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Applying Spatial Statistical Methods to Predict Ground Vibration  
Accelerations Caused by Induced Seismicity

This paper presents the results of the research aimed at improving the accuracy of predictions regar-
ding the maximum values of resultant components for horizontal ground vibration accelerations in areas 
threatened by induced seismicity. The presented solution proposes a spatial model of the ground vibration 
attenuation relationship based on the assumptions of the Joyner-Boore model. When performing statistical 
analyses to verify the models, great emphasis was placed on the correctness of applied estimation methods 
to meet the assumptions. The starting point for introducing spatiality into the models was the occurrence 
of spatial autocorrelation of the residual component when estimating the structural parameters of a model 
with the least-squares method. Spatial interactions were presented using weight matrices, the construction 
of which was based on the inverse of the distance between units. During the study, it was found that the 
estimated spatial model of the ground vibration attenuation relationship showed a much better match with 
empirical data compared to the classical Joyner-Boore attenuation model.
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1.	I ntroduction

Nowadays, mining operations are more frequently accompanied by rock mass tremors, which, 
on the one hand, can cause a significant risk to employees and damage to the underground infra-
structure of mines and generate noticeable vibrations on the ground surface. Seismicity induced 
by mining activity is concentrated in Poland around the Legnica-Głogów Copper District and 
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the Upper Silesian Coal Basin. According to the statistics of the State Mining Authority, 7114 
tremors and 11 rock bursts were registered in hard coal mines in the years 2016-2020, as a result 
of which there were 12 fatal accidents and 2 severe accidents. In the Legnica-Głogów Copper 
District, 2694 tremors and 12 rock bursts were recorded, which resulted in 10 fatal accidents 
and 1 serious accident. 

While the rock bursts occur relatively rarely in mines, ground vibrations are registered after 
almost every high-energy tremor. These may cause damage to both public and private buildings 
as well as technical infrastructure. This is because the tremors cause dynamic loads on buildings 
designed to withstand solely static loads. For this reason, these dynamic loads can damage build-
ings, weaken their structure, and reduce their durability and value [1]. The effects of strong vibra-
tions caused by mine tremors on the environment and buildings have been the subject of multiple 
papers. For example, one can mention the article [2], which analysed the impact of high-energy 
tremors in two gold mines in South Africa or work [3], in which damage to buildings caused 
by following high-energy tremors are discussed, highlighting the need for the proper structural 
design of buildings. However, the most significant consequence of vibrations seems to be the 
deterioration of living conditions of local communities due to high psychological discomfort [4]. 

Due to technical and economic reasons, for the most part, it is impossible to register vibration 
parameters generated by rock mass tremors in all endangered infrastructure facilities. Therefore, 
industries are required to develop forecasts of surface vibration intensity parameters. However, 
the estimation of vibration intensity causes many problems. The main reason is that the magni-
tude of vibrations is determined by several factors, the most important of which are: the seismic 
energy of a tremor, the hypocentral distance from a tremor source, the source mechanism, and 
the resulting directionality of vibrations, as well as and the geological structure of the medium 
affecting the amplification of vibrations [5-7]. In practice, however, predicting the magnitude of 
vibrations in unobserved objects comes down to determining a relationship between the tremor’s 
seismic energy and the hypocentral distance and the ground vibration parameters [8,9]. 

This relationship is called the vibration attenuation relationship or ground motion prediction 
equation (GMPE). Some of the first GMPEs were the models developed by Joyner and Boore [10], 
Campbell [11] as well as Atkinson and Boore [12]. Local GMPE relations have been developed 
for practically every seismically active region. A particularly comprehensive review of the above 
relations is presented in the work [13]. Examples of more complex GMPE relations, taking into 
account a larger number of parameters, e.g. ground type, sometimes also the mechanism of the 
shock focus, are the models given in [14-21]. 

In the literature, the most common proposal for empirical determination of the ground 
vibration attenuation relationship is the Joyner-Boore model [10].

