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Abstract
A novel measurement method and a brief discussion of basic characteristics of measuring the phase shift angle
between two sinusoidal signals of the same frequency are presented in this paper. It contains a mathematical
model for using conditional averaging of a delayed signal interfered with noise to measure the phase
shift angle. It also provides characteristics of conditional mean values and discusses the effect of random
interferences on the accuracy of the phase shift measurement. The way to determine the variance of the
conditional mean value, together with the assessment of standard and expanded uncertainty, are described.
The uncertainty characteristic shows the complementary properties of the discussed angle measurement
principle 𝜑 for small absolute values |𝜑 | (minimum for 𝜑 = 0) relative to the correlation principle, where
the minimum measurement uncertainty is present for 𝜑 = 𝜋/2.
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1. Introduction

In phase shift angle measurements, the most common interferences are due to noise, har-
monics, and fixed components occurring in signals. In measurement practice, in addition to
interference occurring in both channels, there are also experiments where the sinusoidal input
(test) signal of the physical system is free from distortion, while the output signal delayed in the
physical system is subject to interference.

Electronic phase meters which convert phase shift angle values into time interval values are not
immune to random interferences. Random distortions affect the accuracy of determining the zero
crossing points for both signals and have a direct effect on the accuracy of the measurement of the
time segment corresponding to the phase shift 𝜑 between the analyzed signals [1–5]. The accuracy
of the phase shift angle measurement for the interfered signals can be improved by using statistical
algorithmic methods based on analysing the entire available signal or its pertinent fragments 𝑒.𝑔.
determining the correlation between two signals shifted by the angle 𝜑 of the signals and the
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multi-point approximation algorithm. Algorithmic methods can be optimised depending on the
assumed criterion. In practical applications, criteria such as linear minimum variance estimator
(LMVE), maximum a posteriori probability (MAP) and the maximum likelihood (ML) are the
most commonly used.

The correlation method uses statistical information contained in interfered signals. The error
of the correlation phase meter increases as do the noise content and higher harmonics. The error
module has a maximum value for phase shift angles of 0◦ and 180◦ and a minimum value for
90◦. The disadvantages of the correlation method include the limitation of the frequency of the
analyzed signal (to kHz frequencies), the complexity of the implementation as well as the cosine
nature of the processing function and the limited measuring range (0 to 180◦) [6, 7].

The multi-point algorithm is designed to operate with sinusoidal variable signals for which the
zero point coincides with the maximum point of the signal derivative. Its value can be determined
using the regression straight line slope. The multi-point approximation method allows to improve
the accuracy of the phase shift angle measurement with broadband noise where the mean value
equals zero. However, this method loses its advantages in the case of interference in a frequency
band that includes or is close to the frequencies of the analyzed signals shifted in phase.

The accurate models for phase noise in frequency and phase estimation of a jittered sinusoid
were introduced in [8]. The authors analyzed the physical aspects and interrelations between these
models and their application in the design of a LMVE. A comparison of the usability of these
models is supported by computer simulation.

The problem of joint estimation of angular parameters of a single sinusoid with Wiener phase
noise of the carrier and white Gaussian noise observed in the additive has been presented in [9].
The theoretical basis for phase-based estimation of the unknown carrier frequency in the time
domain using the ML method has been discussed with taking into account the initial carrier
phase, with simultaneous a posteriori maximum likelihood (MAP) estimation of the time-varying
carrier phase noise. It was theoretically demonstrated that the obtained estimates are unbiased,
and the performance of the mean squared error as a function of SNR, observation length, and
phase noise variance was verified using Monte Carlo simulations [9].

With the criterion of likelihood function maximum (ML), it is possible to optimize the esti-
mation of phase and phase shift angle of signals when using quadrature detection. Methods of
measuring the phase shift angle based on the determination of components in phase as well as
in quadrature processing (followed by combined processing) of these components are orthogonal
methods of measuring the phase shift angle. The combined processing of quadrature components
has an impact on the main characteristics of the phase shift measurement process: measurement
time, resolution, accuracy, etc. The accuracy of orthogonal methods for measuring phase shift
angle is characterised by random errors and systematic errors. In the event of random disturbance
of the main components (sine and cosine), there is an error in the evaluation of the phase shift
angle. In special situations, calculating phase shift values from non-linear relationships at small
values of the parameters, their relations and differences, may show little accuracy. The optimum
measurement principle does not eliminate measurement errors. Instead, it allows them to be
theoretically minimised under the measurement conditions assumed. Phase meters which apply
orthogonal phase shift angle measurement methods are characterised by complex processing al-
gorithms and a relatively high price. Their distribution in technical applications is not significant.
Their advantage lies in the fact that their measuring ability in the case of phase shift angle of
signals disturbed by noise is more accurate than in other measurement methods [1, 10].

