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Abstract 
 

The paper presents a methodology of modeling relationships between chemical composition and hardenability of structural alloy steels 

using computational intelligence methods, that are artificial neural network and multiple regression models. Particularly, the researchers 

used unidirectional multilayer teaching method based on the error backpropagation algorithm and a quasi-newton methods. Based on 

previously known methodologies, it was found that there is no universal method of modeling hardenability, and it was also noted that there 

are errors related to the calculation of the curve. The study was performed on large set of experimental data containing required 

information on about the chemical compositions and corresponding Jominy hardenability curves for over 400 data steel heats with variety 

of chemical compositions. It is demonstrated that the full practical usefulness of the developed models in the selection of materials for 

particular applications with intended performance in the area of application. 
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1. Introduction 
 

Steel is one of the most important materials used in all sectors 

of the economy. The reason for this is its good mechanical and 

physical properties, which can be improved by adding alloying 

elements. 

The current research direction on heat-treatable steels 

concerns the optimization of the heat treatment parameters, in 

particular the cooling conditions using different cooling media 

and the cooling process itself in conjunction with numerical 

analyzes of the temperature distribution in the cooled element [1]. 

The properties of steel vary based on the composition of 

carbon and alloying elements present in it and the alloying 

elements give different properties depending on the concentration 

of each percentage ratio involved [2-3]. 

Another direction is to optimize the chemical composition of 

the steel to provide the desired properties or multiple properties 

simultaneously within a narrow range. Optimization of chemical 

composition of steel is the harmony of quality and price. A very 

important indicator of yesterday, today and tomorrow-even more. 

When chemical composition of alloy steel is optimized and 

intensively quenched, alloy elements in steel can be reduced more 

than two-times with simultaneous increasing service life of 

quenched machine components [4]. For example, in steels used in 

the automotive industry, the hardenability of the steel is an 

important property. In this case, customer requirements are often 

limited to a hardenability range narrowed in relation to the 

normative hardenability range of the grade and only within a 

certain distance of the quenched-end of the Jominy specimen. 

These customer requirements force the design of the chemical 

composition at the melt production stage. The task of ensuring the 
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chemical composition of the melt with guaranteed properties, 

narrowed down to those desired by the customer, must be carried 

out while maintaining the standard chemical composition for the 

species. Therefore, it is necessary to know already in the phase of 

metallurgical process how to correct the chemical composition. 

The analysis of the influence of alloying elements on the 

properties of steel has been the subject of research for several 

decades. In most publications on this subject, the prevailing view 

is that the interaction of additional alloys is a superposition of the 

total concentration of elements in the steel. This first approach 

was proposed in the seminal work of M.A. Grossmann [5], who 

defined numerical coefficients describing the influence of 

elements on the hardenability of steel. This work is still the basis 

of the standard ATM A255 [6] for calculating the hardenability 

curves of steel. 

Modelling and simulation plays immense role in improving 

engineering materials properties possible, as well as prediction of 

their properties like hardenability, even before the materials are 

fabricated, with the significant reduction of costs and time 

required for their investigation and application [7]. The 

mechanical properties of metal alloys have been predicted using 

machine learning models, which range from general models for 

elastic properties trained on data derived from first principles to 

models of macroscopic properties like hardness, toughness, and 

strength as well as phenomena like wear, fatigue, creep, hydrogen 

embrittlement, and crack initiation and propagation in particular 

alloy systems [8]. Similarly, predicting the effect of process 

parameters, quantitative structure-property relationships, using 

functional mappings of inputs to predict end-product quality, 

interpretability and the physical meaning of the computational 

intelligence methods were analyzed [9-11]. 

Determining hardenability enables to ensure the assumed 

decomposition properties in the cross section of the element [12-

13]. Hardenability models proposed in the literature [5, 14-21] do 

not show the full relevance to the experimental data, probably due 

to incomplete verification, too small or even unrepresentative set 

of experimental data. Full adequacy of the mathematical model 

can be performed on a large number of melts with appropriately 

selected and exactly controlled chemical compositions exhausting 

all possible combinations of alloying elements present in the steel 

group [22-25]. This creates the necessity of seeking a new 

model—modern tools and computational methods, including 

artificial neural networks indicate the chances of solving this 

problem [26-31]. This indicates the advisability of taking 

methodological work aimed to develop such computer tools. 

