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MODAL INTERACTIVE BUCKLING OF COMPOSITE TUBULAR POLE 
STRUCTURE WITH INTERMEDIATE STIFFENERS 

The analysis of buckling, post-buckling behaviour and load carrying capacity of 
prismatic composite pole structures is conducted. The asymptotic expansion 
established by Byskov-Hutchinson is used in the second order approximation. The 
thin-walled tubular columns are simply supported at the ends and subject to the 
uniform compression. Several types of cross-sections with and without intermediate 
stiffeners are considered. The present paper is the continuation of a previous paper 
by the authors ( 1999) where the modal interaction of thin-walled composite beam 
columns was investigated. 

Some notation 

M;,,M;y ,M;,y 
Nix,Niy,Nixy 

Eix,Eiy,Eixy 

Y\ = Eiy /E, 

11:
cri* =<Ji I 03E . 
(J s 

bending moments resultants for the i-th wall, 
in-plane resultants for the i-th wall, 

displacement components of middle surface of the i-th wall, 
strain tensor components for the middle surface of the i-th wall, 

ratio of Young's moduli in main directions of orthotropy, 

curvature modifications and torsion of the middle surface of the 
i-th wall, 
scalar load parameter, 
dimensionless stress of the j-th buckling mode, 
limit dimensionless stress for imperfect structure. 

Other notations are given in text. 
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1. Introduction 

Thin-walled tubular columns are very often used in many structures such as:
sport halls, market halls, halls of a railway, umbrella roofs, cranes, etc. Such
columns are also used as supporting structures: power transmission lines,
communications lines, circus tents, highways and squares illuminations and as
commercial posts. Until now, the steel columns have been frequently used. In
recent years, the tubular poles are more and more often made of fibrous
composites, what can be attributed to the following reasons:
• high resistance of some fibrous composites to aggressive chemical

compounds and to corrosion,
• high strength-to-weight and stiffness-to-weight ratios.

In designing thin-walled structures, not only has the sufficient strength be
ensured but also the global stability of the structure and stability of component
elements - so called the local stability. The problems of strength, stiffness and
even the problems of buckling loads (global and local) of steel tubular pole
structures are very well known (Cannon and LeMaster ( 1987), Dicleli ( 1997),
Design of Steel Transmission Pole Structures ( 1990)), whereas the problems of
modal interactive buckling that may occur in thin-walled tubular columns of
polygonal cross-sections are still not sufficiently investigated. It concerns
especially the columns made of composite materials of anisotropic properties.

The determination of the load carrying capacity of thin-walled structures
requires consideration of the modal interaction of buckling modes in nonlinear
analysis of stability. The problem of interaction of the global mode with the
local ones, or between local buckling modes, is of great significance.

The problem of local buckling is of special importance because it causes
reduction of stiffness of a section, and consequently lowers its load carrying
capacity relative to a non-locally buckled section.

Sometimes, very low values of local buckling load, and in effect very low
carrying capacity of analysed columns, show the necessity of reinforcing walls
by intermediate stiffeners or membranes.

In this paper, the influence of intermediate stiffeners and membranes on
buckling and postbuckling behaviour, and also on the load carrying capacity of
analysed structures, is investigated.

2. Formulation of the problem and basic equations 

The considerations concern stability and modal interactive buckling of
composite thin-walled tubular pole structure with or without intermediate
stiffeners.

The derived equations and formulas, as well as the elaborated computer
program, (Kołakowski and Królak ( 1995)) concern rather widely comprehended
stability analysis of thin-walled beam-columns made of composite (orthotropic)
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materials of different shapes of cross-sections, subjected to simultaneous
compression and bending. However, in the present work the analysis is
restricted to the columns of cross-sections in form of a regular polygon with
number of sides N=4+36 (Fig. 1) subject to the uniform compression.

Fig. I. A type of considered cross-section

The columns of an arbitrary length l simply supported at the ends are
considered. The column walls are made of the composite materials, e.g. fibrous
composites, in which the fibres are laid in composite matrices either in one or in
two perpendicular directions. In such cases, the fibrous composite is treated as
an orthotropic material with a selected orthotropy factor.

The flat walls reinforced by intermediate C-shaped stiffeners are dealt with
as rectangular plates of principal axes of orthotropy parallel to their edges. The
stiffeners carry a portion of loads and subdivide the structure into smaller
elements, thus increasing considerably the load carrying capacity. The
introduction of intermediate stiffeners increases the flexural rigidity of
structural elements (for more detailed analysis of stiffened plates in the first
order approximation see papers by Kołakowski and Teter (1995), Teter and
Kołakowski ( 1996)) .