An improvement in the accuracy of the phase shift angle measurement for signals subject
to interference can also be achieved by using algorithms based on conditional signal averaging.
Such algorithmic methods are less complex than those discussed above.
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In papers [11] and [12] application of conditional averaging of signals to measure the phase
angle was presented. In these works the noise delayed signal module was averaged. The algorithms
presented in the above-mentioned works use nonlinear processing of the delayed signal.

The measurement method and a description of the principle of measuring the phase shift angle
called the ‘arc sine’ algorithm have been proposed. It was assumed that the primary sine signal
was free of distortion, while the delayed secondary signal was disturbed by stationary and additive
noise with normal distribution. In the proposed method, the conditional averaging of signals was
also used, but the nonlinear transformation (absolute value of the signal) was not used. It provides
a mathematical model of the measurement, measurement uncertainty assessment, as well as
a comparison with the correlation method. Examples of experimental results and a summary
were provided.

2. Mathematical model of the measurement

In the measurement of the phase shift angle, the ergodic stationary stochastic signals in
a mathematical processing model can be expressed as:

𝑥(𝑡) = 𝐴𝑥 cos
(
𝜔 · 𝑡 + 𝜑𝑝

)
, (1)

𝑦(𝑡) = 𝐴𝑦 cos
(
𝜔 · 𝑡 + 𝜑𝑝 + 𝜑

)
, (2)

𝑧(𝑡) = 𝑦(𝑡) + 𝑛(𝑡), (3)

where 𝜑𝑝 is random initial phase common to the input 𝑥(𝑡) and output 𝑦(𝑡) signals with uniform

distribution of probability 𝑝(𝜑𝑝) =
1

2𝜋
in the domain [−𝜋, 𝜋], 𝜑 – constant phase shift angle

of 𝑦(𝑡) relative to 𝑥(𝑡) with the condition that −𝜋

2
≤ 𝜑 ≤ 𝜋

2
, 𝑛(𝑡) – random interference with

additive influence on the output signal 𝑦(𝑡) and uncorrelated with signals 𝑥(𝑡) and 𝑦(𝑡).
Assuming that only the delayed signal 𝑦(𝑡) is interfered by normal noise 𝑁 (𝑛; 0, 𝜎𝑛) and

assuming the values of process instances at times 𝑡1 and 𝑡2 (𝜏 = 𝑡2 − 𝑡1) as:

𝑥1 (𝑡) = 𝑥 (𝑡 = 𝑡1) = 𝐴𝑥 cos
(
𝜔 · 𝑡1 + 𝜑𝑝

)
, (4)

𝑦2 (𝑡) = 𝑦 (𝑡 = 𝑡2) = 𝐴𝑦 cos
(
𝜔 · 𝑡2 + 𝜑𝑝 + 𝜑

)
, (5)

one can determine the general functional relationship between signals 𝑥(𝑡) and 𝑦(𝑡) as:

𝑦(𝑡 + 𝜏) = 𝐴𝑦 cos
(
𝜔 · 𝜏 + 𝜑 ± arccos

𝑥(𝑡)
𝐴𝑥

)
. (6)

The relationship above does not have the initial phase 𝜑𝑝 and it can be further simplified
by assuming that phase 𝜑𝑝 = 0. In the analyzed principle of phase shift angle measurement,
conditional averaging of the delayed and disturbed interrupted signal 𝑧(𝑡) is used with the condition
that 𝑥(𝑡) = 0. Determining a measurement characteristic, which is the conditional expected value
𝐸 (𝑧 |𝑥=0), requires calculating the conditional probability density 𝑝 (𝑧 |𝑥=0).