Previous work of our own [7, 22-23, 27, 30] as well as the 

results presented in this paper indicate that there is a synergy of 

the influences of the elements on hardenability. This fact should 

be taken into account when designing the chemical composition 

before melting or when correcting the chemical composition at 

the stage of control analysis of the melt. It should be noted that so 

far there are no research results on the synergistic effect of 

alloying elements on hardenability, which is probably due to the 

complexity of thermophysical phenomena that occur during the 

steel melting process. 

In this paper we present the results of computer simulations in 

which the developed neural network model was used to calculate 

hardenability curves. The purpose of this model is to analyze the 

changes (increase) in hardness resulting from changes in the 

concentrations of elements and their combinations on the hardness 

of steel. Here, the hardness at different depths of the material 

cross-section were analyzed, represented by the hardness at the 

corresponding distance at the quenched-end of the Jominy 

specimen. The obtained results of the computer simulations show 

different quantitative increases in hardness depending on the 

proportion of each alloy component. This confirms the synergy of 

hardenability of the alloying elements and indicates the nonlinear 

nature of this synergistic effect. 

 

 

2. Materials and Methodology 
 

The basic reason for the design of artificial neural networks 

are the experimental results obtained from the standards, catalogs 

steel producers, trade literature, including information on the 

chemical compositions and the corresponding hardness on Jominy 

hardenability curve [32-37]. It was assumed that the heat 

treatment of steel for the collected data is made under optimal 

conditions, and the grain size is seven according to ASTM scale. 

The dataset contains information about measurements Rockwell 

Hardness scale C, respectively at distances of 1.5, 3, 5, 7, 9, 11, 

13, 15, 20, 25, 30, 40 and 50 mm, and information about the 

concentration of the seven basic alloying elements present in the 

group of structural alloy steel, i.e. C, Mn, Si, Cr, Ni, Mo and Cu. 

The database contains the results finally 494 data series, which 

was created two disjoint sets of experimental data. The first of the 

sets (469 heats) is used to generate and training the artificial 

neural network modeling hardenability, and the second (25 heats) 

is used for testing and verification, by choosing the best network, 

of the derived model. The distribution of the data was performed 

to verify the act networks for data, which were not presented in 

the learning process or validation. This allows to exclude 

randomness and full credibility of the results. At this stage, it 

recycled note that within each of the sets get the large variety of 

chemical compositions of heats. The chemical compositions of 

heats are shown in Table 1.  

 

Table 1.  

Ranges of mass concentrations of the alloying elements occurring 

in the analyzed steels 

Range 
Mass fractions of element, % 

C Mn Si Cr Ni Mo Cu 

Min. 0.12 0.36 0.12 0.09 0.04 0.01 0.07 

Max. 0.64 1.40 0.41 1.92 2.74 0.43 0.34 

 

Made-to-date data selection, aimed at rejection of those for whom 

the results of experimental hardenability indicated the occurrence 

of any error or independent reasons connected with the 

experiment. Figure 1 shows the visualization of the range of 

occurrence of Chromium and Molybdenum data used in the 

analysis of steels, see Table 1. 
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Fig. 1. Range of occurrence clusters of the alloying elements for 

whole mass concentrations of alloying elements 

 

First developed in the working method of modeling 

hardenability used artificial neural networks. The selection of the 

type of network used have been guided by the circumstances 

which indicated task dictates the choice of the structure of your 

network. The rationale for this was continuity of the input signals 

compatible with hardness in the following distances from the 

front of the sample to the hardenability curves. Accordingly, the 

hardenability curves for modeling the neural network uses a 

unidirectional multilayer teaching method based on the error 

backpropagation algorithm and a Quasi-Newton method. The 

analysis of two-layer network type structure 7-x-13 and 8-x-1, 

where x is the number of neurons in the hidden layer. The general 

structure of the artificial neural network is shown on Figure 2. 