A plate model is adapted for the structure (Fig. 2). For the i-th plate
component more precise geometrical relationships are assumed in order to
enable the consideration of both out-of-plane and in-plane bending of each plate:

Eix = Ui,x + ½(w tx + vtx ),

Eiy = vi., +{(wty +uty),

2Eixy =Yixy =Ui,y +v.., +wi,xWi,y,

(1) 
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i+1 

Fig. 2. A segment of considered structure with co-ordinate axes 

For the i-th wall, physical relationships are formulated in the classical form 
applied for linearly elastic orthotropic plates (Karman and Tsien (1941 )). 

The differential equilibrium equations resulting from the Principle of Virtual 
Work and corresponding to expressions (1) for the i-th plate can be written as 
follows: 

Nix,x +Nixy,y +(NiyUi,y ),y =0, 

Nixy,x + Niy,y + (Nix Vi,x) x = O, 
(NixWi,x),x +(NiyWi,y),y +(NixyWi,x),y +(NixyWi,y),x + 

+ Mix,xx + Miy,yy + 2Mixy,xy = O. 
The composite material is assumed as a homogenous in a macro-scale. 

On the basis of the derived formulas, the computer program was elaborated. 
The program made it possible to analyse buckling and postbuckling behaviour 
of thin-walled structures regarding modal interactive buckling, and also to find 
the load carrying capacity of structures made of composite ( orthotropic) 
materials. 

(2) 

3. Solution of the problem 

The problem is solved by Byskov and Hutchinson asymptotic method in the 
second non-linear approximation ( 1977). Displacement fields U, and sectional 
force fields N, are expanded into power series in the buckling mode 
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amplitudes, (j ( (j is the amplitude of j-th buckling mode divided by thickness

of the first component plate, hr):

fi=Auf0) +(jufD +ślkDfjk) + .
N= ANf0l + (jNfj) + (j(kNfjk) + .

(3)

where: the upper indices (O), (i), (jk) note respectively: prebuckling, buckling
and post-buckling fields.

By substituting the expansion (3) into equations of equilibrium (2), junction
conditions and boundary conditions, the boundary value problems of zero, first
and second order can be obtained. The zero approximation describes the pre
buckling state, while the first approximation that is the linear problem of
stability, enables us to determine the critical loads of global and local value and
their buckling modes. This question can be reduced to a homogeneous system of
differential equilibrium equations. The second order boundary problem can be
reduced to a linear system of non-homogeneous equations, which describes
postbuckling equilibrium paths.

Numerical aspects of the problem being solved for the first and the second
order fields (like in the paper by Kołakowski et al. ( 1999)), resulted in the
introduction of new orthogonal functions in the sense of boundary conditions
for two longitudinal edges.

The system of ordinary differential equilibrium equations (2) for the first and
the second order approximation is solved by the modified transition matrices
method in which the state vector of the final edge is derived from the state
vector of the initial edge by numerical integration of the differential equations in
the transverse direction using the Runge-Kutta formula by means of the
Godunov orthogonalization method (Bidermann, ( 1977)).

The detailed description of the method of solution and of junctions
conditions for the considered problem is given in the work by Kołakowski et al.
(1999).

The most important advantage of this method is that it makes it possible to
describe a complete range of behaviour of the thin-walled structures from all
global (flexural, flexural-torsional, lateral, distortional and their combinations)
to local stability (local distortional, local symmetric and antisymmetric modes)
for intermediate stiffeners of different shapes and flexural rigidities.

4. Aim of the work 

The aims of the work are as follows:
1) analysis of the influence of the following parameters of the structure:

• number N of a regular polyhedron walls,
• number n of intermediate stiffeners,
• stiffness of intermediate stiffeners,
• parameter of orthotropy T] of the material (materials) of column walls,
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• column length l 
on the stability (buckling load), the postbuckling behaviour (postbuckling
equilibrium paths) and on the load carrying capacity of tubular poles;

2) determination of minimum number of walls at which the tubular column
behaves (with regard of stability) in the same way as a cylindrical shell
(tube);

3) calculation of different buckling modes (global and local) and the analysis of
the interaction of these buckling modes provided that the interaction between
them occurs.

5. Analysis of numerical results 

The elaborated computer program allows us to analyse the behaviour of thin
walled columns of cross-sections with at least one symmetry axis.