For the condition that 𝑥(𝑡) = 0 reached in the interval (0÷2𝜋) with a negative and positive
derivatives respectively, using the general properties of the Dirac delta, the probability density
for the delayed signal is:

𝑝1
(
𝑦 |𝑥=0

)
= 𝛿

[
𝑦 − 𝐴𝑦 cos

(
𝜔 · 𝜏 + 𝜑 + 𝜋

2

)]
, (7)
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𝑝2
(
𝑦 |𝑥=0

)
= 𝛿

[
𝑦 − 𝐴𝑦 cos

(
𝜔 · 𝜏 + 𝜑 + 3

2
𝜋

)]
, (8)

where 𝛿( ) is the Dirac Delta function.
Assuming an additive influence of the independent interference signal 𝑛(𝑡), the conditional

probability density is not dependent on the condition and is:

𝑝 ( 𝑛|𝑥=0) = 𝑝(𝑛) = 𝑁 (𝑛; 0, 𝜎𝑛) . (9)

Relying on the relationships of probability density conditional functions (7) and (9), with
the condition that 𝑥 = 0 in the interval (0÷𝜋), the conditional probability density of 𝑧(𝑡) can
be determined. For the sum of signals (3), the probability density is expressed by the function
convolution:

𝑝𝑧 |𝑥=0 (𝑧) =
∞∫

−∞

𝑝1 (𝑦 |𝑥=0) 𝑝𝑛 (𝑧 − 𝑦)d 𝑦. (10)

Based on the properties of the function convolution 𝑝𝑛 (𝑧 − 𝑦) with the Dirac Delta function
(7), expression (10) can be transformed to arrive at the conditional probability density:

𝑝𝑧 |𝑥=0 (𝑧) =
∞∫

−∞

𝛿

[
𝑦 − 𝐴𝑦 cos

(
𝜔 · 𝜏 + 𝜑 + 𝜋

2

)]
· 1
√

2𝜋𝜎𝑛

𝑒
− (𝑧−𝑦)2

2𝜋𝜎2
𝑛 d 𝑦

=
1

√
2𝜋𝜎𝑛

𝑒
− [𝑧−𝐴𝑦 cos(𝜔·𝜏+𝜑+ 𝜋

2 )]2

2𝜋𝜎2
𝑛 . (11)

The conditional expected value of the sum (3) after substitution (11) and calculations:

𝐸 [ 𝑧 |𝑥=0] =
∞∫

−∞

𝑧𝑝 𝑧 |𝑥=0 (𝑧) = 𝐴𝑦 cos
(
𝜔 · 𝜏 + 𝜑 + 𝜋

2

)
= −𝐴𝑦 sin (𝜔 · 𝜏 + 𝜑) . (12)

Taking into account the probability density (8) for the condition that 𝑥 = 0 in the interval
(𝜋, 2𝜋) and with the appropriate transformation, an expression is arrived at for the conditional
expected value:

𝐸 [ 𝑧 |𝑥=0] = 𝐴𝑦 cos
(
𝜔 · 𝜏 + 𝜑 + 3𝜋

2

)
= 𝐴𝑦 sin (𝜔 · 𝜏 + 𝜑) . (13)

Signal models for averaging according to relationship (12) for 𝜑𝑝 = 0◦ and 𝜑 = −90◦ are
shown in Fig. 1.

For 𝜏 = 0 relationships (12) and (13) are described by the following functions:

𝐸 [ 𝑧 |𝑥=0] = −𝐴𝑦 sin 𝜑, (14)

𝐸 [ 𝑧 |𝑥=0] = 𝐴𝑦 sin 𝜑. (15)

The two expressions (14) and (15), with the condition that 𝑥 = 0 with a negative or positive
derivative value, can be used to measure the phase shift angle value in intervals −𝜋

2
≤ 𝜑 ≤ 𝜋

2
and with the characteristics shown in Fig. 2.
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Fig. 1. Models of signals for 𝜑𝑝 = 0◦ and 𝜑 = −90◦ and characteristic 𝐸 [𝑧 |𝑥=0 ] for 𝜑 = −90◦.

Fig. 2. Characteristics of 𝐸 [ 𝑧 |𝑥=0 ]𝜏=0 in the function of angle 𝜑: a)
d 𝑥
d 𝑡

����
(𝑥=0)

< 0; b)
d 𝑥
d 𝑡

����
(𝑥=0)

> 0.