The estimation of the structural parameters of the GMPE model is the beginning of extensive 
verification analysis. The accuracy of predictions and the correct construction of confidence inter-
vals for vibration intensity parameters are determined by the statistical verification of estimated 
parameters, far beyond assessing the significance of the estimates. In fact, the residual component 
of the model, which affects the form of the variance-covariance matrix, should be extensively 
analysed [22]. The applied estimation method requires the fulfilment of several assumptions. 
The estimated model is assumed to be linear regarding the coefficients and error term. The error 
term is assumed to be independent and identically distributed, i.e. ε ~ iid (0,σ 2I ). Moreover, no 
correlation between explanatory variables is assumed. Furthermore, the exogeneity of explanatory 
variables requires that variables X are uncorrelated with the error term. Finally, it is assumed that 
the error term is normally distributed. 
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When analysing the observational data, there is a recurring phenomenon of spatial autocor-
relation of the residual component of the GMPE model estimated by the least squares method is 
often observed, among other things, such as varied structure and thickness of near-surface lay-
ers. This manifests itself in the spatial clustering of residuals of the model estimated by the least 
squares method. A substantially justified procedure in the face of such a situation is to introduce 
spatiality into the model, understood as the differentiation of information coming from tremors 
whose epicentres are at different distances from each other. The application of statistical models 
of spatial relations of GMPE has been the subject of fewer studies than in the case of the classical 
approach. As with this approach, the structural parameters are estimated by the method of least 
squares, and the input data to the model coming from different measuring stations are treated 
as cross-sectional data. Research into the spatial correlations of recorded ground vibrations has 
been carried out for two decades. They mainly concern earthquakes [23-25]. The current state 
of research has been widely discussed in the works [26,27]. 

This paper presents a method of estimating ground vibration parameters using statistical 
spatial models applied to data about ground vibrations caused by tremors induced by mining 
extraction. Such vibrations are characterised by much smaller peak ground acceleration (PGA) 
and peak ground velocities (PGV) values in comparison to earthquakes. 

The analysis of the residual component of the model GPME for the analysed data made it 
possible to identify spatial autocorrelation of the error term, as well as determine an interaction 
matrix and estimate the model of vibration attenuation relationship, taking into account the spatial 
structure of strong rock mass tremors. Moran’s I statistic calculation was used to confirm the 
presence of spatial residual autocorrelation. To identify the type of spatial dependence, tests based 
on Lagrange Multipliers were calculated. In the case of the Spatial Error Model, the statistical 
significance of the spatial coefficient λ was verified. To compare the spatial model with the OLS 
model, AIC and RMSE statistics as well as the correlation coefficient between empirical data 
and predicted values were used.

2.	G round vibration attenuation relationship and modelling  
the spatial interaction

The most commonly used model takes into account the values of the PGA (or PGV) ac-
cording to formula (1). The structural parameters of the model are usually estimated using the 
least-squares method (OLS). Then the model is statistically verified for the significance of its 
parameters.

	


max, 0 1 2 3log log logi i i i ia E R R u        	 (1)

where: amax,i – peak values of ground vibration accelerations [m/s2]; α0, α1, α2, α3 – structural 
parameters of the model; Ei – tremor energy [J]; Ri – epicentral distance [m]; ui – residuals of 
the model.

In the next stage, the properties of the residual component of the model are examined 
in terms of normality and homoscedasticity. The lack of sphericity of the random component 
makes the parameter estimators of the linear regression model inefficient in the class of linear 
and unbiased estimators. In practice, heteroscedasticity may mean that as the level of values of 
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explanatory variables increases, the values of residuals increase, which in turn translates into an 
increase in forecast error [22]. In the face of the non-spherical random component, the weighted 
least squares method can be used to estimate the structural parameters of the model or estimate 
the model according to the approach using estimators consistent with heteroscedasticity [28]. 
Another way of dealing with non-sphericity of the residual component is to use non-classical 
statistical methods which make it possible to verify the assumptions of parametric methods, 
especially when the exact distributions of the variables on the basis of which the models are 
estimated are unknown [29]. 

Apart from the heteroscedasticity of the random component, the phenomenon of spatial 
clustering of similar residuals can be observed.

To implement spatial correlations into the model of vibration attenuation relationship, it is 
necessary to create their mathematical representation. This is a fundamental issue of spatial model-
ling. The most commonly used tool for this purpose is the construction of spatial weight matrices.