The walls of a column may be of different thickness and may be made of
materials of different properties (e.g. different orthotropy factor T)). The pole
structure may be subjected to axial or eccentric compression.

During the analysis of local buckling, the segment of a column of a length l 
is considered. In this work, detailed calculations are conducted for thin-walled
columns of a tubular cross-section subjected to axial compression.

The numerical calculations are conducted for columns of cross-sections in a
form of a regular polygon of different number N of sides but of the same
circumference length. The length of the circumference, measured along the
middle line of section walls, is equal to the circumference of a cylindrical shell
of radius R, thus:

Nb=2nR 
where bis the width of a polyhedron (column, pole) wall or the length of a side
of a regular polygon. It means that for a column (pole) without stiffeners, or
with the same number of stiffeners, the area of the cross-section is the same.

It is assumed that the thickness h of all walls is constant (such columns are
most often produced).

Geometrical parameters of the considered column (segment of a column) are
assumed as follows:

LIR=2; blR=2rc/N; h/R=0.02; R=SO mm. 

5.1. Analysis of upper buckling loads 

At the very beginning, on the basis of the first order approximation, the
critical loads for columns without stiffeners of number of walls N= 4+36 are
found. The calculations are performed for structures made of orthotropic
materials with parameter of orthotropy T)=0.303 I and 1')=3.2992 and of isotropic
material (T)= I). Material constants for these three cases are given in Table I
(Chandra and Raju (1973)). 
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Table I. 
Elastic constants for the various cases of composite beam-columns 

Spec. No 11= E/E V G/E 

1 0.3031 0.09093 0.4002 

2 1.0000 0.3 0.3846 

3 3.2992 0.3 0.1213 

It was assumed that all walls are made of the same material, and the following 
notation is introduced: 
E - Young's modulus in the longitudinal direction (the axis x of the column), 
E, - Young's modulus in the circumferential direction, 
v - Poisson's ratio describing the material deformation in the circumferential 

direction during tension (compression) in the direction of a column axis, 
G - shear modulus. 

In Fig. 3, the diagrams of the dimensionless buckling stress cr*=<Jcr I 03/E are 
shown for three columns of material parameters given in Table 1. These 
diagrams are presented as function of two variables - number of axial half 
waves m and number of polyhedron walls N. It can be seen that, for columns of 
number of walls N?.20, when the number of axial half-waves m is constant, the 
values of the dimensionless critical stress cr* do not depend on the number of 
walls N, and practically are equal to the upper critical stress of a cylindrical 
shell of radius R, length land of wall thickness h, made of the same material as 
the analysed polygonal column. For N<20, the values of the dimensionless 
critical stress cr* decrease with the decreasing number of column walls. In the 
presented diagrams, one can also see that the values of <J* depend on the 
number of axial half-waves m, and change in a different way with the number of 
walls of the polyhedron and with the orthotropy factor T) of the column material. 

In the case of non-stiffened tubular pole, it can be seen that the 
dimensionless critical stress increases with increasing value of orthotropy factor 
T) and with increasing number N of component walls. For a given value of T) and 
N, the minimum value of cr* is achieved at a different value of axial 
half-waves m. 

Let us consider now the critical stresses for columns reinforced by 
intermediate stiffeners of C-shaped cross-section and of dimensions shown in 
Fig. 4. 

The diagrams in Fig. 5 show the influence of intermediate stiffeners on the 
values of cr* for a thin-walled isotropic column of a square cross-section with 
four intermediate stiffeners placed in the middle of the width of each wall and 
with eight stiffeners (two stiffeners per each column wall dividing it on three 
strips of equal width). The calculations were conducted for stiffeners of a height 
H =4 mm and H =6 mm. 
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Fig. 3. Dimensionless critical stress for non-stiffened tubular columns 
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Fig. 4. Shape of stiffener cross-section - h,= I mm, b,=4 mm, H=4 or 6 mm 
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It follows from the diagrams shown in Fig. 5 that: 
the intermediate stiffeners (especially their quantity) increase the values of 
cr* in a significant way, 
the stiffeners of assumed dimensions have a large slenderness, so the one 
half-wave buckling mode (m=l) occurs at rather small critical stresses, 
for number of half-waves m~4, the significant influence of intermediate 
stiffeners number n on values of cr* is observed, while the influence of 
stiffeners height H can be practically neglected (above some minimal value 
of H). 
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Fig. 5. The influence of intermediate stiffeners on values of critical stress for isotropic column of a 
square cross-section 
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In Fig, 6, the influence of stiffeners height H and the number N of
polyhedron walls on values of cr* is presented for thin-walled isotropic columns
of a cross-section in the form of square, regular octahedron, dodecahedron and
sextodecimohedron, in which each wall has one central intermediate stiffener.
Proportionally small influence of stiffeners on values of cr* for m= 1 indicates
large stiffeners slenderness, assumed in calculations, and in some cases the
buckling nodal lines in the circumferential direction coincide with longitudinal
stiffeners (then the stiffeners do not buckle),
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Fig. 6. Dimensionless critical stress versus number of half-waves for isotropic tubular poles of
walls number N with one central stiffener placed on each wall (N=n) 

