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Thermodynamic Phase Diagram and Phonon stability, Electronic  
and Optical Properties of FeVSb: A DFT study

Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied 
based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static 
and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound 
is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible 
regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction 
index shifts to zero in 18 eV. 
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1. Introduction

In recent years, the half-Heusler family of Fe-based 
compounds, such as FeMSb(M = V,Nb), has received much 
attention from researchers [1-4]. Half-Heusler structures with 
XYZ stoichiometry that X, Y are transition metals and Z be-
long to II-V periodic table, exhibit different and interesting 
physical behaviors such as excellent thermoelectric properties 
[5,6], polar magneto-optic Kerr effect at room temperature [7], 
superconductivity [8], topology properties [9,10], and magneto 
resistance and magneto caloric effect [11,12]. Fe-based half-
Heusler compounds, such as FeVSb with 18 valence electrons, 
have excellent thermoelectric performance in the pure case and 
presence of impurities [13-15]. Yang et al., showed that FeVSb 
compound has a high power factor and a narrow energy gap of 
0.32 eV [16]. Young et al., predicted the thermoelectric behavior 
of this compound and showed that FeVSb is an n-type semicon-
ductor with high electrical resistance of about 0.2 mW to 20 mW 
[17] at room temperature with Seebeck amount of –70 µVK–1 in 
300K. Chemical substitution is used as a definitive solution to 
increase the thermoelectric performance of materials. In recent 
years, many reports of various impurities have been replaced to 
improve the thermoelectric quality of FeVSb compound. Stadnyk 
et al., showed that Cu’s replacement with Fe1-xCuxVSb leads 
to the displacement of the Fermi surface to its conductor and the 

occurrence of semi-metallic behavior with increasing electron 
conductivity [18]. 

Hasan et al reported that the combination of FeVSb polluted 
with Se atoms retains n-type conductivity in this material and 
leads to a significant reduction in network thermal conductivity 
[14]. Other reports have suggested the Zr, Ti, and Co impurities in 
this structure. Meanwhile, Sb impurity has significantly increased 
the Merit coefficient by 0.31 at 573K in the FeV1.15Sb case [2,4]. 
Hf’s replacement in FeVSb has been one of the successful reports 
of a reduction in lattice thermal conductivity due to an increase 
in the scattering of lattice faults due to the presence of this impu-
rity [19-23]. Another successful way to improve thermoelectric 
performance is to create a thin film or nanostructured film. In 
this regard, Liu et al examined the thin-film FeVSb film diluted 
with the Ti atom and found that amorphous (FeVSb)1–xTix films 
had much higher power factor and merit coefficient values than 
pure FeVSb. In this work, we decided to examine the structural 
features and electronic and optical behavior of the widely used 
FeVSb compound. The following topics are summarized in this 
article: In the first part, the structural stability of FeVSb from the 
mechanical, dynamic and thermodynamic perspectives is calcu-
lated by calculating the elastic coefficients, phonon distribution 
curve to show the mechanical resistance and demonstrate the 
heat capacity of this structure at the gamma point symmetry in 
the Brillouin zone, and also the phase diagram stability diagram 
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with a waste accessible region. In the second part, electronic 
behavior includes the band structure and density of state. In its 
optical behavior section, including dielectric, energy loss func-
tions, absorption, and refraction coefficients were presented in 
calculating the basic principles of DFT to indicating its applica-
tion in the electronic and optoelectronic industry. 

