
BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 71(1), 2023, Article number: e144575
DOI: 10.24425/bpasts.2022.144575

MATERIAL SCIENCE AND NANOTECHNOLOGY

Quantum magnetostriction effect resulting
from the asymmetric structure of matter

measured with EPR spectrometer
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Abstract. This paper explains the rotation and displacement as well as the couple and force stress in material with unpaired electrons/nucleons
subjected to a magnetic field. This phenomenon is described in terms of quantum mechanics for nanoparticle and quantum statistical mechanics
for loose nanomaterial. Quantitative calculations are carried out based on experimental data collected under the magnetic field of an EPR
spectrometer from a set of nanocrystallites of hydrated copper sulfate.
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1. INTRODUCTION
The formation of asymmetric matter is favored by nature at
the stage of filling electron/nucleon shells, when the most en-
ergetically favorable number of unpaired electrons/nucleons is
as large as possible (the Hund rule) [1]. However, the com-
mon occurrence of symmetrization in nature (electronic, for the
formation of chemical compounds, and nucleonic, for the for-
mation of elements) removes the asymmetry. A magnetostric-
tion [2, 3] is created in the case of incomplete symmetrization.
Mechanically, incomplete symmetrization results in the polar
continuum [4]. The asymmetric matter is revealed by the angu-
lar momentum of the atom. This state comes from both spinons,
which are carriers of electron/nucleon spin, and orbitons, which
are associated with the orbital motion of the electron/nucleon.

2. ASYMMETRIC ATOM IN MAGNETIC FIELD
2.1. Classical description
The interaction between an external magnetic field
B(Bx, By, Bz) and an asymmetric atom k (shown in Fig. 1)
generates a mechanical moment:

Mk =−γJJk×B, (1)

where γJ is the magneto-mechanical ratio, and Jk is the angular
momentum of the atom k (Fig. 1).

The Fig.1 shows formation of the moment Mk, force Pk and
ϕϕk in a magnetic field B(Bx, By, Bz)

k containing one
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Fig. 1. Asymmetric atom in a magnetic field

electron ek and one proton pk. Ck
ter of mass of the atom k.

We define the arm of action ρk of an asymmetrical atom k as:

ρk = ρon 2, (2)

where ρo is the reduced Bohr radius of the atom k, and is the
principal quantum number. Based on equations (1) and (2), we
can write the action force Pk(B) of the moment Mk(B) in the
form, APPENDIX I:

Pk =−
γJ

ρk
JkB, (3)

where Pk, Jk and B are modules of the vectors Pk, Jk, B.
The moment Mk(B) induces additional motion of the atom in

the form of precession, as shown in Fig. 1, and the force Pk(B)
displaces the atom. We define the polar rotation of an atom k
under the action of a magnetic field B as the precession angle
ϕϕk

df
= ^(Jk, B).
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The energy of an atom k in a magnetic field B can be ex-
pressed as:

Uk = γJJk ·B. (4)

The precession angle ϕϕϕk can be also shown to have compo-
nents:

ϕ
(i)
k = arccos

J(i)k
Jk

, (5)

where (i) = (x), (y), (z) is the selected component of the po-
lar rotation vector ϕϕϕk

(
ϕ
(i)
k

)
and the angular momentum vector

Jk

(
J(i)k

)
of the atom k, in relation to the axes of the Cartesian

coordinate system (x, y, z), Fig. 1.

