝜇𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

− 𝜇𝑚3𝑟𝐺3𝐿
2
2

)
+ cos 𝜃 sin2 𝜃 sin3 𝛽 sec3 𝛽

(
− 𝜇𝑚3𝑟

2
𝐺3

𝐿32

𝐿23
+ 𝜇𝑚3𝑟𝐺3

𝐿32
𝐿3

)
+ cos2 𝜃 cos 𝛽

(
− 𝜇𝑚3𝑟𝐺3𝐿

2
2 + 𝜇𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

)
+ 𝜇𝐼𝐺3

𝐿22
𝐿3
cos2 𝜃 sec 𝛽 − 𝜇𝐼𝐺3

𝐿32

𝐿23
cos 𝜃 sin2 𝜃 sin 𝛽 sec3 𝛽

+ sin2 𝜃 sin 𝛽
(
− 𝑚4𝐿

2
2𝐿3 − 𝑚3𝑟𝐺3𝐿

2
2
)
+ sin3 𝜃 sin 𝛽 sec 𝛽

(
− 𝑚4𝐿

3
2

− 𝑚3𝑟
2
𝐺3

𝐿32

𝐿23

)
+ cos 𝜃 sin 𝜃 sin2 𝛽 sec 𝛽

(
𝑚4𝐿

2
2𝐿3 + 𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

)
+ sin3 𝜃 sin3 𝛽 sec3 𝛽

(
− 𝑚4𝐿

3
2 − 𝑚3𝑟

2
𝐺3

𝐿32

𝐿23

)
+ 𝐼𝐺3

𝐿22
𝐿3
cos 𝜃 sin 𝜃 sec 𝛽

− 𝐼𝐺3
𝐿32

𝐿23
sin3 𝜃 sin 𝛽 sec3 𝛽

}
/
(
𝐿3 cos 𝛽 − 𝜇𝐿3 sin 𝛽

)
, (39)
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𝐴2(𝜃) =
{
cos 𝛽

(
𝑚𝐵𝐿

2
2𝐿3 + 𝐼𝐺2𝐿3

)
+ sin 𝛽

(
−𝜇𝑚𝐵𝐿

2
2𝐿3 − 𝜇𝐼𝐺2𝐿3

)
+ cos2 𝜃 cos 𝛽

(
𝑚4𝐿

2
2𝐿3 + 𝑚3𝐿

2
2𝐿3 + 𝑚2𝑟

2
𝐺2𝐿3

)
+ cos2 𝜃 sin 𝛽

(
𝜇𝑚3𝑟𝐺3𝐿

2
2 − 𝜇𝑚3𝐿

2
2𝐿3 − 𝜇𝑚2𝑟

2
𝐺2𝐿3

)
+ cos 𝜃 sin 𝜃 sin 𝛽

(
2𝑚4𝐿22𝐿3 + 2𝑚3𝑟𝐺3𝐿

2
2

)
+ cos 𝜃 sin 𝜃 sin2 𝛽 sec 𝛽

(
𝜇𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

− 𝜇𝑚3𝑟𝐺3𝐿
2
2

)
+ cos 𝜃 sin 𝜃 cos 𝛽

(
−𝜇𝑚3𝑟𝐺3𝐿22 + 𝜇𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

)
+ 𝜇𝐼𝐺3

𝐿22
𝐿3
cos 𝜃 sin 𝜃 sec 𝛽 + sin2 𝜃 cos 𝛽

(
−2𝑚3𝑟𝐺3𝐿22

+ 𝑚3𝑟
2
𝐺3

𝐿22
𝐿3

+ 𝑚3𝐿
2
2𝐿3 + 𝑚2𝑟

2
𝐺2𝐿3

)
+ sin2 𝜃 sin 𝛽

(
− 𝜇𝑚3𝐿

2
2𝐿3

+ 𝜇𝑚3𝑟𝐺3𝐿
2
2 − 𝜇𝑚2𝑟

2
𝐺2𝐿3

)
+ sin2 𝜃 sin2 𝛽 sec 𝛽

(
𝑚4𝐿

2
2𝐿3 + 𝑚3𝑟

2
𝐺3

𝐿22
𝐿3

)
+ 𝐼𝐺3

𝐿22
𝐿3
sin2 𝜃 sec 𝛽

}
/
(
𝐿3 cos 𝛽 − 𝜇𝐿3 sin 𝛽

)
.

(40)
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