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1 Introduction
Insurers offer contracts to provide a contingent payment on the death of an individual
(death benefit) in return for a single or a series of periodical payments (premiums).
These life insurance contracts are designed to protect against the serious financial
impact that results from a person’s death. An important variation of individual life
insurance is the so-called joint life insurance, where multiple lives are involved.
In this paper, we concentrate on marriage insurance, which is a special case of multilife
insurance contract. We distinguish between two types of such contracts: joint-life
status insurance issued to a married couple where the death benefit is paid if husband
or wife dies, and last surviving status insurance by which the lump sum is paid after the
death of each of the spouses. The analysis of marriage insurance contracts is usually
based on the assumption of the independence between the insured. In contrast to this
classical approach, the dependence of future lifetimes between the spouses is assumed.
It is a more realistic assumption than independence because the husband and the wife
are exposed to the same risks, which cause the dependence of their future lifetimes.
We may observe the influence of the death of a spouse on the future lifetime of the
second one. The ’broken heart syndrome’ occurs in such a situation. Moreover, a
common external event called ’shock’ e. g., the car or aeroplane crash, which causes
the death of both spouses may occur. We applied copulas to model the dependence
structure of the length of the spouses’ lives. The modelling of spouses’ lifelengths
taking into account the dependence by the use of copula was considered, for example
in Carriere (2001); Gourieroux and Lu (2015); Luciano et al. (2008); Luciano et
al. (2016), and Spreeuw (2006). Moreover, in the article Gourieroux and Lu (2015),
Luciano et al. (2016) and Spreeuw (2006), the authors have applied these copulas
to determine the actuarial value of the different kinds of life annuities. However,
according to our discernment, no application of these copulas to the valuation of the
marriage life insurance contract consisting of different types of benefits (lump sum
and annuity benefits) has been found in the literature. We hope that this article will
bridge this gap in the research of marriage insurance.
We focus on a discrete-time model, where insurance payments are made at the ends
of time units. We assume that the evolution of the insured risk is described by the
time-nonhomogeneous Markov chain. Moreover, actuarial values are considered under
the assumption of stochastic interest rates.
The purpose of the article is twofold.
In the first part, we applied and developed a matrix representation to the analysis
of all types of future cash flows arising from the marriage insurance contract. For
this purpose, we derive transition probabilities under the assumption that future
lifetimes of spouses are dependent and such dependence is modelled by a copula. The
appropriate accommodation of the modified multiple state model enables us to obtain
matrix formulas for actuarial values of multilife insurance contract under assumptions
on the dependence between the insured. Matrix notation allows for efficient analysis
of the stochastic structure of the model and cash flows resulting from the realisation of
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contracts. Moreover, it provides a compact form for both the joint-life status and the
last surviving status. In particular, this tool will facilitate the analysis of the impact
of the probabilistic structure of the model (with dependence and independence) of
marriage insurances for actuarial values, such as premiums and reserves.
In the second part, we focus on empirical comparative analysis. In particular, we
looked at how the way the relationship between the future lifetime of spouses is
modelled affects:

i) the probabilistic structure of the modified multistate model, which is important
in determining actuarial values,

ii) the pricing of the insurance contract,

iii) insurance reserves to provide liquidity to the insurer, as well as a guarantee of
stability.

The paper is organised as follows. In Section 2, after a brief description of multiple
state model for marriage insurance according to two statuses, we present the main
result in Theorem 1, where formulas for elements of the transition matrix under the
assumption that future lifetimes of spouses are dependent and modelled by copulas
are derived. The matrix approach to pricing marriage insurances is developed in
Section 3. Some numerical examples based on actual data for the Czech Republic are
given in Section 4. Suggestions for further possible applications of obtained results
are presented in Section 5.

2 Marriage insurance
2.1 Multiple state model
Let x and y be the age at a policy issue of the husband and wife, respectively.
Moreover, let TMx and TWy be the remaining lifetimes of x-year-old man (husband)
and y-year-old woman (wife). These lifetimes take values in [0, wMx ] and [0, wWy ],
where wMx (resp. wWy ) denotes the difference between the border age ω (for example,
100, 105 or 110 years old) of the man (resp. woman) and x (resp. y).
In this paper, we consider an insurance contract issued at time 0 (defined as the time
of issue of the insurance contract) and terminating according to the plan at a later
time n, which is called the term of policy or the insurance period. The insurance
period depends on the status:

i) n = max
{
wMx , w

W
y

}
for the last surviving status,

ii) n = min
{
wMx , w

W
y

}
for the joint-life status.
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Let us note that, irrespective of the status, we are indeed dealing with whole-life
insurance contracts, because in this article we have chosen to equate term of policy
with upper bound for insurance period for technical reasons. Firstly, the life of the
insured as determined by the life tables is limited by the border age, and secondly,
we use a matrix notation for calculating actuarial quantities, and the matrix needs
the determination of its dimensions. This means that at the time of taking out the
insurance contract, the theoretical length of the insurance period is determined on the
basis of the possible maximum age to which the husband and wife can live (included in
the life tables). For example, if the husband is 65, the wife 60 years old and ω = 100,
then

i) n = max
{
wMx , w

W
y

}
= max{100 − 65; 100 − 60} = max{35; 40} = 40

for the last surviving status,

ii) n = min
{
wMx , w

W
y

}
= min{100 − 65; 100 − 60} = min{35; 40} = 35

for the joint-life status.

Following Haberman and Pitacco (1999), with a given insurance contract, we assign
a multiple state model. That is, at any time, the insured risk is in one of a finite
number of states labelled by 1, 2, . . . , N . Let S = {1, 2, . . . , N} be the state space.
Each state corresponds to an event that determines the cash flows (premiums and
benefits). Additionally, by T = {(i, j) : i, j ∈ S} we denote a set of direct transitions
between states of the state space. The pair (S, T ) is called a multiple state model and
describes all possible insured risk events up to the end of insurance.
The graphic representation of the multiple state model
(S, T ) = ({1, 2, 3, 4}, {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}) for marriage insurance is
shown in Figure 1, where circles represent the states and arcs correspond to direct
transitions between them. Next to the arcs, benefits related to the transition between
states are marked, where cM (cW ) is a given lump sum paid when the husband (wife)
dies and c is the lump sum paid if both spouses die.
The length of the insurance contract with JLS is shorter, and the decisive influence on
the duration of the insurance contract is the future lifetime of the older spouse, while
for LSS the decisive influence is the future lifetime of the younger partner (therefore,
the length of the insurance contract is usually greater for this status). The time
horizon over which benefits are realized (the potential length of the insurance contract)
have a decisive impact on actuarial quantities such as premiums and reserves. For both
statuses, the insurance benefit is an increasing function of age. This indicates that (in
terms of present value at the start of the insurance contract) the unit benefit payable
immediately on the death of the first spouse is greater than the same payable after the
death of a widow/widower. This is because the variation in the expected time until
the death in JLS is much smaller than LSS, and as such, insurance payments on lives
with shorter time until death pay more than those with more time until death. Note
that in LSS the sum of nominal payments is always equal to cM + cW , while for JLS
it might be equal to cMor cW (death of one spouse) or cM + cW (simultaneous death
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Figure 1: A multiple state model for marriage insurance contract for: (a) Last
Surviving Status – LSS; (b) Joint-Life Satus - JLS   

1 

 

 

 

 

 

 

 

 

  

State space: 

1  - both spouses are alive 

2  - husband is dead 

3  - wife is dead 

4  - both spouses are dead   

1 

3 2 

4 

1 

3 2 

4 

(b) 
(a) 

Mc  Mc  Wc  

c  c  

Wc  
Mc  

Wc  

 

of both spouses). It follows directly from that the multiple state model for marriage
insurance with JLS (diagram (b) in Figure 1) is included in the multiple state model
with LSS (diagram (a) in Figure 1). This means that insurance premiums for LSS
insurance are higher than those for JLS. In this paper, we focus on the impact of
the assumptions made regarding the future lifetimes of the spouses on the actuarial
values, and not on comparing these values depending on the statuses. Therefore, in
further considerations, we focus on the more popular in practice insurance contact,
namely marital insurance with the status of the last survivor.