2.2. Quantum description
Taking into account the solutions of quantum mechanics, where
the quantum angular “vector” does not have a direction in the
sense of classical mechanics, and only one of the angular mo-
mentum projections J(i)k has values that are simultaneously de-
fined with the square of the angular momentum J2

k , we can
rewrite the classical equation (5) as an operator in the form:

cosϕ
(i)
k =

Ĵ(i)k
Jk

, (6)

where Ĵ(i)k is the operator of J(i)k . Similarly, we can write the
operators:

M̂(i)
k =

g(i)k B

}
(i)

k Ĵ(i)k , (7)

P̂(i)
k =

g(i)k B(i)
k

}ρk
Ĵ(i)k , (8)

Û (i)
k =−

g(i)k B

}
B(i)Ĵ

(i)
k , (9)

where g(i)k B/} = γJ , g(i)k is the so-called g-ratio, μB is the re-
duced Bohr magneton, ΩΩΩ

(i)
k = jBk−kBj, i, j, k are unit vectors

parallel to the x, y and z directions, i, j, k change cyclically.
We can formulate operator equations for the parameters of

Cosserat magnetostriction on the atomic scale in the form:

Ĵ(i)k
Jk

Φ = COSϕ
(i)
k Φ, (10)

g(i)k B

}
Ω

(i)
k Ĵ(i)k Φ = M(i)

k Φ, (11)

g(i)k B

}ρk
Ω

(i)
k Ĵ(i)k Φ = P(i)

k Φ, (12)

−
g(i)k B

}
B(i)Ĵ

(i)
k Φ =U (i)

k Φ, (13)

where Φ is the wave function, and COSϕ
(i)
k , M(i)

k , P(i)
k , U (i)

k are
the eigenvalues of the operators ˆcosϕ

(i)
k , M̂(i)

k , P̂(i)
k , and Û (i)

k re-
spectively, Ω

(i)
k is modules of the vector ΩΩ

(i)
k . We can write the

operator Ĵ(i)k , APPENDIX II, for the direction (i) as:

Ĵ↑↓k = }

(
..., J−1, J 0

0 −J ,−J+1,...

)
, (14)

where J = L + S is the quantum number of the resultant angular
momentum of atom k, L is the orbital quantum number, and S
is the spin quantum number. We write the wave function Φ in
the form:

Φ =


Φ↑ =

(
1

0

)
, for m = . . ., J−1,   ,

Φ↓ =

(
0

1

)
, for =− − +1

(15)

where is the magnetic quantum number and takes the values:

=−J ,− +1 −1,   . (16)

By solving equations (10)–(13), we can write a whole spec-
trum of solutions depending on the magnetic quantum number

as:

COSϕ
(i)
k =

1√
( +1)

, (17)

M(i)
k = g(i)k BΩΩΩ

(i)
k , (18)

P(i)
k =

g(i)k B

ρk
ΩΩΩ

(i)
k , (19)

U(i)
k =−g(i)k BB(i) , (20)

where formula Jk = }
√

( +1) is related to equation (17).

3. STATISTICAL DESCRIPTION

We consider a probabilistic space in a Cosserat material in the
form of an elementary surface ∆F(i) (analogous to the Saint-
Venant infinitesimal interaction area), which is connected with
a material exposed to a magnetic field B(i), as shown in Fig. 2.
In the analysis we take into account the asymmetric atoms
k(i) = 1, 2, 3, . . . , ∆N(i) filling the surface ∆F(i). The surface
∆F(i) is small enough that the action of the magnetic field B(i)
is almost constant, but large enough for the set of asymmetric
atoms k(i) = 1, 2, 3, . . . , ∆N(i) to be subjected to statistical anal-
ysis.
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Fig. 2. Definition of the magneto-mechanical state of the Cosserat
magnetostriction

We can write the canonical distribution for the asymmetric
atoms k(i) = 1, 2, 3, . . . , ∆N(i):

∏( ) =

exp

[
−

U (i)
k ( )

kT

]
=

∑
=−J

exp

[
−

U (i)
k ( )

kT

] , (21)

where k is the Boltzmann constant and T is the absolute tem-
perature.

