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Iron ore blending in an open-pit mine is an important means to ensure ore grade balance and resource 
recycling in iron mine industrial production. With the comprehensive recovery and utilisation of resource 
mining, the multi-source and multi-target ore blending method has become one of the focuses of the 
mining industry. Scientific and reasonable ore blending can effectively reduce the transportation cost of 
the enterprise. It can also ensure that the ore grade, washability index and iron carbonate content meet 
the requirements of the concentrator and significantly improve the comprehensive utilisation rate and 
economic benefits of the ore. An ore blending method for open-pit iron ore is proposed in this paper. The 
blending method is realised by establishing the ore blending model. This model aims to achieve maximum 
ore output and the shortest transportation distance, ore washability index, total iron grade, ferrous iron 
grade and iron carbonate content after the ore blending meets the requirements. This method can meet 
the situation of a single mine to a single concentrator and that of a single mine to multiple concentrators. 
According to the results of ore blending, we can know the bottleneck of current production. Through 
targeted optimisation management, we can tap the production potential of an open-pit mine.

Keywords: Iron Ore blending; Multi-source and Multi-target; Open Pit Mine

1.	I ntroduction

China is the largest iron and steel country in the world, accounting for more than 55% 
of the world’s output, and also the largest consumer of steel, reaching more than 1.2 billion 
tons. However, Chinese iron ore mainly depends on imports, with an iron ore output (OO) 

1	 Northeastern University, College of Resources and Civil Engineering, Shenyang, Liaoning 
110819, China

2	 Ansteel Group GUANBAOSHAN Mining Co., Ltd, Anshan, Liaoning 114000, China
*	 Corresponding author: 2010391@stu.neu.edu.cn)

https://orcid.org/0000-0002-4034-1817
https://orcid.org/0000-0002-7444-2739
https://orcid.org/0000-0003-3964-2329
https://orcid.org/0000-0003-4434-8407
https://orcid.org/0000-0002-2558-006X


632

of 866.72 million tons in 2020 and an iron ore import of 1170.1 million tons, accounting for 
more than 57%. Chinese iron ore reserves are ranked fifth in the world, with 63.6 billion tons. 
However, Chinese domestic iron ore grade is poor, accounting for more than 80%. The ore grade 
is low, there are many multi-element composite ores, the ore body is complex, hematite and 
magnetite are associated with it, making it difficult to beneficiate. Iron ore blending in open-pit 
mines is an essential means to ensure ore grade balance and resource recycling in iron mine 
industrial production. With the comprehensive recovery and utilisation of resource mining, the 
multi-source and multi-target (MSMT) ore blending method has become one of the focuses of 
the mining industry. Scientific and reasonable MSMT ore blending can effectively reduce the 
transportation cost of the enterprise. It ensures that the ore grade (OG) and washability index 
(WI) meet the requirements of the concentrator, and significantly improves the comprehensive 
utilisation rate and economic benefits of the ore.

At present, the research on ore blending optimisation is predominantly divided into three 
categories: the first is the application of mathematical programming method in ore blending op-
timisation, which is mainly used in the modelling of the ore blending plan of an open-pit mine; 
The second is the research of intelligent optimisation algorithm in ore blending, including genetic 
algorithm, particle swarm optimisation, immune clonal selection algorithm, etc.; The third is the 
application of computer and intelligent ore blending systems, which is more common in open-pit 
mine ore blending management systems.

The mathematical programming method is mainly used for the modelling of ore blending 
optimisation in an open-pit mine. The objective function of the model is to achieve maximum 
profit and mining quantity, minimum grade deviation and minimum total cost, and the constraints 
generally consider the equipment production capacity, ore quality, task quantity, etc. Linear 
programming is one of the earliest mathematical programming methods used in the optimisa-
tion modelling of open-pit mine blending. In the early stage of research, many scholars actively 
applied it to the optimisation modelling of production planning and solved many problems in 
mine blending. Some scholars have applied the SIP (Stochastic Integer Programming) model to 
the ore blending [1-6]. Liu et al. [7] established an ore matching model by linear programming, 
which solved the problem of ore matching for simultaneous mining of multiple coal seams. Some 
scholars use integer dynamic programming to calculate ore blending schemes [8,9]. Moreno 
et al. [10] considered the impact of ore storage on production and constructed multiple linear 
programming models to optimise production planning. Compared with the nonlinear model, the 
effect is significant. Some studies use metaheuristics to solve the problem of ore blending [11-16].