2. Computational Methods

Electronic and optical specifications of the FeVSb com-
pound, as well as its mechanical and elastic stability, were 
calculated using the full potential of the linear augmented plane 
wave (FP-LAPW) method within the Wien2K code by general-
ized gradient approximation (GGA) [24,25]. Optimized values 
of software input parameters such as separation energy, KPoint, 
RKmax and lmax are selected as –8.0Ryd, 4000, 8.5, and 10, re-
spectively. Also, optimized parameters in the Quantum Espresso 
calculations such as ECut, KPoint and force convergence selected 
to 150, 15*15*15, and 10–6, respectively. The FeVSb compound 
has a MgAgAs-type structure by F4–3m  space groups with 4a 
(0, 0, 0), 4b (1/2, 1/2, 1/2) and 4c (1/4, 1/4, 1/4) for Sb, V and 
Fe atoms, respectively (Fig. 1). To show the mechanical stability 
of the FeVSb combination, the energy-volume curves to show 
the equilibrium volume and elastic constants at zero Kelvin are 
calculated which we ignore by applying small approximations to 
the lattice vibrations. Next, to show the thermodynamic stability, 
we use the phase diagram, the variable of which is the chemi-
cal potential. We will also examine phonon lattice vibrations. 
In Quantum Espresso software, by selecting the smearing and 
degauss switches to 0.2, which provide Fermi energy expansion, 
we look at the phonon band structure diagram at temperatures 
above zero and room temperature.

3. Results

3.1. Structural properties

The energy-volume (E-V) diagram of the unit cell contains 
crucial points about the crystalline structure of matter such as 

lattice constant, bulk modulus, the derivative of bulk modulus, 
and equilibrium volume, the ground state point. The changes in 
energy relative to the volume and fit with the Brich-Mornaghan 
equation [27] (Eq. (1)) has a positive concavity and a (minimum) 
equilibrium point for the stable material in the mechanical view, 
which indicates the minimum crystal energy at this point. 
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In the FeVSb compound, we changed its volume unit cell 
from -20% to 20% with 5% steps in Fig. 1 for the ferromagnetic 
(FM), and non-magnetic (NM) phases are entirely on top of each 
other. It is shown that the E-V diagram in Fig. 1 has a minimum 
point in the symmetry form, which refers to its good stability 
with high hardness. The E-V curve results, including equilib-
rium volume, lattice constant, bulk modulus, derivative, and 
total crystal energy, are listed in TABLE 1. The total magnetic 
moment of the FeVSb follows from the slider-Pauling rule, and 
the magnetic moment has been reduced to zero. 

Table 1

The lattice parameter (a), bulk modulus (B) and its pressure  
derivative (B' ), and formation energies in Ferromagnetic  

and Non-magnetic phases (Ef) for ScPtBi compound

FeVSb a (°A) B (GPa) B' (GPa) Ef (eV) Eg (eV)
NM 5.785 169.81 4.38 –0.332 0.39
FM 5.714 169.82 4.38 –0.331

Other works
NMa 0.34
NMb 5.826 0.46

a. [28], b. [2] via LDA.

To further investigate the mechanical stability of the FeVSb 
compound, the elastic constants and related parameters such as 
Yong modulus, Shear modulus, melting point, poison’s ratio 
(v), and the bulk to shear modulus ratio have been calculated in 
TABLE 2. To study the mechanical properties crystal, the me-
chanical response of the crystal (stress) to different strains must 
be studied. Due to the cubic structure of the FeVSb case, three 
elastic constants of C11, C12 and C44 can be defined for it. Consid-

Fig. 1. (left) The crystal structure (right) The E-V diagram in two FM and NM mode of the FeVSb
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ering the high values of this parameters and conditions of the (2) 
equation, it can be said that the FeVSb has elastic stability [29]. 

 C11 > 0, C11 – C12 > 0 and C44 > 0	 (2)

Another significant coefficient of elasticity is the elastic 
anisotropy (A) coefficient (Eq. (3)), one for the completely ho-
mogeneous structure. Based on equation (3), the FeVSb elastic 
anisotropy is equivalent to 1.69, which refers to the isotropic 
elastic response.
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Another parameter calculated in this section is the shear 
modulus (G) which is equal to the ratio of shear stress to shear 
strain and is calculated according to Equation (3) with elastic 
coefficients. The elasticity indicates how much the material 
tolerates the forces that cause it to deform, how much it resists 
it, and to what extent it undergoes change. The material deforms 
if it is compressed or stretched along an axis. Yang’s modulus 
is equal to the stress-strain ratio. This parameter indicates the 
body’s resistance to longitudinal deformation in a particular 
direction when a force in the opposite direction enters the 
crystal. The value obtained for this module in Table 2, it 
can be concluded that FeVSb is classified as a hard material. 
The Poisson (ν) coefficient is equal to the ratio of transverse 
strain to longitudinal strain and indicates the degree of crystal 
stability against shear deformation. The maximum value of this 
coefficient is about 0.5, and it is related to rubber, which is very 
resistant to compression. According to Table 2, the numerical 
value of ν is about 0.13, which indicates the high elasticity of this 