The shapes of buckling modes of walls of isotropic columns with a cross
section in a form of regular 16-gon (non-stiffened and with four intermediate
stiffeners placed every fourth wall) are presented in Fig. 7. The symmetrical and
anti-symmetrical buckling modes of column walls are shown for the number of
half-waves m= I and m=5. 



MODAL INTERACTIVE BUCKLING OF COMPOSITE TUBULAR POLE STRUCTURE 287 

-- m=1 
------- m = 5 

·-,_ ------- m = 5 

Fig. 7a. Shapes of buckling modes for isotropic column with four intermediate stiffeners 
(number of walls N= 16) 
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Fig. 7b. Comparison of buckling mode shapes (m= I) for isotropic column with four intermediate 
stiffeners (dotted line) and without stiffeners (full line) - number of walls N=I 6 

The diagrams of dimensionless critical loads for columns of a cross-section 
in a form of regular octagon, made of composite materials of orthotropy factor Tj 
as given in Table I, are shown in Fig. 8. 

Similarily as for non-stiffened columns (Fig. 3), the values of dimensionless 
critical stress for columns having the same number of stiffeners of the same 
dimensions increase with increasing value of orthotropy factor Tj. Together with 
the increase of m the values of cr* in an insignificant degree depend on the 
stiffeners height H (provided that the stiffeners are of some minimal height H to 
be able to accomplish the task of stiffening of the structure). 
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The increase of values of cr* with increasing number and height of stiffeners 
is logical. Such dependence can be seen in all diagrams except of the value of 
cr* in Fig. 8c for m= 1. These "strange" (unexpected) values of cr* for m= 1, 
lower for stiffened columns than for non-stiffened ones, obtained for columns of 
octagonal cross-section with material orthotropy factor T)=3.2992, can be 
explained by a large slenderness of stiffeners (the slender stiffeners of a length L 
loosing global stability cause a forward buckling of column walls). Greater 
number (n=8) of slender stiffeners (H=4 mm) cause the earliest (at the lowest 
value of stresses) buckling of walls at m= I. 
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(c) T]=3.2992 

28 

CT* 
26 

24 

22 

20 

18 

16 

14 

12 

10 

8 

6 

4 

2 

o 

1) ~ 
I \ 

I ł
\ 

I \ 
I ./' ,......._X""' 
I J ' ~- -i• 

I~ -,it 

I 
I 
I 
/ 

V 

' Jl 
,.~ .~ ~ 
-~ t:..... ~ v" 
"- ... _,,,,, 
", ~-) 

K_...,~

-X-n=O
-D-n=4 H=4 
~ n=4 H=6 
-X-n=8H=4
-+-- n=8 H=6 

Fig. 8. The influence of intermediate stiffeners on critical stress values for columns with octagonal 
cross-section (for three values of orthotropy factor TJ) 

5.2. Analysis of postbuckling equilibrium paths 

The analysis of postbuckling equilibrium paths is restricted to the columns of 
walls number N=4+ 12. At N> 12, the postbuckling behaviour of a column is 
closer to the behaviour of a cylindrical shell of radius R=Nb/2n. Therefore, the 
analysis of the postbuckling state of columns with cross-sections close to the 
circular one (N>20) should be conducted on the basis of stability equations of 
cylindrical shells (with a term w/R in geometrical relations). More detailed 
analysis should be applied to the postbuckling behaviour of polygonal columns 
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of 12<N-:;;,20, when the angle between the neighbouring walls is in the range of
150°«p<162° (see Fig. 2).

In Fig. 9, the curves are graphs of the ratio of load parameter to the minimal
critical stress (A*) as a function of buckling mode amplitude for non-stiffened
tubes with the number of component walls N= 4, 8 and I 2. In each case, the
tubular pole structure behaves as a plated structure - the postbuckling paths are
ascending.