An intelligent optimisation algorithm has considerable advantages in solving the optimisa-
tion model. With the continuous in-depth study of open-pit ore blending optimisation, the model 
is more and more complex. Jélvez et al. [17] proposed a new aggregation and decomposition 
heuristic algorithm for plan optimisation. The algorithm can obtain a feasible approximate optimal 
solution with low time complexity, which provides a solution for solving large-scale problems. 
Sattarvand et al. [18,19] proposed a heuristic approximation algorithm based on the ant colony 
algorithm, which was applied to the planning of open pit mine, and considered the influence of 
ore grade uncertainty in the planning process. Dervis Karaboga [20] proposed a relatively new 
evolutionary algorithm, the artificial bee swarm (ABC) algorithm. The colony of artificial bees 
contains three groups of bees: employed bees, onlookers, and scouts in the ABC algorithm [21]. 
Li [22] used a new ABC algorithm and a wavelet neural network (WNN) to predict the gold price. 
Bahram and Nader [23] combined ABC with radial basis function (RBF) and backpropagation 
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(BP) neural network to predict phosphate ore grade. Chen et al. [24] introduced the differential 
evolution (DE) algorithm and ABC algorithm into the new ABC search equation in order to im-
prove the convergence speed of the algorithm. Anuar [25] combines the artificial neural network 
with ABC to apply the proposed algorithm to the classification of criminal data while avoiding 
the problems that neural networks can easily fall into the local optima. Ghanem [26] combined 
ABC with particle swarm optimisation (PSO) and tested the classification accuracy of the method 
on multiple datasets. Cui et al. [27] proposed an ABC algorithm based on distance fitness and 
verified it with a standard data set. Tosun et al. [28] established a relationship to determine the 
optimal number of trucks.

The research object of computer and intelligent ore blending systems is the system problems 
with large scale, complex structures and a large amount of information. Its control and planning 
process involves a lot of calculation and information processing, which is beyond the reach of 
human beings. With the development trend of digitalisation and intellectualisation in mines, 
the application of computers has been accelerated, and the role of ore blending systems in mine 
production has become increasingly prominent. Therefore, various types of mine production 
software and ore blending systems began to appear. Some studies proposed an expert decision 
support system for ore blending, which considered the balance of macro and micro ore quality. 
Gema et al. [29] aimed at determining an exploitability index with geographical information 
systems tools. Because of the limitation of the development level of computers at that time, it 
was not widely used, but it marked the arrival of intelligent ore blending. Other studies proposed 
a large-scale integrated hardware and software ore blending system for mining and beneficia-
tion combined production. This improved the control level of ore quality and set a precedent for 
Chinese mining and beneficiation combined ore blending.

The following sums up the deficiencies of existing research:
(1)	 Large-scale open-pit iron ore production may need to provide ore to many concentra-

tors. Each concentrator for the ore requirements may be different, which increases the 
difficulty of ore blending. This results in the actual production of ore blending, and the 
existing ore blending method cannot solve the actual demand for open-pit iron ore for 
MSMT ore blending.

(2)	 Most of the research on ore blending optimisation of open-pit mines mainly focuses on 
a single mineral resource, but most of the mineral resources do not exist independently. 
For example, iron exists in nature as a variety of compounds, and different forms of 
existence also have different treatment methods for the follow-up beneficiation process.

(3)	 The current computer and intelligent ore blending system is still a relatively single-
function system, which cannot be combined with a mine digital geological system or 
open-pit truck dispatching system. These systems cannot complete a more accurate and 
faster intelligent ore blending.

To solve the above technical problems, meet the actual demand for MSMT ore blending 
in the current open-pit iron mine, and solve the existing problems, an ore blending method is 
proposed in this paper. By establishing an ore blending model with the maximum OO and the 
shortest transportation distance as the goal, and with the constraints of WI, total iron grade 
(TFeG), ferrous iron grade (FFeG) and iron carbonate content (FeCO3G) after ore blending. 
The MSMT ore blending optimization of open-pit iron ore is realised. The purpose is to make 
the mixed ore properties more convenient for production, thus improving production efficiency 
and reducing production costs.
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In view of the situation that the open-pit iron ore supplies ore to many concentrators, the ore 
blending model is designed so that the method can meet the situation of a single mine to a single 
concentrator and that of a single mine to multiple concentrators. Van Tonder et al. [30] proved 
that well-mixed ore properties significantly impact flotation production. The ore blending condi-
tions are restricted by specifying whether the electric shovel draws ore, the range of production 
capacity of the electric shovel in the ore blending period, the range of OO at each ore unloading 
point (OUP), the range of mining WI, the range of TFeG, the range of FFeG and the range of 
FeCO3G, so as to make the ore blending closer to the actual production. Ore blending results are 
generated according to the selected ore blending time period, which makes the software more 
flexible and meets the ore blending requirements of different time dimensions. According to 
the results of ore blending, we can know the bottleneck of current production. Through targeted 
optimisation management, we can tap the production potential of an open-pit mine.
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geological 
software 

Get blast zone data
Through the 3D geological software interface, according to the 

shovel specified by the user, the recoverable amount, WI, 
geological TFeG, geological FFeG and FeCO3G of the nearby 

blasting area are obtained.

