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JANUSZ KOLENDA'! 

ON FATIGUE SAFETY CRITERIA OF MACHINERY PARTS IN 
DETERMINISTIC AND PROBABILISTIC APPROACH 

The paper deals with the safety criteria of design for an infinite fatigue life of 
machinery parts. Uniaxial and multiaxial zero mean stress states are considered. In 
the latter case, constant-amplitude in-phase stress components, as well as 
random-amplitude synchronous stress components, are taken into account. 
Dimensionless and relative safety margins for these stress states are defined. The 
presented criteria refer to ductile materials showing true fatigue limits. 
Transformation rules in the plane are given for fatigue limits referenced to 
coordinate system different than the components of the plane stress. 

1. Background 

In the design for an infinite fatigue life of engineering members under 
constant-amplitude uniaxial loading conditions, the fatigue safety factor, f, and 
the fatigue safety margin, M, are given by 

f =!_ (])
CJ 

M = F-CJ (2) 
where Fis the fatigue limit and CJ is the stress amplitude. Neither materials that 
do not show true fatigue limit nor the influence of mean stress on the fatigue 
safety will be considered in this paper. Having calculated the fatigue safety 
factor, one can define the dimensionless fatigue safety margin, m, by 

m=f-1 (3) 

Instead of these safety margins, the relative fatigue safety margin 
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(4) 

can be introduced, that is 
1 µ=1- 
f 

The criterion of an infinite fatigue life can be expressed as 
µ ?.O 

where: E { } expected value, 

J arbitrary number (see the Example), 
sµ - standard deviation ofµ. 

The probability of an infinite fatigue life, P , is 
P{<J:s;F}=Da(F) 

(5) 

(6) 
The limiting state of infinite fatigue life is reached at µ=O. A fatigue damage 
occurs at µ<O. 

When O' is a random variable, an infinite fatigue life may be expected if 
E{µ }?. O (7) 

or, in a more conservative approach, 
E{µ}- }sµ ?.O, j>O (8) 

(9) 

where Da is the distribution function of <J. 
Relationships similar to Eqs (5) through (8) can be written in the case of 

multiaxial stress [I]. For example, at in-phase bending and torsion, the fatigue 
safety factor is [2] 

(JO) 

so that 

(11) 

Here 

fb = Fb , fr = !i 
O'b a, 

are the partial fatigue safety factors, where Fh, F, and O'J,, <J, are the fatigue 
limits and stress amplitudes at fully reversed bending and torsion, respectively. 
Adequate size factors, notch sensitivity indices, etc., can be included in a usual 
way [2]. 

The safe region and the fai lure region in the a" , a, pane are separated by 
an elliptic curve given by the interaction equation 

J-2 - I= O (12) 

Eq. (IO) and the following approximate relationship for ductile materials [2] 
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Fb z.; ~-=-=-v3 
Fr z.; 

(13) 

lead to 

( )
-1/2 

f = Fb a}; +3a? (14) 

Eq. (14) confirms the well-known fact that in-phase stress can be treated by the 
distortion-energy theory [3], [4]. Therefore, this theory will be also used below. 

2. General state of in-phase stress 

According to the distortion-energy theory [5], two stress states are equivalent 
in terms of effort of the material if the strain energies of distortion in both these 
states are equal. 
Let us assume that the stress components in combined in-phase bending and 
torsion and in the general state of in-phase stress have the same frequency, and 
that the maximum strain energies of distortion per unit volume in both these 
states are equal, i.e., 

l+v( 2 2)_l+v[ 2 2 2_ _ - 

3
£ CJ b + 3CJ/ -

3
£ CJ X + CJ l + CJ l CJ XCJ y CJ y(J l CJ ZCJ X + 

+ 3 ( CJ }y + CJ Jz + CJ łx ) ]

(15) 

where: E Young modulus, 
v Poisson's ratio, 
CJ; amplitude of i-th Cartesian component in the general state of 

in-phase stress (i= x, y, z, xy, yz; zx). 
Combining Eqs (13) through (15) yields 

f = FbF1 [F? (CJ} +O"}, +CJł -CJxCJy -CJyCJz -(J .o, )+ 
? ( 2 ? 2 )]-1 / 2 + Ff O" xy + CJ yz + CJ zx (16) 

In order to account for other load modes (tension-compression, shear) and 
material anisotropy, the amplitudes CJx,CJy,CJz in Eq. (16) can be multiplied by 

modifying factors FblFx, Fb!Fy, Fb/F7 and CJxy,CJyz,CJzx by 

F11Fxy, F;!Fyz, F1/Fzx, respectively, where F; is the fatigue limit at the load 

producing stress of an amplitude CJ;. Then Eq. (16) becomes [I] 

( 17) 

where }; = Fito, is the i-th partial fatigue safety factor. In Eq. (17),f represents 
the fatigue safety factor in the general state of in-phase stress which after 
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substitution in Eqs (5) and 12) transforms µ into the relative fatigue safety 
margin in design for an infinite fatigue life under multiaxial in-phase loading 
conditions and Eq. ( 12) into the interaction equation of in-phase Cartesian stress 
components. If there are bending stresses, the relevant signs,,-" in Eq. (17) may 
have to be replaced by ,,+". Eq. (17) includes material constants that have 
simple physical interpretation, can be determined by uniaxial tests, are related 
directly to the applied load, and can reflect the material anisotropy. 