 

 
Fig. 2. The general representative structure of the ANN 

 

In the first model it is assumed that seven basic alloying 

elements mainly affects hardenability which present in machine 

structural steels, such as: C, Mn, Si, Cr, Ni, Mo and Cu, whose 

concentration corresponds to the seven nodes of the input layer of 

the network. The nodes on the network output list correspond to 

the thirteen points where the hardness is measured on Jominy 

sample. In the latter model, as inputs were considered the mass 

concentrations of the seven major alloying elements and a point 

on the curve in the hardenability predetermined distance from the 

front. In the analyzed structure of the output signal has a hardness 

corresponding to the next points on Jominy hardenability curve. 

The choice of the second model is due to the result of the analysis 

of the results of error learning network. 
In the second method, developed in the work hardenability 

modeling used equation derived by statistical stepwise regression. 
This method involves the sequential selection of variables in the 
model in order to obtain the best set of variables. The value of the 
Pearson correlation coefficient, standard error, and the ratio of 
standard deviations form the basis for assessing the significance 
of the resulting model. The Microsoft Excel with Analysis 
ToolPak is utilized to determine the coefficients of the regression 
equations. As with the training of the artificial neural network 
uses a set of experimental data to create the statistical models. 

 

 

3. Results and Discussion 
 

The choice of practical modeling methods of hardenability in 

the selection of steel components machine is based on the 

verification of each of the analyzed working methods of 

calculating the hardenability of experimental results. For this 

purpose, we selected two models developed using computer tools 

to evaluate the effect of chemical composition on hardenability of 

the steel. The purpose of this experiment is to compare the 

compliance impact assessments of chemical composition on 

hardenability obtained models for the artificial neural network 

model and the regression of experimental data and calculated. The 

comparison is shown in Table 2.  

 

Table 2.  

Comparison of statistics for the model of the neural network and 

regression 

Neural network model 

Distance from quenched 

end, mm 

7 20 30 

Average error, 

HRC 

Training set 1.58 1.55 1.68 

Validating set 1.59 1.58 1.46 

Testing set 1.57 1.60 1.64 

Verifying set 1.58 1.58 1.56 

Pearson 

correlation 

coefficient 

Training set 0.96 0.96 0.95 

Validating set 0.97 0.97 0.95 

Testing set 0.95 0.97 0.96 

Verifying set 0.96 0.97 0.95 

Quotient of 

standard 

derivation 

Training set 0.20 0.18 0.19 

Validating set 0.17 0.15 0.20 

Testing set 0.20 0.16 0.19 

Verifying set 0.19 0.18 0.19 

     

Mathematical model 

Distance from quenched 

end, mm 

7 20 30 

Average error, HRC 1.69 2.37 2.08 

Pearson correlation coefficient 0.96 0.95 0.95 

Quotient of standard deviation 0.18 0.20 0.21 
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Similarly, the comparison of the model and the predicted hardness 

for the three distances from quenched end can be observed from 

Figure 3.  

 

 
 

 

 
Fig. 3. The comparison of model HRC and predicted HRC for 

three distances from quenched end a) 7mm, b) 20mm, c) 30mm 

 
Examples of the graphs of planned on the basis of statistical 

numerical experiments illustrate the effect respectively of a single 

element, pairs of element with range of clusters shown in Figure 

1, and Figures 4 – Figure 6 for chemical composition 0.22% C, 

0.7% Mn, 0.25% Si, 1.1% Cr, 0.25% Ni, 0.05% Mo, 0.16% Cu. 