The starting point for spatial modelling is the maxim contained in Tobler’s law, which 
states that everything is related to everything else, but near things are more related than distant 
things. This means that as the distance between the objects under analysis increases, the intensity 
of interactions between them should decrease. Given that the distance between objects (dij) is 
measured according to the Euclidean metric, the elements of the interaction matrix will usually 
be inverse functions of these measures [30]: 

	    2 2
ij i j i jd x x y y    	 (2)

	

1 for  0 for  ij
ij

w i j i j
d

  


	 (3)

where: wij – elements of the spatial weights matrix; (xi, yi), (xj, yj) – coordinates of the analysed 
objects.

The presence of spatial autocorrelation of the residual component is confirmed by a statisti-
cally significant value of Moran’s I. The global Moran’s I statistic for the variable X with values εi 
observed at n different locations is defined according to formula 4:

	 0

T

T
n z WzI
S z z

  	 (4)

where: n – the number of all studied units; S0 – the sum of all elements of matrix W ; W – spatial 
weights matrix; z – column vector with elements zi = εi – ε–.

The basis for the construction of this spatial model is the classical model of the ground 
vibration attenuation relationship presented in formula (1). Given that the random component is 
subject to spatial autocorrelation, it can be written in the following way:

	 u = λWu + ε	 (5)

	 (I – λW)u = ε	 (6)

	 u = (I – λW )–1ε	 (7)
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By substituting the residuals of the classical model ui with the spatiality-related component, 
the vibration attenuation relationship model (SEM – Spatial Error Model) can be represented 
according to formula 8:

	
   1

max, 0 1 2 3log log logSEM
i i i i ia E R R I W           	 (8)

The OLS is most commonly used to estimate the structural parameters of linear regression 
models. Estimators specified by this method are consistent, efficient, and unbiased. Unfortunately, 
this does not apply to spatial models. In the case of SEM models, the variance-covariance matrix 
of the random component is, by assumption, non-spherical, which implies the inefficiency of 
determined estimators. Therefore, the question arises as to what spatial model estimation methods 
to use so that the determined estimators retain their properties. The literature is dominated by the 
belief that the best method for estimating structural parameters of spatial models is the maximum 
likelihood estimation [31]. This method was utilised to estimate the parameters of the vibration 
acceleration attenuation relationship model. 

3.	D escription of the seismometer data

The subject of analysis is seismometric data from a mining area. This area is characterised 
by a high level of induced seismicity. An important assumption for the application of spatial 
statistical models is the necessity to register ground vibrations induced by a single tremor at all 
measurement stations. Due to this requirement, based on the available data set, measurements 
registered jointly at all analysed stations were selected for analysis, namely 861 registrations 
caused by 123 strong tremors. Each ground vibration was registered at seven stations. Fig. 1 shows 
the distribution of tremor’s epicentres as well as the location of the ARP surface apparatus. The 

Fig. 1. Distribution of tremor epicentres along with the location of measurement stations
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ARP surface apparatus for measuring ground vibration acceleration was located in the vicinity 
of particularly vibration-sensitive buildings. The localisation of tremors, on the other hand, was 
carried out using underground seismometer stations, whose location was changed according to 
changes in the location of longwalls. Mines are obliged to optimise the location of underground 
seismometer stations when developing mining projects. To determine the speed of propagation of 
seismic waves, blast tests are performed. However, the location of the z coordinate of the tremor 
is still subject to significant errors, so in the conducted research, the epicentral distances of the 
tremors from the position of the ARP apparatus were taken into account. 

Table 1 presents basic positional statistics for the distribution of source energy, epicentral 
distances, as well as vibration acceleration values.

Table 1

Basic descriptive statistics of tremor’s energy, epicentral distance, and PGA

Parameter
Descriptive statistics

Minimum 1st quartile Median 3rd quartile Maximum
E [J] 3×105 2×106 4×106 6×106 2×108