material and its low tendency to be plastic. Melting temperature 
is a sufficient quantity in the application of materials obtained 
from Equation (6), and it was observed that FeVSb is one of the 
materials with a high melting temperature.

 GV = (C11 − C12 + 3C44)/5	 (3)
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3.1.2. Thermodynamic Phase Diagram

The thermodynamic phase diagram stability diagrams of 
the FeVSb compound are shown in Fig. 2. In both charts, all 
possible probabilities for forming of crystals, including Fe, V, 
and Sb atoms, were considered to investigate the stability of 
their MgAgAs-type structure. The Gibbs free energy structure 
of the Heusler FeVSb semiconductor can be calculated accord-
ing to the subunit relationship according to the atomic chemical 
potentials (m). 

 Fe V Sb FeVSb
bulkg     	 (7)

For every three atoms in the phase diagram, there will 
be accessible areas. We consider the potential chemical changes 

Table 2

Calculated values of elastic constants (C11, C12, C44) (in GPa), shear modulus (G) (in GPa), (B/G) ratio, Young’s modulus (E) (in GPa), Poisson 
ratios (ν), melting tempreture (Tm ±300 in K), and percentage of anisotropy (A) for FeVSb with GGA

Compound C11 C12 C44 E G υ B/G A Tm ±300
FeVSb 332.68 187.97 244.71 520.25 175.76 0.132 0.966 1.69 2519.1

Other works
FeVSba 307 102 54 184 70 0.319

a. Ref. [3]: theoretical values via CASTEP code.

b 

Fig. 2. (a) The ternary phase diagram, (b) The thermodynamic phase diagram stability of FeVSb as the chemical potentials changing
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of atoms (∆µi) between the minimum and maximum values. 
The i index represents the number of i atom. Thus the minimum 
value of mi is where the i atom leaves the FeVSb bulk structure, 
and the maximum value is obtained when this atom is crystallized 
in its bulk structure. Changes are obtained from the following 
relationships [34-36]: 

 FeVSb VSb Fe Fe bulkG g g    	 (8)

 FeVSb FeSb V V bulkG g g    	 (9)

 FeVSb VFe Sb Sb bulkG g g    	 (10)

In the above relationships, g bulk denotes the maximum 
value of µi. In Fig. 2(a), the ternary phase diagram is seen, in 
each corner the chemical potential of Fe, V, and Sb atoms exist. 
All possible structures between these three atoms are shown with 
dots on the figure. The connection of all these points has resulted 
in the possibility of FeVSb crystallization in the semiconductor 
phase. Fig. 2(b) shows the probability of stability of this struc-
ture based on changes in Fe and V atoms’ chemical potential as 
a hatched area. Therefore, as can be seen, FeVSb will be thermo-
dynamically stable in the MgAgAs-type semiconductor phase. 

3.1.3. The Phonon Dispersion

The phonon bandstructure curves along with the high 
symmetry directions in the first region of Brillouin zone, and 
its density of states (DOS) of the FeVSb compound are shown 
in Fig. 3. As it turns out, all phonon modes have a positive fre-
quency, and there is no negative phonon branches. Therefore, 
we conclude that the FeVSb semiconductor composition in the 
MgAgAs-type cube structure is dynamically stable. Nine vibra-
tional modes of this shape are due to the three atoms in the unit 
cell, which three are the lower modes between zero to 175 cm–1, 

are acoustic branches, and six others (200 cm–1 to 360 cm–1) are 
the optical branches. The narrow frequency gap between these 
two frequency regions with a value of about 20 cm–1 is due to 
the difference in the atoms in this compound’s unit cell. Also, 
from the DOS curve (Fig. 3(b)), it is observed that in the low-
frequency region, the highest phonon distribution is related 
to Sb atom, which is due to the high atomic mass of this element 
compared to the other two atoms in FeVSb structure. At higher 
frequencies, the optical modes, the lighter Fe and V atoms play 
a dominant role in the phonon distribution. 