Setting blast zone parameters
OD of blasting area and production capacity range of electric 

shovel in ore blending period.

Setting parameters of OUPs
The range of OO, WI, TFeG, FFeG and FeCO3G are set in the 
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Construct linear programming mathematical model
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Solving the mathematical model of linear programming
The reasonable and feasible ore matching scheme is obtained, 
and the ore matching scheme is output to the truck dispatching 

system interface of open pit mine.
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 Fig. 1. Schematic diagram of ore blending process
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2.	O re blending method and processing

As shown in Fig. 1, The ore blending method and process mainly include the following 
steps. Step 1: Selection shovels and OUPs; Step 2: Get blast zone data; Step 3: Setting blast zone 
parameters; Step 4: Setting parameters of OUPs; Step 5: Get shovels and OUPs distance; Step 6: 
Construction of linear programming mathematical model for ore blending; Step 7: Solving the 
mathematical model of linear programming for ore blending.

2.1.	 Select shovels and OUPs

Select shovels and OUPs for ore blending. Suppose there are n electric shovels, i = 1, 2, 3, ..., n; 
There are m OUPs, j = 1, 2, 3, ..., m.

2.2.	G et blast zone data

Through the 3D geological software interface, according to the shovel specified by the user, 
the recoverable amount, geological WI, TFeG, FFeG and FeCO3G of the nearby blasting area 
are obtained. Among them, Qi is the recoverable amount of the explosive area where the number 
i shovel is located, GPi is the geological WI, GTi is the geological TFeG, GFi is the geological 
FFeG, and GCi is the geological FeCO3G.

2.3.	 Setting blast zone parameters

Ore dilution (OD) of blasting area and production capacity range of electric shovel in ore 
blending period. Among them, Ri is the OD of the blasting area where the number i shovel is 
located, SMINi and SMAXi is the minimum and maximum production capacity of the shovel in 
the ore blending time period.

2.4.	 Setting parameters of ore OUPs

The range of OO, WI, TFeG, FFeG and FeCO3G is set in the ore blending period. Among 
them, UMINj and UMAXj are the lower limits (LL) and upper limit (UL) of ore production in 
the ore blending time period of the j OUP, PPMINj and PPMAXj are LL and UL of mining WI, 
PTMINj and PTMAXj are LL and UL of mining TFeG, PFMINj and PFMAXj are LL and UL of 
mining FFeG, PCMINj and PCMAXj are LL and UL of the mining FeCO3G.

2.5.	G et shovels and OUPs distance

The distance between all shovels and OUPs is obtained through the truck dispatching sys-
tem interface of the open-pit mine. Where Dij is the distance from the number i shovel to the 
number j OUP.
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2.6.	C onstruct linear programming mathematical model  
for ore blending

Assuming that xij is the amount of ore transported from the number i blasting area to the 
number j OUP, the objectives and constraints of the MSMT ore blending linear programming 
mathematical model of open-pit iron ore include:

•	 Target of maximum OO and shortest haul distance:
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•	 TFeG constraint produced at OUP:
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•	 FFeG constraint produced at OUP:
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•	 FeCO3G constraint produced at OUP:
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2.7.	 Solving the mathematical model of linear programming  
for ore blending

The reasonable and feasible ore matching scheme is obtained, and the ore matching scheme 
is the output to the truck dispatching system interface of the open-pit mine.

3.	R esults and Discussion

Qidashan Iron Mine (QDSIM) is a metallurgical mine that integrates mining and beneficia-
tion. It supplies iron ore to both Qidashan and Diaojuntai concentrators, with an annual design 
production capacity of 51 million tons of mining and stripping, 14.4 million tons of raw ore 
processing, 4.8 million tons of iron concentrate and a concentrate grade of more than 67.5%. 
The current ore blending method of QDSIM is completed manually by ore blending personnel 
using Excel. The operation is complex, requires high experience of ore blending personnel, has 
too many human factors, and has certain blindness, which leads to the inaccuracy of the ore 
blending scheme.