R [m] 224.1 1814.0 2872.5 4038.9 7566.7
a [10–3m/s2] 2.5 16.7 31.3 78.8 1176.0

The range of energy values for the analysed tremors varied from 3.0×105 J to 2.0×108 J. The 
values of epicentral distances varied in the sample from 224 m to 7566 m. The smallest epicen-
tral distances were observed at sites St.1 and St.3 because they were located in close proximity 
to seismically active regions. On the other hand, the largest values of epicentral distances were 
observed at sites St.4 and St.7, which were located at the border of the area of tremor. The dis-
tribution of logarithms of epicentral distances for the whole analysed sample and for individual 
measurement stations is shown in Fig. 2. The dominant number of the examined registrations 

lo
gR

Fig. 2. Distribution of epicentral distances
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comes from tremors located in the range from 1100 m to 4800 m (more than 75%) from the 
measurement stations. Registrations located at distances smaller than 1100 m from the measure-
ment stations represent less than 10% of the analysed seismometric data. The largest epicentral 
distances (above 4800 m) constitute 15% of the analysed data.

The highest value of PGA (1.176 m/s2) was caused by a tremor of 7.0×107 J energy. Fig. 3 
presents the distribution of logarithms of peak ground vibration accelerations for the whole 
analysed sample and for individual measurement stations. The presented distributions show that 
the medians of logarithms of PGA at St.1, St.3, and St.6 significantly exceed the general median. 
On the other hand, at St.4, St.5, and St.7, median values are lower than the general median. The 
median values of logarithms of PGA at St.2 are very close to the general median. When analysing 
the distribution of peak ground vibration accelerations, it can be observed that 84% of all resultant 
horizontal components did not exceed 0.15 m/s2, while more than 92% did not exceed 0.3 m/s2. 
It was found that only 3% of the examined resultant PGA exceeded the value of 0.6 m/s2, and 
only 0.8% exceeded the value of 0.9 m/s2. In terms of the duration of vibration accelerations, 
more than 73% of the registrations exceeded 3 s.

lo
ga

Fig. 3. Distribution of logarithms of PGA

4.	 Spatial vibration attenuation relationship model

The ground vibration attenuation relationship model was determined for the recorded ground 
vibration cases. The estimation and evaluation results of the model are presented in Table 2. 
In all presented tables the significance level of the estimated parameters is shown as follows: 
(***) means the significance on the level 0.001; (**) – 0.01 and (*) – 0.05. The exact p-value is 
given if the significance level exceeds the value of 0.05.

The structural parameters of the model are statistically significant at the level of α = 0.001 
for the variables logE and logR and at the level of α = 0.01 for the variable R and the intercept. 
It is important to note a high level of model match with empirical data. More than 81% of the 
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variation in the logarithms of vibration acceleration was explained by the model. The mean 
square error of the model is 0.2237. The properties of the residual component of the model were 
examined in terms of normality and homoscedasticity using appropriate statistical tests. The 
results are presented in Table 3.

Table 3

Test statistics of normality and homoscedasticity of the residuals

Normality of the residual component Homoscedasticity of the residual component
Jarque-Bera Shapiro-Wilk Breusch-Pagan White(1)

5.39 (0.06) 0.99 (0.375) 54.37 (***) 60.459 (24.99)
(1) The brackets contain the critical values of test statistics.

In terms of normality of the distribution of residuals, the model meets the assumptions of 
the Gauss-Markov theorem, yet in terms of the sphericity of the random component, the model 
is not homoscedastic. Fig. 4 shows the spatial distributions of the residual component of the vi-
bration attenuation relationship model estimated by OLS. The analysed mining area was divided 
into rasters with dimensions of 150 m by 150 m, and then, for each raster, the average values 
of residuals were determined. The rasters for which the studied phenomenon was not recorded 
were removed from the model. 

The visual assessment of the distributions of residuals suggests the existence of the phenom-
enon of spatial autocorrelation. When analysing individual measurement stations, the clustering 
of the residual component of the log model can be noted. The clusters marked with yellow and 
red colours denote positive residuals, while grey and black colours denote negative residuals. The 
existence of spatial autocorrelation of the residual component is confirmed by the areas (clusters) 
concentrating the residuals with similar values. 

For the analysed dataset, the spatial weights matrix for one measurement station has the 
dimension 123×123. Considering all measuring stations, matrix wij must be multiplied by the 
identity matrix within the meaning of the Kronecker. The dimension of the identity matrix results 
from the number of measuring stations.