Based on the above, we can write the average values of the
random variables of the atoms k(i) = 1, 2, 3, . . . , ∆N(i) on the el-
ementary surface ∆F(i) as:

〈
COS (i)

k

〉
=

m =J

∑
=−J

COS (i)
k Π , (22)

〈
M(i)

k

〉
=

=J

∑
=−J

M(i)
k Π, (23)

〈
P(i)

k

〉
=

=J

∑
=−J

P(i)
k Π (24)

〈
U (i)

k

〉
=

=J

∑
=−J

U (i)
k Π, (25)

Components of the couple stress (i), force stress (i) and po-
lar rotation ϕϕϕ (i), related to a surface element ∆F(i), (i) = x, y, z.

We introduce the concentration coefficients:

N(i)
F = lim

∆F(i)→0

∆N(i)
F

∆F(i)
=

dN(i)
F

dF(i)
, (26)

and finally, obtain:

COS(i) = √
(J +1)

BBr, (27)

(i) =N(i)
F g(i)B J Ω

(i)BBr, (28)

(i) =N(i)
F

g(i)BJ
ρ

Ω
(i)BBr, (29)

(i) =N(i)
F g(i)B J B(i)BBr, (30)

where:

BBr =

[
2J +1

2J
ctgh

(
2J +1

2
g(i)BB(i)

kT

)

− 1
2

ctgh

(
1
2

g(i)BB(i)

kT

)]
, (31)

is the Brillouin function. At room temperature, when:

g(i)BB(i)

kT
� 1, (32)

we can write the hyperbolic cotangent in equation (31) in the
form of a power series. Using only the first two terms, we write:

(i) = arcCOS
g(i)B

√
J (J 1)

3 T
B(i), (33)

m(i) = N(i)
F Ω

(i)
(

g(i)
)2 2

B J (J +1)
3 T

B(i), (34)

p(i) = N(i)
F Ω

(i)
(

g(i)
)2 2

BJ (J +1)
3ρ T

B(i), (35)

u(i) = N(i)
F

(
g(i)
)2 2

BJ (J +1)
B2
(i). (36)

4. EXPERIMENTAL STUDY
In the first stage, our experimental analysis was limited to the
electron level, ρρ k ≈ ρρ e

k = ekCk, Fig. 1. The sample tested was
a powder of mass 0.005 g, which was obtained from a hydrated
copper sulfate crystal, CuSO4 · 5H2O, by grinding in a mortar.
This material contained asymmetric copper ions Cu2+ with an
unpaired electron in the configuration 3d9. The sample was sub-
jected to the magnetic field:

B(i)
EPR = BI (icosωt−ksinωt)+Bo j, (37)

of an EPR spectrometer as shown in Fig. 3, where BI is a vari-
able magnetic field rotating in a vertical plane with angular ve-
locity ωωω , Bo is a constant magnetic field operating in the hori-
zontal direction, and t is time.

Measurements were carried out for two sample positions: the
first when the magnetic induction Bo was parallel to the y axis
(i) = (y), and the second after rotating the sample around the
z axis by 90◦, when Bo was parallel to the x axes, (i) = (x),
(Fig. 3).

The magneto-mechanical parameters were determined for
the magnetic field BEPR acting on the sample under resonance
conditions: }ω(i) = g(i)BB(i)

o .

Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e144575, 2023 3

m
m

m

m

m

m

m

m

m

m

J
J

J

+m J

m

Ω

ΩΩ

Ωm

p

pm

u

BB

BB

k

k

k

3 Tk

ρ ρ

,
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Fig. 3. Nanoparticle in the magnetic field of the EPR spectrometer

EPR measurements were carried out at the Chemistry De-
partment of the Jagiellonian University, using an X-band
(9.2 GHz) Bruker ELEXSYS 500 (Karlsruhe) with 100 kHz
field modulation. Spectra were recorded at 293 K with a mod-
ulation amplitude of 5 mT, a microwave power of 10 mW and
a receiver gain of 30. The EPR parameters were determined by
simulation, using the software program EPR Sim 32.