For a model of the delayed signal delayed by the phase shift angle 𝜑 and interfered by an
additive normal noise 𝑁 (0, 𝜎𝑛), the relationship determining {𝑧(𝜏𝑖)}𝑘 for the 𝑘-th instance (time
from the start of registering until the time 𝜏𝑖) is as follows:

{𝑧 (𝜏𝑖)}𝑘 = −𝐴𝑦 sin (𝜔 · 𝜏𝑖 + 𝜑) + 𝑛𝑘 , (16)

where 𝑛𝑘 are independent interferences for particular, 𝑘-th instances.
For 𝜏𝑖 = 0:

𝑧(0)𝑘 = −𝐴𝑦 sin 𝜑 + 𝑛𝑘 . (17)

Using maximum likelihood estimation for independent registration results 𝑧(0)𝑘 = 𝑧𝑘 , one can
find a favourable estimator of the parameter 𝜑 in the form of 𝜑̂opt. For the interval −𝜋

2
≤ 𝜑 ≤ 𝜋

2
,

where the function −𝐴𝑦 sin 𝜑 is unambiguous and cos 𝜑 ≠ 0, the optimal parameter estimator 𝜑
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to maximise the likelihood function is defined by the expression:

𝜑̂opt = − arcsin
©­­­­«

1
𝑀

𝑀∑︁
𝑘=1

𝑧𝑘

𝐴𝑦

ª®®®®®¬
, (18)

where 𝑀 is the number of averaged instances of signal 𝑧(𝜏)𝑘 .
In order to determine the estimated value 𝜑̂ of the phase shift angle, the arc sine function must

be calculated from the quotient of the arithmetic mean of the interfered instance of 𝑧(𝑡) and the
amplitude 𝐴𝑦 of the signal shifted by the angle 𝜑.

Based on equations (14) and (18):

𝜑̂ = − arcsin

(
𝐸̂ [ 𝑧 |𝑥=0]

𝐴̂𝑦

)
= − arcsin

𝑧 |𝑥=0

𝐴̂𝑦

= − arcsin
𝑧 |𝑥=0

𝐴̂𝑦𝑖

, (19)

where 𝐸̂ [ 𝑧 |𝑥=0] = 𝑧 |𝑥=0 is the conditional value of the arithmetic mean as an experimental
evaluation for the condition that 𝑥(𝑡) = 0 expected value of the interfered signal 𝑦(𝑡) shifted
by the angle 𝜑 relative to the signal 𝑥(𝑡), 𝐴̂𝑦𝑖 is the arithmetic mean value as an experimental
evaluation of the amplitude 𝐴𝑦 of the delayed signal 𝑦(𝑡).

If experimental estimators 𝜎̂2
𝑧 and 𝜎̂2

𝑛 of the variance of signals 𝑧(𝑡) and 𝑛(𝑡) are available,
the following relationship may be used to calculate the estimate 𝐴̂𝑦:

𝐴̂𝑦 =

√︃
2
(
𝜎̂2
𝑧 − 𝜎̂2

𝑛

)
= 𝜎̂𝑧

√√√
2

[
1 −

(
𝜎̂𝑛

𝜎̂𝑧

)2
]
. (20)

The block diagram of signal processing for evaluation 𝜑̂ is shown in Fig. 3.

Fig. 3. Scheme of signal processing model in phase shift measurement.

3. Variance of the mean conditional value and the signal-to-noise ratio

For the relationship:

{𝑧 (𝜏𝑖)}𝑘 = −𝐴𝑦 sin (𝜔 · 𝜏𝑖 + 𝜑) + 𝑛𝑘 (𝜏𝑖) , (21)

and independent interferences 𝑛𝑘 for 𝑘-th instances, the variance of the averaged signal is:

𝑉𝑧 (𝜏𝑖) = 𝑉
[
−𝐴𝑦 sin (𝜔 · 𝜏𝑖 + 𝜑)

]
+𝑉 [𝑛𝑘 (𝜏𝑖)] = 𝑉𝑛 = 𝜎2

𝑛 . (22)

The variance of the conditional mean value characteristic is described by the relationship:

𝑉 [𝐸 ( 𝑧 |𝑥=0)] =
𝜎2
𝑛

𝑀
. (23)
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The increase in
(
𝑆

𝑁

)
due to averaging will take place in accordance with the relationship:

[
𝑀

(
−𝐴𝑦 sin (𝜔 · 𝜏𝑖 + 𝜑)

)
𝜎𝑛

√
𝑀

]2

[−𝐴𝑦 sin (𝜔 · 𝜏𝑖 + 𝜑)
𝜎𝑛

]2 = 𝑀. (24)

4. Evaluation of standard and expanded uncertainties

For the estimator of the phase shift angle of realization of 𝑦(𝑡) relative to 𝑥(𝑡) in the interval
from −𝜋