Assuming that there are 7 electric shovels in a certain shift of QDSIM one day, the ore is 
planned to be discharged to 2 OUPs. In order to obtain the ore blending scheme, do the follow-
ing steps:

(1)	 Select 7 electric shovels, namely 1#, 10#, 11#, 15#, 17#, 21# and 22# respectively, and 
2 OUPs for ore blending, namely North Crushing Station (NCS) and Ore Crushing 
Station (OCS). NCS’s ore is transported to Qidashan concentrator and OCS’s ore is 
transported to Diaojuntai concentrator.

(2)	O btain the geological data of the blasting area where the electric shovel is located. 
Through the three-dimensional geological software interface, according to the electric 
shovel specified by the user, the recoverable quantities of the blasting area are all 
20000t, the WI are 59.71, 47.66, 63.50, 58.50, 57.60, 67.90 and 63.56 respectively, 
and the geological TFeG are 30.35%, 30.66%, 30.60%, 31.67%, 29.12%, 31.21% and 
30.85% respectively, the geological FFeG is 11.39%, 13.15%, 12.74%, 12.56%, 10.76%, 
12.36% and 10.54% respectively, the FeCO3G of 15# shovel is 4%, and the others are 
0%. Detailed data are shown in Table 1.

(3)	 The OD of the specified blasting area is input by the user, as shown in Table 1, which 
are 2%, 2%, 0%, 1%, 0%, 1% and 1%, respectively. The recoverable quantity of the 
shovel is all 20000t. The LL and UL of OO are 500t ~ 2500t, 500t ~ 3000t, 500t ~ 3000t, 
500t ~ 3000t, 500t ~ 3000t, 500t ~ 2000t, and 500t ~ 2000t, respectively.

(4)	 The user inputs the OO range within the ore blending time period of each OUP, as shown 
in Table 2, which are 1t ~ 18000t and 1t ~ 7000t, respectively. The mining WI range 
is all 28 ~ 70, the TFeG range is all 28.00 ~ 34.00, the FFeG range is all 6.00 ~ 13.00, 
and the FeCO3G range is all 0.00 ~ 6.00.

(5)	 The distance between all electric shovels and the OUPs is obtained through the interface 
of the truck dispatching system of the open-pit mine. As shown in Table 3, the distances 
between the seven selected shovels and OCS are 2000m, 1500m, 1800m, 2500m, 500m, 
900m and 800m, respectively. The distances between the seven selected shovels and 
NCS are 400m, 200m, 300m, 1000m, 1500m, 1300m and 1600m, respectively.
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(6)	 The linear programming mathematical model of MSMT ore blending in open-pit iron 
mine can be expressed in the following forms:
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Table 1

Data and parameter setting of explosion area

Shovel 
No.

Recoverable 
quantity

(t)

Geological 
WI

Geological 
TFeG
(%)

Geological 
FFeG
(%)

Geological 
FeCO3G 

(%)

OD
(%)

OO LL
(t)

OO UL
(t)

1# 20000 59.71 30.35 11.39 0.00 2 500 2500
10# 20000 47.66 30.66 13.15 0.00 2 500 3000
11# 20000 63.50 30.60 12.74 0.00 0 500 3000
15# 20000 58.50 31.67 12.56 4.00 1 500 3000
17# 20000 57.60 29.12 10.76 0.00 0 500 3000
21# 20000 67.90 31.21 12.36 0.00 1 500 2000
22# 20000 63.56 30.85 10.54 0.00 1 500 2000

Table 2

OUP parameter setting

No. OUP
OO (t) WI TFeG (%) FFeG (%) FeCO3G (%)

LL UL LL UL LL UL LL UL LL UL
1 OCS 1 18000 28.00 70.00 28.00 34.00 6.00 13.00 0.00 6.00
2 NCS 1 7000 28.00 70.00 28.00 34.00 6.00 13.00 0.00 6.00

Table 3

 Distance between shovel and OUP

Shovel No. Distance from OCS (m) Distance from NCS (m)
1# 2000 400

10# 1500 200
11# 1800 300
15# 2500 1000
17# 500 1500
21# 900 1300
22# 800 1600
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Table 4

Shovel ore blending results

Shovel No. OCS ore blending ratio (%) NCS ore blending ratio (%)
1# 21.74 14.29

10# 26.09 42.86
11# 0.00 42.86
15# 17.39 0.00
17# 0.00 0.00
21# 17.39 0.00
22# 17.39 0.00