For the spatial weights matrix W – based on the inverses of distances between tremor epi-
centres and given that the column vector z denotes a difference between residuals and the mean 
of residuals determined based on the log model for individual measurement stations – the value 
of Moran’s I statistic is 0.4387. A graphical method to determine Moran’s I statistic is presented 
in Fig. 5. The graph is divided into four quarters concerning point (0.0). Points located in the 
first and third quadrants of the system indicate the clustering of units with similar, low or high 
values [28]. This means the presence of positive autocorrelation. On the other hand, in the second 
and fourth quadrants, there are points characterised by negative autocorrelation. The x-axis of 
Moran’s I plot presents standardised values of the analysed variable, while the y-axis presents 

Table 2

Model of vibration attenuation relationship with verification and evaluation

Parameter logE logR R α0 F R2 AIC RMSE
Parameter 

value
0.378 
(***)

–1.304 
(***)

–0.000045 
(**)

0.675 
(**)

1259 
(***) 0.815 –129.21 0.2237
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standardised values of the spatially delayed variable. The figure shows the number of points 
belonging to a given quadrant. The regression line is inclined to the OX axis at an α angle with 
a tangent equaling the value of Moran’s I coefficient. 

Fig. 4. Spatial distributions of the residual component of the log model
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Fig. 5. Point plot of global Moran’s I determined from the W matrix

The empirically determined spatial interactions in the form of the W weight matrix provide 
a starting point for the construction of spatial regression models. For the diagnostics of spatial 
dependence, the robust version of the Lagrange Multiplier test was used [31]. The robust LM 
statistic for the error model is 1266.4 (***), while for the auto-regressive model the LM statistic 
is 6.3944, for which the p-value is 0.02. It means that the spatial error model is more appropriate 
for describing spatial differentiation.

The maximum likelihood estimation was used to estimate the parameters of the spatial 
vibration acceleration attenuation relationship model. The results are presented in Table 4. All 
coefficients of the model are statistically significant at a level of at least α = 0.05.

Table 4

Estimation results for the spatial ground vibration acceleration model

Parameter α0 logE logR R Lambda
Parameter value –0.499 0.383 –0.933 –9.8×10–5 0.90128

p-value (*) (***) (***) (***) (***)

Table 5 presents the comparison between the spatial model and the classical model. Statis-
tics based on the value of the Pearson correlation coefficient between empirical data and values 
predicted by the model were used for comparative analyses. In addition, the values of AIC and 
RSME coefficients for all models were presented, including the level of underestimation and 
overestimation of the model. This was measured by the maximum value of the residual compo-
nent, taking into account both positive and negative residuals. All of the above measures were 
found to favour the spatial model. 
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Table 5

Comparison of the match with the empirical data from the SEM model  
with the classical ground vibration acceleration model

MODEL Pearson correlation 
coefficient AIC RMSE Maximum Model 

underestimation
Maximum model 
overestimation

Classical 0.9028134 –129.2115 0.2236992 0.751 0.709
SEM  0.9502013 –614.08 0.1624268 0.571 0.556

In addition, using the spatial model eliminated the autocorrelation of the residual component, 
as presented in Fig. 6. The Moran’s I coefficient for the residuals of the SEM model is 0.0225, and 
it was statistically insignificant. The residuals of the model show approximate symmetry when 
considering the different quadrants of the coordinate system. The variance inflation factors for 
the explanatory variables are 1.065, 7.789, and 7.919 and are less than 10, which is interpreted 
as no collinearity of the explanatory variables. 

Fig. 6. Moran’s I plot for the standardised residuals of the SEM model estimated using  
the spatial weights matrix W

The Jarque-Bera statistic verifying the residual normal distribution is 17.243(***). However, 
when referring to the central limit theorem, with a large sample, it is sufficient that the random 
term is asymptotically normal. 

The Breusch-Pagan statistic verifying the residual homoscedasticity is 30.541(***) and is 
much lower than for the classical model. 

However, an inspection of the residual histogram and the distribution of residuals versus 
predicted values do not indicate that the assumptions about the properties of the residual com-
ponent are shaken, which is shown in Fig. 7. 
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Fig. 8 shows the comparison of predicted values for both of the estimated models. It is 
crucial to note a better match for the spatial model, especially on the wings of the distribution 
of predicted acceleration values.