 

 
 

 
Fig. 4. The influence of alloying elements on the response 

function (hardness HRC) for the calculated data of the neural 

network model a) Mo, b) Cr 
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Fig. 5. Effect of concentration of chromium and molybdenum to 

increase the hardness at distance a) 7mm, b) 20mm, c) 40mm 

 

 
 

 
 

 
Fig. 6. Synergistic effect of Cr and Mo on the steels hardness at 

distance a) 7mm, b) 20mm, c) 40mm 

 

Comparison of the data from Figure 1, and Figures 4 – Figure 

6 with the results of classical methods [5, 7, 12-20] proves that the 
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conclusions concerning the subject presented in the works 

mentioned are correct. However, the results from the classical 

investigations do not provide evaluations of the effect of two or 

more alloying elements on hardenability. Therefore, it is possible 

to say that this is one of the main reasons for deficiency of the 

existing methods of evaluation of the effect of the composition of 

the elements on hardenability. Generally, based on the research 

conducted, and example presented, it is possible to determine 

which combinations of the alloying compositions elements 

considerably increase hardenability of steel. 

 
 

4. Conclusions 
 

The research addressed the application of the method of 

artificial neural networks and quasi-newton method in modelling 

hardenability of steel for evaluation of the synergistic effect of the 

alloying elements on its properties. The vast potential use of the 

computer tools developed was pointed out, and their practical 

usefulness was illustrated by examples. The developed artificial 

neural network model can also be employed for simulations of the 

relationship between hardness at a given distance from the Jominy 

bar specimen face and the chemical composition of the steel. This 

can be done in the entire range of concentrations of the main 

alloying elements occurring in constructional alloy steels. 

Application of the presented method, using the computer program 

developed, enables practitioners to make free analyses of the 

synergistic effect of the alloying elements occurring in heat-

treatable alloy constructional steels using only computer 

simulation without carrying out time consuming and costly 

experimental investigations. The developed tool can be utilized to 

synthesis steel alloy with specific property for particular 

applications.  

 

 

References 
 

[1] Kobasko, N.I. (2018). Optimal hardenability steel for any 

size and form of machine components to increase their 

service life and decrease alloy elements in material. 

International Journal of Current Research. 10(02), 65867-

65878. 

[2] Grange, R.A., Hribal, C.R. & Porter, L.F. (1977). Hardness 

of tempered martensite in carbon and low-alloy steels. 

Metallurgical and Materials Transactions A. 8, 1775-1785. 

DOI: doi.org/10.1007/BF02646882. 

[3] Bain, E.C., Paxton, H.W. (1961). Alloying Elements in Steel, 

2nd Edition. Metals Park, Ohio: American Society for 

Metals.  

[4] Kobasko, N.I. (2012). Correlation between chemical 

composition of steel, optimal hardened layer, and optimal 

residual stress distribution. In N.I. Kobasko & K.N. Prabhu 

(Eds.), Film and Nucleate Boiling Processes, STP1534 (61-

80). West Conshohocken, PA: ASTM International. 

[5] Grossmann, M.A. (1942). Hardenability calculated from 

chemical composition. The American Institute of Mining, 

Metallurgical, and Petroleum Engineers. 150, 227-255. 

[6] ASTM A-255-02 (2002). Standard test methods for 

determining hardenability of steel. ASTM International. 

https://doi.org/10.1520/A0255-02. 

[7] Sitek, W. & Trzaska, J. (2011). Numerical simulation of the 

alloying elements effect on steels’ properties. Journal of 

Achievements in Materials and Manufacturing Engineering. 

45(1), 71-78.  

[8] Hart, G.L.W., Mueller, T., Toher, C. & Curtarolo, S. (2021). 

Machine learning for alloys. Nature Reviews Materials. 6, 

730-755. https://doi.org/10.1038/s41578-021-00340-w. 

[9] Schmidt, J., Marques, M.R.G., Botti, S. & Marques, M.A.L. 

(2019). Recent advances and applications of machine 

learning in solid-state materials science. npj Computational 

Materials. 5(83). https://doi.org/10.1038/s41524-019-0221-

0. 

[10] Lambiase, F., Di Ilio, A.M., & Paoletti, A. (2013). Prediction 

of Laser Hardening by Means of Neural Network. In 8th 

CIRP Conference on Intelligent Computation in 

Manufacturing Engineering, 18-20 July 2012 (pp. 181 – 

186). Ischia, Italy: Elsevier Procedia. 

https://doi.org/10.1016/j.procir.2013.09.032. 