With Eq. (17), Eq. (12) gives 

(I 8) 

Apparently, Eq. (18) is analogous to the Hill's yield criterion, and can be 
regarded as the fatigue failure criterion, because it defines the fatigue failure 
surface that separates all possible combinations of design variables responsible 
for fatigue damage from those combinations that do not cause this effect. Thus, 
the dimensionless fatigue safety margin in the safe region of the basic variable 
space can be also defined by 

(19) 

The corresponding design criterion reads 

(20) 
where 

_ in I 
µ=-=1-- 
!2 f2 

is the relative fatigue safety margin associated with the fatigue failure surface 
( 18). At a given design point, the values of µ and µ are different, but the 
limiting states µ=O and fl= O coincide as far as the fatigue safety is 

(21) 

concerned. 
The values of F; and CJ; in Eqs ( 17) through (21) are referenced to a particular 

coordinate system X1, X2, X3. If, however, known stress components are related 
to another coordinate system, say X1, X 2, X 3, their amplitudes, if; , have to be 
transformed to the X1, X2, X3 system. For example, if the fatigue failure criterion 
is considered, Eq. (I 8) can be rewritten in the matrix form 

ST Q S - 1 = O (22) 

where 

S = [ O"x CJy C5z ~y O:rz Ozx ] T 
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---- ---- o o o 
F} 2FxFy 2FxF1 

I o o o 
2FyFx F} 2FyF1 

1 1 o ---- ---- o o 
2FzFx 2F1Fy F-2 

Q= 
,. 

o o o o o 
F}y 

o o o o o 
F}z 

o o o o o Fl 
and the column matrix 

s = [ o'; 0 o=; cKy O;·z 0.x Y 
can be transformed to the X1, X2, X3 coordinate system by means of well-known 
matrix relationships [6], For instance, when only the normal and shear stress 
components in a single plane are recognized, Eq. (22) reduces to 

STQ1S,-l=O (23) 

where 

F} 

2FyF_r 

o 

o 

F).s, 
Suppose that the matrices S1 and Q1 are referenced to a Xi, X2 coordinate system, 
and that the column matrix of known amplitudes of stress components 

s, =[~ ~. o';y r 

o o 

is related to the X 1,X 2 coordinate system obtained by a positive rotation of the 
X1, X2 - axes through an angle e in the X1, X2 plane. Knowing that 

S1 = R1S1 (24) 
where 

[ 

cos20 sin 20 

R1 = sin20 cos20 

O.5sin20 -0.5sin20 

-sin201 
sin20 

cos20 
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one obtains 
(25) 

so that Eq. (23) becomes 
(26) 

On the other hand, the column matrix S1 and unknown fatigue limits 
Fx, Fy and Fxy related to the X 1, X 2 coordinate system satisfy equation 
analogous to Eq. (23), i.e., 

(27) 
where 

F} 
o 

2FxFy 

Q, = I o ---- 
2FyFx F} 

FA5, 
Of course, Eqs (26) and (27) should lead to the same result which requires that 

Q, = Ri Q, R, (28) 

o o 

Eq. (28) makes it possible to determine fatigue limits from 
equations of transformation in the plane 

- (cos40 sin220 sin40 sin220 l-I/2 F = ------+--+--- ,\ ? 2 ? Fx- 4 F,Jy Fy 4 Fxj, 

- [sin40 sin220 cos40 sin220:-
112 

F = ------+--+--- 
>' F} 4F_Jy F} 4Fx3, 

- (sin220 sin220 sin220 cos220 i-l/2 Fxy = ---+---+---+--- 
F} r. r, F} FA5, 

the following 

(29) 

3. Multiaxial stress with random-amplitude synchronous components 

When the stress amplitudes in Eq. ( 18) are random variables of known 
statistical parameters, Eqs (5), (7), (8) and ( 17) can be applied. To account for 
the randomness of the phase angles in this case, the signs ,,-" in Eq. ( 17) must 
be replaced with ,,+". If the relative fatigue safety margin jl (21) is employed 
instead of µ (5), the fatigue design criterion becomes 

E{µ}~ O (30) 

or, similarly to Eq. (8), 
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E{µ}- ist: ~ O, j > O (31) 

where sµ is the standard deviation of µ. Contrary to the deterministic case, the 
limiting states 

E{µ}=O (32) 
and 

E{µ}=O (33) 
do not coincide. The same can be said of the limiting states resulting from Eqs 
(8) and (31 ). Therefore, the use of the relative fatigue safety margins µ and µ 
under random loading conditions is a matter for practical consideration. 