Fig. 8. Comparison of the predicted values estimated by the classical model  
with predicted values by the spatial model

Fig. 7. Residuals properties verification for the SEM model
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By means of the estimated spatial model, the isolines of PGA were determined for the 
tremor with an energy of 107 J. The maps of distribution isolines for accelerations are presented 
in Fig. 9 and 10. The actual values of accelerations, predictions and relative errors of predictions 
for the classical and spatial models are presented in Table 6. Bold type indicates values with the 
module of relative prediction error smaller than when comparing the SEM model with the model 
estimated by the least-squares method. 

Table 6

Comparison of predicted values of PGA for the SEM and OLS models along  
with relative predicted errors

Station
Actual value

Predicted values Relative predicted error
OLS SEM

OLS SEM
a [×10–3 m/s2]

1 93.1 123.11 125.47 –0.32 –0,35
2 35.9 40.52 39.26 –0.13 –0,09
3 567.3 1360.38 912.51 –1.40 –0,61
4 40.8 23.85 29.20 0.42 0,28
5 44.1 60.71 41.53 –0.38 0,06
6 193.8 124.89 173.98 0.36 0,10
7 18.2 16.31 15.64 0.10 0,14

The percentage average relative errors of PGA predictions are 23% for the SEM model 
and 44% for the OLS model. This clearly shows that the SEM model prediction describes the 
distribution of ground vibration acceleration more sufficiently than the OLS model prediction. 

Fig. 9. Isolines of PGA estimated with the OLS model
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Fig. 10. Isolines of PGA estimated with the SEM model

5.	C onclusions

The results of the conducted statistical analysis for the spatial models of peak ground vibra-
tion attenuation relationship allowed the Authors to make the following conclusions:

1.	 The ground vibration attenuation relationship models based on the Joyner-Boor formula 
with the use of sample limitation to strong phenomena show a very high fit with the 
empirical data. Unfortunately, in many cases, the classic model overestimates the low 
values of vibration acceleration while underestimating the high values.

2.	 Despite a good fit with empirical data, the assumptions of the least squares method are 
often not met.

3.	 In light of the heteroscedasticity of the random component, attention was drawn to the 
spatial nature of the phenomenon of rock tremors. 

4.	 The robust Lagrange Multiplier test was used to indicate the source of the spatial depend-
ence. The SEM (spatial error model) turned out to be the correct model, i.e. a model that 
takes into account the spatial autocorrelation of the random component.

5.	 The occurrence of positive spatial autocorrelation of the random component confirms the 
significant value of Moran’s I statistics. This means that areas with similar characteristics 
clustered around one another, which fully corresponds to the geographical law of Tobler. 
Moreover, the spatially correlated random component may indicate that the explanatory 
variables logE, logR and R do not fully explain the variability of the analysed parameter. 
It is well known that the factors affecting the intensity of ground vibrations, in addition 
to the above, are mainly vibration amplification and vibration directivity.
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6.	 The introduction of spatiality into the model in the form of a weights matrix led to an 
improvement in the quality of the model measured by the coefficients AIC, RMSE and 
the degree of correlation between the empirical data and the predicted values. The intro-
duction of spatiality also improved the properties of the random component in terms of 
heteroscedasticity.

7.	T he application of the SEM model led to the elimination of spatial autocorrelation of the 
residuals in the sense of the statistical significance of Moran’s I coefficient.

8.	 In this paper, the spatial phenomenon is taken into account using a matrix of spatial 
weights based on the inverse of the distance between the tremor’s epicentres. It seems 
reasonable to search for other spatial correlations in the form of spatial weights matrices to 
estimate the model’s parameters with an improved match with empirical data and ensure 
that the assumptions of the least square method are met. An example of this is a weight 
matrix based on the inverse of distance with “cutoff distance” or the k-nearest neighbours. 
Furthermore, it seems justified to estimate the weight matrix with a structure based on 
the geophysical parameters of grounds in areas threatened by induced seismicity.

9.	 The predicted value of the loga parameter is decomposed into a factor related to the 
trend (Xb) and a factor called the spatial signal (λWy – λWXb). The trend factor explains 
the variability of the ground vibration intensity parameter in relation to logE, logR and 
R variables. The spatial signal, according to the authors, can be useful in determining 
factors related to vibration amplification and directivity.
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