2
to

𝜋

2
according to the proposed measurement principle, designation 𝜑̂𝑥𝑦 using the

following transformation is used:

𝜑̂𝑥𝑦 = − arcsin
(
𝐸̂𝑧 (0)
𝐴𝑦

)
= 𝑓

(
𝐸̂𝑧

𝐴𝑦

)
. (25)

For the evaluation standard uncertainty 𝑢 𝜑̂𝑥𝑦
the following relationship may be used [13]:

𝑢 𝜑̂𝑥𝑦
=

������� d 𝜑̂𝑥𝑦

d
(
𝐸𝑧

𝐴𝑦

)
������� · 𝑢 𝐸̂𝑧

𝐴𝑦

= −
𝑢 𝐸̂𝑧

𝐴𝑦√︂
1 −

(
𝐸̂𝑧

𝐴𝑦

)2
=

𝜎𝑛

√
𝑀𝐴𝑦

√︂(
𝐸̂𝑧

𝐴𝑦

)2
=

𝜎𝑛√
𝑀𝐴𝑦 cos 𝜑̂𝑥𝑦

. (26)

Relationship (26) is correct for the assumption that the amplitude 𝐴𝑦 is known and its graph
is illustrated in Fig. 4.

The uncertainty characteristic 𝑢 𝜑̂𝑥𝑦
shows that large measurement uncertainties occur near

the points 𝜑̂𝑥𝑦 = ±90◦ and the minimum value for 𝜑𝑥𝑦 = 0◦ is:(
𝑢 𝜑̂𝑥𝑦

)
min

=
𝜎𝑛√
𝑀𝐴𝑦

. (27)

Fig. 4. Relationship between standard uncertainty 𝑢𝜑̂𝑥𝑦 and 𝜑̂𝑥𝑦

according to the measurement principle in formula (26).
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If the amplitude 𝐴𝑦 is not known, then one must calculate its estimate 𝐴̂𝑦 and use it in
formulae (25) and (26).

When averaging 𝑀 sequences of a delayed signal interfered by correlated noise samples
(low-bandwidth noise with an exponential autocorrelation function), standard uncertainty 𝑢 𝜑̂𝑥𝑦

will increase and for a sufficient number of averaging instances will be:

𝑢 𝜑̂𝑥𝑦
=

𝜎𝑛√
𝑀𝐴𝑦 cos 𝜑̂𝑥𝑦

√︄
1 + 𝜌1
1 − 𝜌1

, (28)

where 𝜌1 is the value of the normalised autocorrelation function of noise 𝜌1 = 𝜌(Δ𝑡), while Δ𝑡 is
the sampling interval for processing the signals 𝑥(𝑡) and 𝑧(𝑡).

The expanded uncertainty for relationships (26) and (28) is:

𝑈 = 𝑘𝑟 · 𝑢 𝜑̂𝑥𝑦
, (29)

where 𝑘𝑟 is the expansion coefficient which depends on the adopted probability distribution model
used for the interference and the confidence level assumed 𝛼 .

5. Correlation method of measuring phase shift angle

For signal processing models (1–3), assuming that 𝜑𝑝 =, the correlation function 𝑅𝑥𝑧 (𝜏) may
be expressed by the following relationship:

𝑅𝑥𝑧 (𝜏) = 𝑅𝑥𝑦 (𝜏) + 𝑅𝑥𝑛 (𝜏) = 𝑅𝑥𝑦 (𝜏), (30)

where 𝑅𝑥𝑦 (𝜏) is the correlation function of signals 𝑥(𝑡) and 𝑦(𝑡); 𝑅𝑥𝑛 (𝜏) = 𝑅𝑦𝑛 (𝜏) = 0 are
values of the correlation function with no correlation between signals 𝑥(𝑡) and 𝑦(𝑡) and the
disturbance 𝑛(𝑡).

Expansion of the function 𝑅𝑥𝑦 (𝜏) for the 𝑇 – period signal models used:

𝑅𝑥𝑦 (𝜏) =
1
𝑇

𝑇∫
0

𝐴𝑥 cos(𝜔 · 𝑡) · 𝐴𝑦 cos
(
𝜔 · 𝑡 + 𝜔 · 𝜏 + 𝜑𝑥𝑦

)
d 𝑡 =

𝐴𝑥𝐴𝑦

2
cos

(
𝜔 · 𝜏 + 𝜑𝑥𝑦

)
. (31)

Figure 5 shows the function 𝑅𝑥𝑦 (𝜏) for 𝜑 =
𝜋

2
.