The load parameter A* is assumed as the ratio otc.; (where CTcr is the critical
stress value) then Ac/= I.

The same relations are drawn for isotropic columns of a cross-section in
form of a regular octagon: without stiffeners and with one central stiffener on
each wall (for H=4 mm and H=6 mm) - Fig. I O.
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Fig. 9. Postbuckling equilibrium paths for columns with non-stiffened walls (uncoupled stability)
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5.3. Non-linear analysis of the influence of column lengths 

The analysis of interactive buckling conducted for non-stiffened columns 
(with N=4,8,12 walls) of a length 1=100+2000 mrn shows that: 
• minimal values of local buckling stress do not depend on the column length; 
• values of global buckling stress in a significant way depend on the material 

constants of the column; 
• global buckling stresses (m= 1) for columns of a length 121600 mrn are 

directly proportional to the elastic modulus E in the longitudinal direction 
and decrease with the increase of a column length; 

• there is no interaction between the global flexural buckling mode (m= I) and 
local modes (m> I) for l= I 00mm; 

• the interaction between the global flexural buckling mode and local modes 
becomes more significant with increasing value of l and has a practical 
meaning for columns of l= 1200+2000 mrn. 
More detailed analysis of the interaction of three buckling modes is 

conducted for the octagonal tube of the length l= 1600 mrn. The interaction of 
three buckling modes is analysed: global buckling mode ( CJj) at m= 1, local 
mode (primary) of the lowest value of critical stress ( CJ2) and local buckling 
mode (secondary) of the same number of half-waves as primary local mode 
(CJ3). 

On the grounds of this analysis, the load carrying capacity for the second 
order approximation ( CJ; I CJ~) is found for columns of orthotropy factor T) as 
given in Table I. The value of CJ;\1 is the minimum of values of CJ i, CJ2, CJ3 for 
imperfections ~ = l!.OI (i= 1,2,3) (the imperfections are always equal to the wall 

thickness h). The values of load carrying capacity CJ; I CJ~ appear to be 
approximately 30+40% lower than the minimum of critical stress value 
CJ~1 = CJ2. The results of calculations are given in Tabl. 2 

Table 2. 
Load carrying capacity for octagonal tubes 

Tl= E/E * * • ailai a; I a~ cr1 a2 a3 
0.3031 4.24 0.962 1.08 4.41 0.669 

1.0000 4.47 2.34 2.58 1.91 0.709 

3.2992 4.47 3.17 3.55 1.41 0.614 

The interaction between global buckling modes and local ones at large ratio 
CJ i/ CJ2 = 4.41 for a column of orthotropy factor T)=0.303 I indicates high 
sensitivity of this column on imperfections, in particular, it means that its load 
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capacity a; I a;~ is equal 0.669 and is comparable with the load capacity of 
columns with orthotropy factors T)= I .O and T)=3.2992. 

Therefore, it is necessary to take in particular consideration the interactive 
buckling of orthotropic or composite structures when a plate model is adapted in 
global buckling analysis. 

6. Final remarks 

The results of numerical analysis show that: 
• Taking into consideration the strain tensor in an extended form (1) allows us 

to analyse all possible buckling modes (global and local) of a structure with 
intermediate stiffeners, including the distortional buckling (because the 
displacements of stiffeners and corners are possible). 

• The interaction of buckling modes occurs only for longer columns l/2nR> 1 
and then the load carrying capacity of a structure can only be determined by 
non-linear analysis in second order approximation. 

• When the number of polygon sides is greater than 20, the pole structure 
behaves as a cylindrical shell. Because the term w/R is neglected in 
expressions (I) in non-linear analysis, it is impossible to find the lower 
bound of buckling stress (Schilling ( 1965)). 
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Modalne wyboczenie interakcyjne kompozytowych rur cienkościennych
z żebrami pośrednimi

Streszczenie

W pracy rozpatrzono wyboczenie, stan zakrytyczny nośność graniczną pryzmatycznych
kompozytowych rur cienkościennych. Zastosowano asymptotyczną metodę Byskov'a
Hutchinson 'a w ramach drugiego rzędu przybliżenia. Założono, że ściskane cienkościenne slupy o
przekroju zamkniętym są swobodnie podparte na obu końcach. Rozpatrzono kilka typów
przekrojów poprzecznych z i bez żeber pośrednich. Prezentowana praca jest kontynuacją
wcześniejszej pracy tych samych autorów dotyczącą interakcyjnego wyboczenia modalnego
kompozytowych belek-slupów.