2.2 Transition matrix for mortality dependence
We focus on a discrete-time model, where X(k) denotes the state of an individual
(the contract) at time k (k ∈ {0, 1, 2, . . . , n}). Hence the evolution of the insured
risk is described by a discrete-time stochastic process {X(k); k = 0, 1, 2, . . .}
(in this article we will use the short form {X(k)}). The basic quantities describing
the evolution of process {X(k)} are finite dimensional distributions, which allows
for the determination of the conditional distributions (necessary in the valuation
of each contract). Finite dimensional distributions depend directly on the type
of contract. For example, in marriage insurance, the distribution is influenced by
husband’s further lifetime as well as wife’s. In practice, determining these probabilities
is often very difficult due to the limited access to data. Therefore, the process {X(k)}
is assumed to be a nonhomogeneous Markov chain (see, e.g. Denuit et al. 2001;
Dębicka 2013; Hoem 1969; Hoem 1988; Wolthuis 1994). Although this is quite a
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considerable simplification, because, for example, in the case of marital insurance,
both the future lifetime of the husband and the wife shortens after the death of the
spouse (broken heart syndrome), but as research show, after 2-3 years it returns to
the level specified in life tables e.g. Ji et al. (2011). From the methodological point
of view, under this assumption we have described the probabilistic structure of the
model based on a chain of transition matrices {Q(k)}n−1

k=0 , where Q(k) = (qij(k))Ni,j=1
and qij(k) = P (X(k + 1) = j|X(k) = i).
In the case of marriage insurance with the last surviving status, the transition matrix
has the following form

Q(k) =


q11(k) q12(k) q13(k) q14(k)

0 q22(k) 0 q24(k)
0 0 q33(k) q34(k)
0 0 0 1

 . (1)

For the joint-life status, we have q22(k) = q33(k) = 1 and q24(k) = q34(k) = 0.
Under the assumption that TMx and TWy are independent, transition probabilities are
determined using only life tables, where lMx (lWy ) is the number of living x-years-old
men (y-years-old women) out of initial lM0 = 10 000 men (women).
If we want to derive the transition probabilities qij(k), we must know the joint
distribution of lifetimes (TMx , TWy ). We assume that we know the cumulative
distribution function F (w, z) of pair (TMx0

,TWy0
), where x0 and y0 are base ages

for men and women, such that x = x0 + t, y = y0 + s, t ≥ 0 and
s ≥ 0. We also know the copula C(u, v), a link between the joint and
marginal cumulative distribution functions (Genest and McKay 1986; Nelsen 1999),
connected with this joint distribution, i.e. F (w, z) = C(FM (w), FW (z)), where
FM (w) = P (TMx0

≤ w) and FW (z) = P (TWy0
≤ z) are the marginal distributions

of the lifetimes TMx0
and TWy0

. However, in the life insurance analyses, we mainly
use the survival functions: S(w, z) = P (TMx0

> w, TWy0
> z), SM (w) = P (TMx0

> w),
SW (z) = P (TWy0

> z) and the survival copula C∗(u, v), which satisfies the condition
S(w, z) = C∗(SM (w), SW (z)).
There is a following relation between classical C and survival copula C∗ (Nelsen 1999):

C∗(u, v) = u+ v − 1 + C(1− u, 1− v). (2)

We can compute the marginal survival functions SM and SW using the values of lMx0
and lWy0

from life tables:

SM (t) = P (TMx0
> t) = P (TM0 > x0 + t|TM0 > x0) = lMx0+t/l

M
x0
, (3)

SW (s) = P (TWy0
> s) = P (TW0 > y0 + s|TW0 > y0) = lWy0+s/l

W
y0
. (4)
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Hence, the join survival function of the lifetimes TMx and TWy are equal

P (TMx > w, TWy > z) = P (TMx0
> t+ w, TWy0

> s+ z|TMx0
> t, TWy0

> s) =

= S(t+ w, s+ z)
S(t, s) = C∗(SM (t+ w), SW (s+ z))

C∗(SM (t), SW (s)) . (5)

In our later analyses, we will also use the following probability

P (TMx > w,v < TWy ≤ z) =
= P (TMx0

> t+ w, s+ v < TWy0
≤ s+ z|TMx0

> t, TWy0
> s) =

=
P (TMx0

> t+ w, TWy0
> s+ v)

P (TMx0
> t, TWy0

> s) −
P (TMx0

> t+ w, TWy0
> s+ z)

P (TMx0
> t, TWy0

> s) =

= C∗(SM (t+ w), SW (s+ v))− C∗(SM (t+ w), SW (s+ z))
C∗(SM (t), SW (s)) . (6)

In a similar way, we obtain

P (u < TMx ≤ w, v < TWy ≤ z) =

= C∗(SM (t+ u), SW (s+ v))− C∗(SM (t+ u), SW (s+ z))
C∗(SM (t), SW (s)) +

+ C∗(SM (t+ w), SW (s+ z))− C∗(SM (t+ w), SW (s+ v))
C∗(SM (t), SW (s)) . (7)