[11] Chong, ZS, Wilcox, S, & Ward, J. (2005). The Use of 

Artificial Intelligence in the Modelling and Heat Treatment 

Parameters Identification for Alloy-Steel Re-Heating 

Process. In Proceedings of the ASME 2005 International 

Design Engineering Technical Conferences and Computers 

and Information in Engineering Conference. Volume 1: 20th 

Biennial Conference on Mechanical Vibration and Noise, 

Parts A, B, and C, September 24–28, 2005 (pp. 607-613). 

Long Beach, California, USA: ASME. 

https://doi.org/10.1115/DETC2005-84802. 

[12] Hodge, J.M. & Orehoski, M.A. (1946). Relationship between 

hardenability and martensite in some low-alloy steels. The 

American Institute of Mining, Metallurgical, and Petroleum 

Engineers. 167, 502-512. 

[13] Mangonon, P.L. (1982). Relative hardenabilities and 

interaction effects of Mo and V in 4330 alloy steel. 

Metallurgical and Materials Transactions A. 13, 319-320. 

DOI: 10.1007/BF02643323.  

[14] Kramer, I.R., Hafner, R.H. & Toleman, S.L. (1944). Effect 

of Sixteen Alloying Elements on Hardenability of Steel, The 

American Institute of Mining, Metallurgical, and Petroleum 

Engineers. 158, 138-156. 

[15] Doane, D.V. (1979). Application of Hardenability Concepts 

in Heat Treatment of Steel. Journal of Heat Treating. 1, 5-

30. DOI: doi.org/10.1007/BF02833206. 

[16] Doane, D.V. & Kirkaldy, J.S.G. (1978). Hardenability 

concepts with application to steels. Transactions of the 

Metallurgical Society of AIME. 12, 626-334. 

[17] Jatczak, C.F. (1973). Hardenability in high carbon steels. 

Metallurgical and Materials Transactions B. 4, 2267-2277. 

DOI: doi.org/10.1007/BF02669366. 

[18] Grange, R.A. (1973). Estimating the hardenability of carbon 

steels. Metallurgical and Materials Transactions B. 4, 2231-

2244. DOI: doi.org/10.1007/BF02669363. 

[19] Crafts, W. & Lamont, J.L. (1944). Effects of some elements 

on hardenability. The American Institute of Mining, 

Metallurgical, and Petroleum Engineers. 1(11), 157-167. 



108  A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  2 2 ,  I s s u e  4 / 2 0 2 2 ,  1 0 2 - 1 0 8  

[20] Comstock, G.F. (1945). The influence of titanium on the 

hardenability of steel. Transactions of the Metallurgical 

Society of AIME. 12 (6), 148-150. 

[21] Moser, A. & Legat, A. (1969). Die Berechnung der 

Härtbarkeit aus der chemischen Zusammensetzung. HTM 

Härterei-technische Mitteilungen. 24(2), 100-104. (in 

German) 

[22] Sitek, W. & Jabłoński, A. (2015). The application of neural 

networks to analysis of the effects of chemical composition 

on hardenability of steel. Journal of Achievements in 

Materials and Manufacturing Engineering. 72(1), 32-38. 

[23] Sitek, W. & Irla, A. (2016). The Use of fuzzy systems for 

forecasting the hardenability of steel. Archives of Metallurgy 

and Materials. 61(2), 797-802. DOI: 

dx.doi.org/10.1515/amm-2016-0134. 

[24] Dobrzański, L.A. & Sitek, W. (1997). Comparison of 

hardenability calculation methods of the heat-treatable 

constructional steels. Journal of Materials Processing 

Technology. 64(1-3), 117-126. DOI: doi.org/10.1016/S0924-

0136(96)02559-9. 

[25] Dobrzański, L.A. & Sitek, W. (1999). Designing of the 

chemical composition of constructional alloy steels. Journal 

of Materials Processing Technology. 89-90, 467-472. DOI: 

doi.org/10.1016/S0924-0136(99)00140-5. 