Service loadings usually create more complex states of stress than those 
considered in this paper. However, the fatigue safety criteria presented above 
may be used also in the cases of uniaxial and multiaxial periodic or stationary 
random stress if suitable stress models are found. One of the possible solutions 
of this problem can be based on the theory of energy transformation systems [7] 
that links the lifetime of dynamically loaded systems, as well as any volume of 
material in a system, with the energy dissipated internally and externally by a 
system (volume). Such an approach is presented for the high-cycle regime in 
[I], where for the stress components given in the form of Fourier series or, 
respectively, characterized by their power spectral densities, adequate stress 
models are developed. The models are equivalent, in terms of fatigue lifetime, to 
the original stress patterns. Thereby, the cycle counting is avoided, and the 
application of conventional fatigue damage accumulation rules is not required. 

The influence of multiaxial mean stress on fatigue safety is considered in [8]. 

4. Example 

Let us calculate the probability of an infinite fatigue life at the limiting states 
(32) and (33) if the load is uniaxial and the stress amplitude follows Rayleigh 
distribution. Let us compare the results with those at the limiting states 

E {µ}-sp = O (34) 

E{µ}-sµ =0 (35) 
Solution. In the case of uni axial stress state, Eqs (32) and (33) give 

711 = F (36) 
112 = p2 

where at Rayleigh distribution is [9] 

JJ1 =E{cr}=(0.5n)112 s, 172 =E{cr2}=2s2 
and the formula for the distribution function reads 

Da= I -exp(- cr
2 
) 

2s2 

(37) 

(38) 

(39) 
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Here s is the standard deviation of the stress process. The probability of an 
infinite fatigue life becomes 

P = 1 - exp (- F 
2 
) 

2s2 

so that 

P =I-exp( 0.5ns
2 
)= 0.54 

2s2 

in the limiting state (32), and 

( 
2s2) P= I-exp -- =0.63 
2s2 

in the limiting state (33). 
Referring now to the limiting states (34) and (35), we have 

<µ=[E{(µ-E{µ})'}J" +{r1-;-1+; nr= 

(40) 

{ } 
TJ, s s E µ -s =1---0.655-=1-1.908- 

µ F F F 

sµ = [ E{(iI-E{iI})'}J" =[ E{ (1- ;: -I+;~ nr= 
1 ( )' /2 = F2 E{a4}-4s4 

Since the probability density function of the stress amplitude is that of Rayleigh 
type, its statistical moments are given by [9] 

E{ak} = 2k/2r(1 + 0.5k )sk (41) 

where r is the gamma function. At k=4 is r(l+2)=2. So, E{a4}=8s4. 
Hence 

s2 
s-=2- µ F2 , 

Now the probabilities of interest are 

p =] -exp( 1.9082s2 )= 0.838 
2s2 

( 
4s2) P=l-exp -- =0.865 
2s2 
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Consequently, in the considered case the following design criterion
E{µ}- jsµ ~ O, j ~ I

seems to be justified.

S. Conclusions 

(42)

The presented fatigue safety criteria of design for an infinite fatigue life of
machinery parts refer to uniaxial stress as well as to the multiaxial stress states
with constant-amplitude in-phase components or random-amplitude
synchronous components. As shown in the Example, they may lead to more or
less conservative design solutions. The safety criteria concerned with multiaxial
fatigue are based on the distortion energy theory, and include up to six fatigue
limits of the material related to individual stress components. Therefore, their
use should be confined to ductile materials under non-corrosive environmental
conditions. In the cases of uniaxial and multi axial periodic or stationary random
stress, these criteria can not be applied unless adequate stress models are found
(e.g., by means of the procedures described in [I]).
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O kryteriach bezpieczeństwa zmęczeniowego części maszyn w ujęciu deterministycznym i
probabilistycznym

Streszczenie

Rozpatrywane są kryteria nieograniczonej trwałości zmęczeniowej części maszyn przy jedno- i
wieloosiowych stanach wahadłowych naprężeń o zgodnych w fazie stałoamplitudowych
składowych oraz o synchronicznych składowych z losowo zmiennymi amplitudami. Zdefiniowano
bezwymiarowe i względne marginesy bezpieczeństwa dla tych stanów. Przedstawione kryteria
dotyczą materiałów ciągliwych posiadających granice zmęczenia. Dla granic zmęczenia
odnoszących się do innego układu współrzędnych niż składowe płaskiego stanu naprężenia
podano reguły transformacji na płaszczyźnie.