When the random variables TMx and TWy are independent, then we have

C∗
(
SM (w), SW (z)

)
= SM (w) · SW (z). (8)

Moreover, for x ≥ ω or y ≥ ω we obtain

C∗
(
SM (t), SW (s)

)
= 0. (9)

Theorem 1. Assume that the copula C∗(x0, y0) is the link between the joint and
marginal survival functions for x0-year-old men and y0-year-old women. In addition,
{X(t)} is a nonhomogeneous Markov chain describing the evolution of the insured
risk in the multistate model for the marriage insurance contract with the last surviving
status, i.e. (S, T ) = ({1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}). Then the elements
of the chain of the transition matrices {Q(k)}n−1

k=0 have the following form:

a) for k ∈ {0, 1, 2, . . . , n− 1} and x+ k < ω and y + k < ω
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q11(k) =
C∗
(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(s+ k)

) , (10)

q12(k) =
C∗
(
SMx0

(t+ k), SWy0
(s+ k + 1)

)
− C∗

(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(y + k)

) ,

(11)

q13(k) =
C∗
(
SMx0

(t+ k + 1), SWy0
(s+ k)

)
− C∗

(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(s+ k)

) ,

(12)

q14(k) = 1−
3∑
j=1

q1j(k), (13)

q22(k) =
C∗
(
SMx0

(t), SWy0
(s+ k + 1)

)
− C∗

(
SMx0

(t+ k), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t), SWy0
(s+ k)

)
− C∗

(
SMx0

(t+ k), SWy0
(s+ k)

) , (14)

q24(k) = 1− q22(k), (15)

q33(k) =
C∗
(
SMx0

(t+ k + 1), SWy0
(s)
)
− C∗

(
SMx0

(t+ k + 1), SWy0
(s+ k)

)
C∗
(
SMx0

(t+ k), SWy0
(s)
)
− C∗

(
SMx0

(t+ k), SWy0
(s+ k)

) , (16)

q34(k) = 1− q33(k); (17)

b) for k ∈ {1, 2, . . . , n− 1} and x + k ≥ ω and y + k < ω, elements in the first
and third row of the matrix (1) equal zero and q22(k), q24(k) are defined by (14)
and (15), respectively;

c) for k ∈ {1, 2, . . . , n− 1} and x+ k < ω and y + k ≥ ω elements in the first and
second row of the matrix (1) equal zero and q33(k), q34(k) are defined by (16)
and (17), respectively.

Proof. For elements in the first row of the matrix (1), under the assumption that
x+ k < ω and y + k < ω, we have

q1i(k) = P (X(k + 1) = i|X(k) = 1) = P (X(k + 1) = i,X(k) = 1)
P (X(k) = 1) . (18)

Note that P (X(k) = 1) = P
(
TMx > k, TWy > k

)
and from (5) we straightforwardly

obtain

P (X(k) = 1) =
C∗
(
SM (t+ k), SW (s+ k)

)
C∗ (SM (t), SW (s)) . (19)

Note that event {X(k + 1) = 1} is contained in {X(k) = 1}, so the joint probability
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reduces to P (X(k + 1) = 1). Then for i = 1

P (X(k + 1) = 1, X(k) = 1) = P
(
TMx > k + 1, TWy > k + 1, TMx > k, TWy > k

)
=

= P
(
TMx0

> t+ k + 1, TWy0
> s+ k + 1|TMx0

> t, TWy0
> s
)

=

=
P
(
TMx0

> t+ k + 1, TWy0
> s+ k + 1

)
P
(
TMx0

> t, TWy0
> s
) , (20)

again using (5) in (20) we have

P (X(k + 1) = 1, X(k) = 1) =
C∗
(
SM (t+ k + 1), SW (s+ k + 1)

)
C∗ (SM (t), SW (s)) . (21)

Finally, applying (19) and (21) to (18), we obtain (10). Moreover, (13) results from
the property of the transition matrix. Q(k) is a stochastic matrix; therefore, the sum
of its elements in each row equals 1.
Namely, for i = 2

P (X(k + 1) = 2, X(k) = 1) =
= P

(
TMx ≤ k + 1, TWy > k + 1, TMx > k, TWy > k

)
=

= P
(
t+ k < TMx0

≤ t+ k + 1, TWy0
> s+ k + 1|TMx0

> t, TWy0
> s
)