[26] Sitek, W. & Trzaska, J. (2021). Practical aspects of the 

design and use of the artificial neural networks in materials 

engineering. Metals 2021. 11(11), 1832. DOI: 

doi.org/10.3390/met11111832. 

[27] Dobrzański, L.A. & Sitek, W. (1999). The modelling of 

hardenability using neural networks. Journal of Materials 

Processing Technology. 92-93, 8-14. DOI: 

doi.org/10.1016/S0924-0136(99)00174-0. 

[28] Sitek, W., Trzaska, J., & Dobrzański, L.A. (2008). Modified 

Tartagli method for calculation of Jominy hardenability 

curve. Materials Science Forum. 575-578, 892-897. DOI: 

doi.org/10.4028/www.scientific.net/MSF.575-578.892. 

[29] Sitek, W. (2010). A mathematical model of the hardness of 

high-speed steels. Transactions of FAMENA. 34(3), 39-46.  

[30] Sitek, W., Dobrzański, L.A. & Zacłona, J. (2004). The 

modelling of high-speed steels’ properties using neural 

networks. Journal of Materials Processing Technology. 157-

158, 245-249. DOI: doi.org/10.1016/j.jmatprotec.2004.09. 

037. 

[31] Sitek, W. & Dobrzański, L.A. (2005). Application of genetic 

methods in materials’ design. Journal of Materials 

Processing Technology. 164-165, 1607-1611. DOI: 

doi.org/10.1016/j.jmatprotec.2005.01.005. 

[32] Edelstahl Witten-Krefeld GmbH (2007). THYROFORT: 

Heat-treatable steels (Technical Information). Swiss Steel 

Group. https://www.swisssteel-group.com/fileadmin/ 

user_upload/_SCHULUNG_/Sudafrika/Publications/heat_tre

atable_steel.pdf. 

[33] EN ISO 683-2:2018 (2018). Heat-treatable steels, alloy steels 

and free-cutting steels - Part 2: Alloy steels for quenching 

and tempering (ISO 683-2:2016). ISO Standards. 

https://www.iso.org/standard/70643.html. 

[34] Wever, F., Rose, A., Peter, W., Strassburg, W. & 

Rademacher, L. (1961). Atlas zur Wärmebehandlung der 

Stähle, Teil I and II. Max-Planck-Institut für Eisenforschung 

in Zusammenarbeit mit dem Werkstoffausschuss des Vereins 

Deutscher Eisenhüttenleute. Düsseldorf, Germany: Verlag 

Stahleisen m.b.H. (in German) 

[35] Rose, A. & Hougardy, H. (1972). Atlas zur 

Wärmebehandlung der Stähle, Band 2. Max-Planck-Institut 

für Eisenforschung in Zusammenarbeit mit dem 

Werkstoffausschuss des Vereins Deutscher Eisenhüttenleute. 

Düsseldorf, Germany: Verlag Stahleisen m.b.H. (in German) 

[36] Orlich, J., Rose, A. & Wiest, P. (1973). Atlas zur 

Wärmebehandlung der Stähle, Band 3: Zeit-Temperatur-

Austenitisierung-Schaubilder. Max-Planck-Institut für 

Eisenforschung in Zusammenarbeit mit dem 

Werkstoffausschuss des Vereins Deutscher Eisenhüttenleute. 

Düsseldorf, Germany: Verlag Stahleisen m.b.H. (in German) 

[37] Orlich, J., & Pietrzeniuk, H. (1976). Atlas zur 

Wärmebehandlung der Stähle, Band 4: Zeit-Temperatur-

Austenitisierung-Schaubilder, Teil 2. Max-Planck-Institut für 

Eisenforschung in Zusammenarbeit mit dem 

Werkstoffausschuss des Vereins Deutscher Eisenhüttenleute. 

Düsseldorf, Germany: Verlag Stahleisen m.b.H. (in German) 
 

 