3.2. Electronic Properties

To investigate the electronic properties, we studied the elec-
tronic bandstructure and density of states of FeVSb compounds. 
By examining the DOS diagrams, the share of different atomic 
orbitals can be determined. The below area of the DOS curve in 
each energy interval is equal to the number of allowed electron 
states. Calculations performed with non-spin GGA approxima-
tion. According to Fig. 4, the non-magnetic p-type semiconduc-
tor behavior with a 0.39 eV gap is observed, which agrees with 
others [2,28]. The bandstructure diagram shows that the valence 
band maximum is at point L and the minimum of its conduction 
band is at X point. It was observed that in these two points, the 
slope of the electron levels curve is more than other directions, 
and besides, with the increase of energy level, the slope of the 
curves in 1.5 eV energy onwards has increased sharply. On the 
other hand, in the lower energies of valence, curves’ slope has 
increased, so this compound has very high mobility for electrons 
and holes in exciting conditions. In the higher energies of the 
conduction band, the effective mass of the electron is greatly 
reduced. It is also clear that in both the conduction and valence 
bands, the significant share of electronic states is related to Fe 
and V atoms. 

Fig. 3. (a) Phonon bandstructure and, (b) The DOS of FeVSb
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3.3. Optical Properties

This section has examined optical parameters such as real 
and imaginary parts of the dielectric function, electron energy 
loss function, refractive index, and optical absorption coeffi-
cients. For optical calculations, we used the 20000 KPoints and 
the random phase approximation (RPA). The dielectric function  
(ε (ω)) of the optical spectrum is very useful in determining the 
overall crystal band structure. The dielectric function is not 
directly derived from optical measurements. Functions that are 
directly obtained include: Reflection coefficient (R), refractive 
index (n(ω)) and extinction coefficient (K(ω)). As can be seen in 
Equation (7), the dielectric function is a mixed-function consist-
ing of two real parts and an imaginary part that can be connected 
by the Kramers-Kronig relations relationship.

 ε (ω) = ε1(ω) + iε2(ε)	 (7)

In Fig. 5(a) , it can be seen that the ε1(ω) is increased as the 
photon energy and we see a long sharp peak in the infrared region 
and then decreased in the visible edge and show the semiconduct-
ing behavior. The first root of this function is at the ultraviolet 
edge and the second root is in the range of 7.3 eV energy and 
is a negative sign up to 20 eV, and again in this energy the sign 
is positive and we see another root. From 20 eV onwards, the 
response to light has been virtually zero. Areas with a negative 
sign of the dielectric function refer to semi-material or metallic 
behaviors. The peaks in the imaginary part of the dielectric func-
tion (ε2(ω)) correspond to the DOS diagram’s critical points and 
show the inter- and intra-band optical transitions. 

Fig. 5(b) shows the imaginary part of the FeVSb dielectric 
function. At low energies, we see a gap in it that is entirely in 
agreement with its DOS curve. In the infrared region, we see 
a sharp Dirac peak that representing the transfer of electrons 
from full to empty levels in this energy. Still this condition is 
not very stable and the decreasing process begins quickly, and 
from the visible edge onwards, it has been reduced with a lower 