5. RESULTS
The results are shown in Fig. 4 as the first derivative of the
absorption curve. The spectra for (i) = (x), (y) are almost the
same. Tables 1 and 2 show the results of quantitative mea-
surements. The arm of action of the Cu2+ ion was taken as

-15000

-10000

-5000

0

5000

10000

2000 2500 3000 3500 4000 4500

Bo [G]

Intensity

Fig. 4. EPR resonance spectra for loose nanomaterial composed of
hydrated copper sulfate, for two directions (i) = x, y of magnetic field

Bo defined by Fig. 3. (i) = x – solid line, (i) = y – dashed line

ρ = ρe
Cu2+ = 0.73 · 10−10 m (Periodic Table of Elements). The

amount of Cu2+ measured in the volume of the sample by the
comparative method (EPR Sim 32 program) was converted into
a unit area, N(i)

F .

6. DISCUSSION AND CONCLUSION
Disturbance of symmetry of the atom, where the center of mass
and center of action of the Coulomb forces do not coincide, cre-
ates an arm of action, which together with the angular momen-
tum of the atom generates the torque, couple stress and rotation
of the material in a magnetic field. This gives rise to displace-
ment, force, and force stress. Also in [5] it is noticed that the
basic variable of magnetostriction is not the elastic strain ten-
sor. The authors of [5] associate local rotation with position-
dependent magnetization.

Based on quantum statistical mechanics and experimental re-
sults, it was found that magnetic induction Bo = 0.328(4) T
using an EPR spectrometer at a temperature of 293 K gen-
erates a rotation in loose nanomaterial of hydrated copper
sulfate of |∆| = | − o| ∼= 5′2(8)′′, with couple stress of

1.12(2)× 10−7 Nm
m2 and force stress of 1537.16(4)

N
m2 . The

magnetostriction energy per unit volume of material was calcu-

lated as V = 179.73(1)
J

m3 .

The asymmetric structure of the atom was not taken into
account in initial studies of atomic interactions with the use
of quantum mechanics (Schrödinger, Feynman, etc.) [2], and
has not been considered in contemporary attempts to represent
mechanical stress through the application of quantum mechan-
ics (Kugler, Nielsen, Martin, Gosfrey, Folland, Rogers, Rappe,
etc.) [6].

The quantum-classical model of the polar continuum is pro-
posed, as one of the first, in work [7]. The enclose numerical
example demonstrates the possible applicability of the theory.

Table 1
Results of EPR measurements

(i) N(i)
F =

amount of Cu2+

m2 g(i) B(i)
o [T] ω (i) [Hz]

(x) 2.57(8)×1018 2.143 0.328(4) 61.88029(6)×109

(y) 2.58(9)×1018 2.143 0.328(4) 61.88487(0)×109

Table 2
Results of quantum statistical computing

(i)

∣∣∣∣∣∆(i)

(i)
o

∣∣∣∣∣=
∣∣∣∣∣∣∣∣
∆ arcCOS

g(i)B
√

J (J +1)B(i)

3 T
(i)

o

∣∣∣∣∣∣∣∣ m(i) = N(i)
F

Ω(i)
(

g(i)
)2

2
BJ (J +1)B(i)

3 T
p(i) = N(i)

F

Ω(i)
(

g(i)
)2

2
BJ (J +1)B(i)

3ρCu2+ T

[‰]
[

Nm
m2

] [
N

m2

]
(x) 1.01(3) 1.11(9)×10−7 1533.89(1)

(y) 1.01(3) 1.12(5)×10−7 1540.43(6)
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APPENDIX I. REFERENCE TO LORENTZ FORCE
We introduce the reduced mass mk of the asymmetrical atom k
and the velocity of this mass vk into equation (3), and we write:

Pk =
gkB

}
mkvkB. (AI.1)

In general, we present the force Pk acting on the atom k in the
magnetic field B in the form:

Pk =
gkq
2

(vk×B) , (AI.2)

where q is an elementary charge. Based on the above we will
write for an electron e when L = 0, J = S = 1/2:

P = q(ve×B) , (AI.3)

which corresponds to the Lorentz force.