=

=
P
(
t+ k < TMx0

≤ t+ k + 1, TWy0
> s+ k + 1

)
P
(
TMx0

> t, TWy0
> s
) , (22)

using (5) and (6) in equation (22), we have

P (X(k + 1) = 2, X(k) = 1) =

=
C∗
(
SM (t+ k), SW (s+ k + 1)

)
− SM (t+ k + 1), SW (s+ k + 1)

C∗ (SM (t), SW (s)) . (23)

Finally, applying (19) and (23) to (18), we obtain (11).
In case of i = 3

P (X(k + 1) = 3, X(k) = 1) = P
(
TMx > k + 1, TWy ≤ k + 1, TMx > k, TWy > k

)
=

=
P
(
TMx0

> t+ k + 1, s+ k < TWy0
≤ s+ k + 1

)
P
(
TMx0

> t, TWy0
> s
) , (24)

using (5) and (6) in (24), we have

P (X(k + 1) = 2, X(k) = 1) =

=
C∗
(
SM (t+ k + 1), SW (s+ k)

)
− SM (t+ k + 1), SW (s+ k + 1)

C∗ (SM (t), SW (s)) . (25)
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Analogously to (11), putting (19) and (25) to (18), we obtain (12).
For elements in the second row of the matrix (1), under the assumption that x+k < ω
and y + k < ω we have

q2i(k) = P (X(k + 1) = i|X(k) = 2) = P (X(k + 1) = i,X(k) = 2)
P (X(k) = 2) (26)

and according to the model (S, T ) = ({1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}) ,
only for i = 2, 4 transition probabilities are possible and non-zero. Note that
P (X(k) = 2) = P

(
TMx ≤ k, TWy > k

)
, and from (6), we straightforwardly obtain

P (X(k) = 2) =
C∗
(
SM (t), SW (s+ k)

)
− C∗

(
SM (t+ k), SW (s+ k)

)
C∗ (SM (t), SW (s)) . (27)

Moreover,

P (X(k + 1) = 2, X(k) = 2) =
= P

(
TMx ≤ k + 1, TWy > k + 1, TMx ≤ k, TWy > k

)
=

= P
(
TMx0
≤ t+ k + 1, TWy0

> s+ k + 1, TMx0
≤ t+ k, TWy0

> s+ k|TMx0
> t, TWy0

> s
)

=

=
P
(
t < TMx0

≤ t+ k, TWy0
> s+ k + 1

)
P
(
TMx0

> t, TWy0
> s
) , (28)

again using (6) in (28) we have

P (X(k + 1) = 2, X(k) = 2) =

=
C∗
(
SM (t), SW (s+ k + 1)

)
− C∗

(
SM (t+ k), SW (s+ k + 1)

)
C∗ (SM (t), SW (s)) . (29)

Finally, applying (27) and (29) to (26), we obtain (14). Formula (15) is a natural
consequence of the property of a transition matrix.
Similarly to proving (14) and (15), we obtain formulas (16) and (17), respectively.
For k such that x+ k ≥ ω or y+ k ≥ ω, matrices Q(k) consist of rows that have only
zero elements. It is so because after the death of one spouse, the model degenerates
into model ({2,4},{(2,4)}) for the death of the wife, and model ({3,4},{(3,4)}) for
the death of the husband. This explains the form of the transition matrix elements
defined in b) and c), respectively.

Corollary 2. Assume that copula C∗(x0, y0) is the link between the joint and
marginal survival functions for x0-year-old men and y0-year-old women. In addition,
{X(t)} is a nonhomogeneous Markov chain describing evolution of the insured risk in
the multistate model for the marriage insurance contract with joint-life status i.e.
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(S, T ) = ({1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4)}). Then the elements of the chain of the
transition matrices {Q(k)}n−1

k=0 have the following form for k ∈ {0, 1, 2, . . . , n− 1}:

q11(k) =
C∗
(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(s+ k)

) ,

q12(k) =
C∗
(
SMx0

(t+ k), SWy0
(s+ k + 1)

)
− C∗

(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(y + k)

) ,

q13(k) =
C∗
(
SMx0

(t+ k + 1), SWy0
(s+ k)

)
− C∗

(
SMx0

(t+ k + 1), SWy0
(s+ k + 1)

)
C∗
(
SMx0

(t+ k), SWy0
(s+ k)

) ,

q14(k) = 1−
3∑
j=1

q1j(k),

qij(k) =
{

1 for i = j and i, j ∈ {2, 3, 4},
0 for i 6= j and i, j ∈ {2, 3, 4}.