(7)	 The MSMT ore blending linear programming mathematical model ((9)~(20)) of an open-
pit iron mine is solved to obtain the ore blending results of the electric shovel as shown 
in Table 4. The ore blending results of OUP are shown in Table 5, and the ore blending 
operation results as shown in Table 6. The ore blending results of electric shovels list the 
ore transportation proportion from each electric shovel to each OUP. The specific data 
is that the proportion of seven electric shovels to OCS is 21.74%, 26.09%, 0%, 17.39%, 
0%, 17.39% and 17.39% respectively, and the proportion to NCS is 14.29%, 41.86%, 
42.86% and others is 0% respectively. The ore blending results of OUPs list the WI, 
TFeG, FFeG and FeCO3G predicted for each OUP if they are produced according to 
the ore blending results of the electric shovel. The predicted results of OCS are 58.45, 
30.44, 11.89 and 0.69, respectively, and the predicted results of NCS are 60.26, 30.07, 
11.85 and 0.57, respectively. According to the conclusion of Su et al. [31], when the WI 
is 58.45 and the comprehensive concentrate iron grade is 67.5%. It can be predicted that 
the comprehensive tailings iron grade is between 10.5% and 11.5%, the beneficiation 
ratio is between 3.26 and 3.39, and the cost per ton of concentrate is 511 yuan. When the 
WI is 60.26, and the comprehensive concentrate iron grade is 67.5%, it can be predicted 
that the comprehensive tailings iron grade is between 9.5% and 10.5%, the beneficia-
tion ratio is between 3.14 and 3.26, and the cost per ton of concentrate is 447 yuan. 
Send the shovel ore blending results to the truck dispatching system of the open pit 
mine, and the truck dispatching system of the open pit mine will organise production.
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Table 5

OUP ore blending results

No. OUP WI TFeG (%) FFeG (%) FeCO3G (%)
1 OCS 58.45 30.44 11.89 0.69
2 NCS 60.26 30.07 11.85 0.57

Through the ore blending calculation results, it can be seen that the production bottleneck 
under the current conditions is where the limit value is reached. From this embodiment, it can 
be seen that the production capacity of shovels is the production bottleneck, and the output of 
NCS is also the production bottleneck.

Table 6

Ore blending operation results

Content Setting value Ore blending 
result

Status (limit value 
reached or not) Difference

Shovel 1# mining volume 500-2500 2500 Reached 0
Shovel 10# mining volume 500-3000 3000 Reached 0
Shovel 11# mining volume 500-3000 3000 Reached 0
Shovel 15# mining volume 500-3000 3000 Reached 0
Shovel 17# mining volume 500-3000 3000 Reached 0
Shovel 21# mining volume 500-2000 2000 Reached 0
Shovel 22# mining volume 500-2000 2000 Reached 0

OCS output 1-18000 11500 Not reached 6500
NCS output 1-7000 7000 Reached 0

4.	C onclusions

In this paper, an MSMT ore blending method for open-pit iron ore is proposed. The MSMT 
ore blending optimisation of open-pit iron ore is realised by establishing the ore blending model 
with the goal of maximum OO and shortest transportation distance, and the ore WI, TFeG, FFeG 
and FeCO3G after ore blending meets the requirements. Based on the above algorithm, the ore 
blending optimisation system was developed. It has been applied in QDSIM and achieved good 
application results. Through the application of the present system, the increase in ore produc-
tion is achieved while the stabilisation of ore inclusion indicators in downstream concentrators 
is guaranteed.

In the current intelligent mine construction and even the future unmanned mine construction, 
the intelligent ore distribution system combines the intelligent truck dispatching system and driver-
less technology to lay the foundation for the realisation of the unmanned mine. In the future, the 
mine staff can complete the mining of the whole open-pit mine only in the remote control centre.

In the actual open-pit production, the production situation changes at any time, such as 
the failure of production equipment, the large fluctuation of ore grade, etc. At this point, if the 
production is carried out according to the previously generated ore blending plan, there will be 
a substantial deviation, which is contrary to the original intention of ore blending. This requires 



643

that the ore blending plan can be automatically adjusted during production, and the adjusted 
ore blending plan will be sent to the truck dispatching system. In this way, the deviation can be 
corrected in time to avoid significant errors. The next step is to carry out dynamic ore blending 
based on this study.

List of abbreviations

ABC	 artificial bee swarm
BP	 back propagation
DE	 differential evolution
FeCO3G	 iron carbonate content
FFeG	 ferrous iron grade
LL	 lower limit
MSMT	 multi-source and multi-target
NCS	 north crushing station
OCS	 ore crushing station
OD	 ore dilution
OG	 ore grade
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