APPENDIX II. REFERENCE TO PAULI MATRIX
We can describe the angular momentum of an atom in a mag-
netic field with a magnetic quantum number m , equation (16).

Positive values of m :

m ↑ = . . ., J −1, J , (AII.1)

refer to atoms with precession momentum J↑k in the direction of
the magnetic field B, whereas negative values of m :

m ↓ =−J ,−J +1, . . ., (AII.2)

refer to the opposite direction J↓k. We introduce to the states m ↑,
m ↓ the wave functions:

Φ
↑ =

(
1
0

)
for m ↑, (AII.3)

Φ
↓ =

(
0
1

)
for m ↓. (AII.4)

According to quantum formalism, the measured values of J↑k,

J↓k correspond to the operators Ĵ↑k, Ĵ↓k. We expect operator equa-
tions for J↑k and J↓k, in the form:

ˆ↑
kΦ
↑ = }m ↑Φ↑, (AII.5)

ˆ↓
kΦ
↓ = }m ↓Φ↓. (AII.6)

Based on equations (AII.3), (AII.4), (AII.5), and (AII.6), we
can write the formula:

Ĵ↑↓k = }

(
m ↑ 0
0 m ↓

)
, (AII.7)

that defines the operator of quantum magnetostriction. When
= 0, = S = 1/2, we get:

Ĵ↑↓k = } S

(
1 0
0 −1

)
, (AII.8)

where expression: (
1 0
0 −1

)
, (AII.9)

refers to a Pauli matrix for the “up-down” direction.

APPENDIX III. REFERENCE TO JOULE’S
MAGNETOSTRICTION
From equation (36), we can write the linear magnetostriction
coefficient as:

Cl =
NF g22

BJ (J +1)
3EρkT

, (AIII.1)

and Joule’s magnetostriction can be written in the form:

∆l/l =ClB2, (AIII.2)

which corresponds to the current state of knowledge, where: E
is Young’s modulus, l is the linear dimension.

APPENDIX IV. REFERENCE TO THE PRINCIPLE
OF CORRESPONDENCE
Using classical mechanics, the direction of angular momen-
tum Jk for an atom k is unknown, and hence the rotation
ϕϕϕk

d f
= (Jk, B) of an atom k in a magnetic field B cannot be

known. However, we know the range of the changes in the di-
rection of Jk with respect to the direction of the magnetic field
B, i.e., ϕk ∈ (0, π), and we can determine the average value of
the sine for this range as:

〈sinϕk〉=
1
π

π∫
0

sinϕk, (AIV.1)

corresponding to the average value of the moment 〈Mk〉 =
−γJJkB〈sinϕk〉, equation (1). By transforming equation
(AIV.1) we get:〈sinϕk〉= 2/π . The angle associated with 〈Mk〉
takes the values: 〈Mk〉

k
∼= 39.5(4)◦.

Using quantum statistical mechanics, at very low tempera-
tures, when the following conditions are met:

T < 1 K,
g(i)BB(i)

kT
� 1 (AIV.2)

and counting the limits of the hyperbolic cotangents:

Lim
T<1 K,

g(i)B B(i)
kT �1

ctgh

(
2J +1

2
g(i)BB(i)

kT

)
= 1, (AIV.3)
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Lim
T<1 K,

g(i)B B(i)
kT �1

ctgh

(
1
2

g(i)BB(i)

kT

)
= 1, (AIV.4)

we can write equation (27) as:

ϕ
(i) = arcCOS

(
J√

J (J +1)

)
, (AIV.5)

which corresponds to the average quantum value of the moment
〈Mk〉. For orbital quantum number L = 1 and spin S = 1/2, we
can write  〈Mk〉

k
∼= 39.2(3)◦ which fulfils the Bohr correspon-

dence principle with an error of 0.79%.
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