Fig. 5. Correlation function 𝑅𝑥𝑦 (𝜏) for 𝜑 = − 𝜋

2
.
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From the expression (31) for 𝜏 = 0, the following relationship is obtained:

cos 𝜑𝑥𝑦 =
2𝑅𝑥𝑦 (0)
𝐴𝑥𝐴𝑦

=
𝑅𝑥𝑦 (0)
𝐴𝑥𝑠𝐴𝑦𝑠

, (32)

where 𝐴𝑥𝑠 , 𝐴𝑦𝑠 are effective values of signals 𝑥(𝑡) and 𝑦(𝑡).
The phase shift angle estimation value can be determined from the following relationship:

𝜑̂𝑥𝑦 = arccos

𝐴𝑥𝐴𝑦

2
cos 𝜑𝑥𝑦√√

𝐴2
𝑥

2

(
𝐴2
𝑦

2
+ 𝜎2

𝑛

) = arccos
cos 𝜑𝑥𝑦√√√√√√√√√√√1 +

©­­­­«
𝜎𝑛

𝐴𝑦√
2

ª®®®®¬
2
, (33)

where:
©­­­­«
𝜎𝑛

𝐴𝑦√
2

ª®®®®¬
2

stands for the noise-to-signal ratio (𝑁/𝑆)

For uniform sampling and recording of 𝑛 samples of signals 𝑥𝑖 (𝑡𝑖) and 𝑧𝑖 (𝑡𝑖) during the period
𝑇 , the value of the phase shift angle estimation 𝜑̂𝑥𝑦 can be calculated from:

𝜑̂𝑥𝑦 = arccos

𝑛∑︁
𝑖=1

𝑥𝑖𝑧𝑖√√
𝑛∑︁
𝑖=1

𝑥2
𝑖

𝑛∑︁
𝑖=1

𝑧2
𝑖

. (34)

The absolute measurement error is defined by the expression:

Δ𝜑𝑥𝑦 = 𝜑̂𝑥𝑦 − 𝜑𝑥𝑦 . (35)

Error (35) is a bias error that depends on the signal-to-noise ratio (𝑆/𝑁). The highest error
values occur for angles 𝜑𝑥𝑦 of 0◦ and 180◦. For a known value of (𝑆/𝑁), one can introduce
a correction term into the measurement result.

Figure 6 shows a graph for relationship (35) for three different values of (𝑆/𝑁) for 100, 50
and 20, respectively.

Fig. 6. Relationship between the error Δ𝜑𝑥𝑦 and the value of (𝑆/𝑁 ).
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6. Results of calculations and experimental verification

The experiment involved averaging of the delayed signal with the frequency 𝑓𝑦 = 1 kHz
interfered by broadband noise (Figure 7). Broadband noise affects local distortions of sinusoidal
waveform fragments. For given and calculated phase shifts 𝜑0, the values of 𝜑𝑒 (experimentally
determined) and 𝑢 𝜑̂𝑥𝑦

(calculated from the relation (26)) are summarized in Table 1. The 𝜑0
shifts were determined with an SD1000 Powertek phasemeter with an accuracy of ±0.04◦ and
±0.005◦/kHz for signal frequencies in the range 100÷1 kHz.

a) b)

Fig. 7. Waveforms of signals 𝑥 (𝑡) and 𝑧 (𝑡): a) 𝑓𝑥 = 𝑓𝑦 = 1 kHz; 𝜑0 = 4.1◦; b) 𝑓𝑥 = 𝑓𝑦 = 1 kHz; 𝜑0 = 71.5◦;
broadband noise 𝑁 (0, 100 mV)

Table 1. Parameters of used sensors.

Shift 𝜑0 (reference), ◦ 4.1 13.88 30.4 71.5

Shift 𝜑𝑒 (experimental), ◦ 4.07 13.7 30.05 69.60

Absolute error 𝜑𝑒 − 𝜑0, ◦ –0.03 –0.18 –0.35 –2.3

Uncertainty 𝑢𝜑̂𝑥𝑦 , ◦ 0.0125 0.0128 0.0145 0.0394

The 𝜑𝑒 shifts were calculated using a digital oscilloscope based on averaging 256 character-
istics of 𝑧 |𝑥=0.

The delayed signal waveforms interfered by low-band noise are presented in Figure 8. Low-
band noise affects the integral distortion of the entire sine wave and the correlation of the values
averaged.