slope. In this area and up to the 10 eV range, we still see optical 
transitions, and after this energy, we will have no transitions and, 
as a result, light absorption. In energies where the real part of the 
dielectric function is zero, the imaginary part is also reduced with 
a steep slope. Electron energy-loss function (ELoss) is one of 
the most important quantities to determine the macroscopic and 
microscopic properties of solids, proportional to the probability 
of energy loss per unit length for an electron passing through the 
environment. The energy loss function occurs in the unauthor-
ized range of electromagnetic waves propagating in a system. 
One way to stimulate solid electrons is to encourage electrons 
by other electrons. As a beam of single-energy electrons collides 
with a solid, electronic energy losses can detect its excitation. 
Peaks of energy loss are related to optical transmissions and 
plasmonic oscillations. The most significant peak in the loss 
spectrum is the peak where ε1(ω) has root and (or is close to its 
root) and is known as the plasmonic peak, which indicates the 
mass fluctuations of the electron charge density in the crystal. 
The maximum peak energies in this spectrum are defined as the 
energy of the plasmons. Plasmon peaks in the ELoss are located 
in places where the amplitude of both ε1(ω) and ε2(ω) functions 
are small. The ELoss curve in part Fig. 5(c) shows that the loss 
spectrum is very small up to about 20eV, and its characteristic 
peak occurs at about 20eV, in which one of the roots of the ε1(ω) 
was also received. This peak represents plasma energy in crystals. 
Notably, the infrared spectrum in the infrared and visible areas 
is zero, indicating that the FeVSb compound is a good case for 
optical applications in these energies. 

One of the essential parameters for the design and appli-
cation of optical devices is the refractive index. The refractive 
index has a complex function whose relationship is as follows: 

 ( ) ( )n n ik   	 (8)

In this case, n(ω) is the real part of the refractive index, 

where ω is the frequency of the light emitted and   cn
v

  , 

Fig. 4. The bandstructure and DOS of the FeVSb compound
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K is the imaginary part is the refractive index, which is a meas-
ure of the amount of electromagnetic radiation absorbed by 
that substance and named by extinction. The refractive index is 
a dimensionless measure to determine the decrease in the speed 
of light or any other beam, and the rate of refraction of radiation 
in this material. The relationship between the refractive index 
and the dielectric function is as follows: 

 
2 2

1 1 2
1( ) ( ) ( ( )) ( ( ))
2

n          	 (9)

According to Fig. 5(d), the static refractive index is 2.5, 
which shows the semiconductor behavior. As the optical spec-

trum energy increases, we see a sharp peak at the visible edge, 
which of course, also indicates optical instability because it sud-
denly decreases with a very steep slope. Still, the rate of failure 
has dropped much more than 5 eV. 

Another important optical factor is the absorption coef-
ficient, which is calculated according to the following equation:

 2 ( )( ) kA
c

   	 (10)

Due to this relationship, the highest absorption will occur 
when we have the highest extinction coefficient and the lowest 
electromagnetic wave passage is given energy. Based on the 
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Fig. 5. (a, b) Real and Imaginary parts of dielectric function, (c) ELoss, (d) Refraction, and (e) Absorption indexes of FeVSeb versus photon  
energy
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semiconductor behavior of the FeVSb alloy, it can be seen that 
no light absorption occurs until about 1 eV. The absorption dia-
gram is still increasing with a very steep slope and has reached 
its maximum value of about 7 eV. The optical response of this 
compound has mainly occurred in the infrared and visible re-
gions. On the other hand, the spectrum of the loss function in 
this optical energy period is very small, so this combination can 
be considered a suitable candidate for optical and optoelectronic 
applications in the visible range and the ultraviolet edge.

4. Conclusion

We studied the structural, electronic, and optical properties 
of the FeVSb compound by applying the computations within 
the density functional theory framework and using GGA ap-
proximation. It was observed that the non-magnetic phase of this 
compound would be more stable than its ferromagnetic phase. 
Its lattice constant and the bulk module is obtained following 
the previous values. Also, the calculation of elastic stability and 
phonon distribution curves and the phonon density of states 
clearly show this compound’s stability in the half-heusler phase 
with MgAgAs-type structure. The bandstructure and DOS curve 
represent the semiconductor behavior with an indirect gap of 
0.39 eV in the L-X direction for this combination. The study of 
optical coefficients and optical response of this compound also 
indicates good optical absorption in the ultraviolet spectrum and 
transmission of excited electrons in the visible region. We also 
see the emergence of super luminescence in energies above the 
ultraviolet spectrum (from 10 eV onwards) for this compound. 
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