The fragments of conditional averaging of the output signal 𝑦(𝑡) at the frequency 𝑓𝑦 = 1 kHz
with an additive low-band interference imposed are illustrated in Figure 9. Free components of
interference 𝑛(𝑡) with the same sign are added successively in time to the high-speed fragments
of the sinusoidal signal 𝑦(𝑡). Averaging of correlated components results in a 𝑘-fold increase in
the standard uncertainty value 𝑢 𝜑̂𝑥𝑦

according to relationship (28).
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a) b)

Fig. 8. Graphs of signals 𝑥 (𝑡) and 𝑧 (𝑡): a) 𝑓𝑥 = 𝑓𝑦 = 1 kHz; 𝜑0 = 4, 1◦; b) 𝑓𝑥 = 𝑓𝑦 = 1 kHz; 𝜑0 = 71.5◦;
broadband noise 𝑁 (0,100 mV).

a) b)

Fig. 9. Waveforms of signals 𝑥 (𝑡) (black) and 𝑧 (𝑡) (coloured): 𝑓𝑥 = 𝑓𝑦 = 1 kHz, 𝜑0 = 0◦; subsequent averaged
characteristics 𝑧 (𝑡 + 𝜏) |𝑥 (𝑡 )=0 with positive values of low-frequency interference (a) and negative values (b).

Example:

Signals with the frequency 𝑓𝑥 = 𝑓𝑦 = 1 kHz. For the interference 𝑛(𝑡) : 𝜌1 (Δ𝑡) = 0.8 with
the interval Δ𝑡 = 0.01 · 10−3 s between each sample for calculating the arithmetic mean of the
summarised instances of 𝑧(𝑡).

Increase in uncertainty value 𝑘 =

√︂
1 + 0.8
1 − 0.8

=
√

9 = 3.

7. Conclusions

In phase shift angle measurements of interfered sinusoidal signals carried out according to
traditional phase shift processing rules, the information that is used concerns the time shift of only
two instantaneous signal values based on a single period of time. This principle of measurement
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is characterised by sensitivity to interference and a high correlation between the measurement
result and the change in the shape of the input signals. To improve the accuracy of the result
(reduce variance), two particular values of the measurement results over multiple periods need to
be averaged.

The methods of measuring the phase shift angle of sine signals introduced by development
studies differ in terms of the complexity of algorithms, the cost of measuring equipment, resistance
to interference and accuracy depending on the value of the measured phase shift angle. As regards
the improvement of parameters in the selected class of measurement principles, these methods are
complementary. Two integral methods are examples of phase shift angle measurement methods
for sine signals: the correlation and regression methods.

The advantage of correlation-based phase meters consists in an approximately six-fold reduc-
tion of measurement error compared to phase meters which convert phase shift angle values into
time interval values based on signal passing through zero. The disadvantages of this measurement
method include its non-linear processing and the unequivocal character of phase shift estimation
only between 0◦÷180◦.

One of regression principles in measuring the phase shift is the use of the “arc sine” algorithm.
In order to determine the angle 𝜑, the “arc sine” algorithm uses the inverse sine relationship
functions ((14) and (15)) with the condition that 𝜏 = 0. The characteristic of the mean average
value 𝐸 [𝑧 |𝑥=0] described in the formulae above can be used to determine the phase shift angle
value by determining the arithmetic mean of signal 𝑧(𝑡) corresponding to the moment at which
signal 𝑥(𝑡) passes through zero with the assumed (negative or positive) derivative.

The measurement uncertainty of angle 𝜑𝑥𝑦 reaches high values for angles ±𝜋

2
and a minimum

value for 𝜑𝑥𝑦 = 0◦ (Fig. 4). With the disturbance of signal sequences averaged by correlated values
of noise, the measurement uncertainty increases.

The uncertainty characteristic reveals complementary features of the measurement principle
in relation to the correlation principle, in which large measurement uncertainties occur close to
points 𝜑 = 0 and 𝜑 = 𝜋, and the minimum values for 𝜑 =

𝜋

2
.

The advantages of the proposed measurement method are the simple measurement algorithm,
possibility of easy and frequent use with a digital oscilloscope, suitability for applications in
technical measurement and in didactics related to signal averaging. The disadvantages include
a limited basic measurement range from −90◦ to 90◦ and a strong nonlinear increase in measure-
ment uncertainty near the limits of this range.
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