(30)

Proof. For the marriage insurance contract with joint-life status,
we have n = min

{
wMx , w

W
y

}
. It means that we analyse Q(k) for

k = 0, 1, . . . ,min
{
wMx , w

W
y

}
− 1, and x + k < ω or y + k < ω. Then the first

row of Q(k) matrix is the same as in case of last survival status i.e. is defined
by (10)–(13) in Theorem 1.
Note that in the model (S, T ) = ({1, 2, 3, 4} , {(1, 2), (1, 3), (1, 4)}) states 2, 3, 4 are
absorbing states, which explains (30).

Note that under the assumption that TMx and TWy are independent, the copula has
the form of C(u, v) = uv. Then using Theorem 1 and Corollary 2, we may obtain
transition matrix (1) straightforwardly under the assumption that future lifetimes of
husband and wife are independent.

3 Matrix approach to counting actuarial value
3.1 Modified multiple state model and its probabilistic

structure
Multiple state modelling is a stochastic tool for designing and implementing insurance
products. The multistate methodology is commonly used in the calculation of
actuarial values of different types of life and health insurances; hence we also used it
to determine premiums and reserves for marriage insurance contracts with mortality
dependence.
The total future cash flows Z that arise from insurance contract can be treated as a
set of separate streams of cash flows of particular types (e.g. premiums, annuities,
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lump sums). This way of valuation of the insurance contract represents an actuarial
approach to analysing cash flows arising from the insurance contract. From a financial
point of view, Z is treated as a sum of current values of the total cash flows realised
at individual moments of the duration of the insurance contract, whereby the total
cash flow at any given time is the sum of premiums and different kinds of benefits
realised at a given time in the insurance period. The distinction between these two
approaches to the analysis Z is important when the insurance contract guarantees
lump sum benefits directly related to the occurrence of a random event covered by
the insurance contract. For the lump sum, the information that the insured risk is
in a particular state at the moment k is not enough to determine the benefit at the
moment k because one needs additional information about the state of the insured
risk at time k − 1. A general financial approach to calculation of two moments of Z
arising from a multistate insurance contract can be found in, e.g. Dębicka (2013).
This methodology, developed for the discrete-time model (where insurance payments
are exercised at the end of time intervals), is based on an modified multiple state
model, for which matrix formulas for actuarial values can be derived. This approach
to costing contracts not only makes calculations easier, but also enables us to factorise
the stochastic nature of the evolution of the insured risk and the interest rate, which
can be observed in the derived formulas.
Note that all benefits under the marriage insurance contract correspond to cash flows
connected with the transition between states (compare Figure 1). Observe that for
such a type of benefit, the information that X(k) is in a particular state is not enough
to determine the benefit at timek, because we need additional information about
where the process {X(k)} was at the moment k − 1. Matrix is a two-dimensional
structure; thus, it is not possible to determine the exact moment of realisation
of lump sum benefit by using three pieces of information (value of the benefit;
X(k − 1), X(k)). For this purpose, we have to modify the model for the marriage
insurance contract with the last surviving status, replacing lump sum benefits with
benefits associated with the insured risk staying in particular states. Following the
procedure of modification the multiple state model presented in Dębicka (2013), we
introduce five reflex states, which are strictly transitional and after one unit of time,
the insured risk leaves this state, e.g. states 2, 4, 5, 7, 8. Thus the new state space
consists of nine states (N∗ = 9). As a result, the modified multiple state model
(S∗, T ∗) for marriage insurances assumes the form presented in Figure 2. Note that
now the benefits are the cash flows connected with the process {X(k)} staying in
considered states. The information in a particular state uniquely determines if the
benefit is paid at time k. In particular, we have state 2 and state 3 corresponding
to the situation that the wife lives and the husband is dead (compare state 2 in the
diagrams of Figure 1). The difference between these two states (2 and 3) is related
to the period that elapses from the death of her husband which directly affects the
payment of benefits to his wife. Namely, in the first year after the death of the
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husband, the wife receives the lump sum benefit (state 2), and in the subsequent
years of widowhood, the lump sum benefit is not paid.

Figure 2: Modified multiple state model for marriage insurance contract 
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1 - both spouses are alive 

2 - death of the husband, wife is alive  

3 - husband has been dead for at least one year,  
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4 - husband has been dead for at least one year,  
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5 - death of the wife, husband is alive 
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7 - wife has been dead for at least one year,  
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8 – death of both spouses within year 
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Let the evolution of the insured risk for (S∗, T ∗) be described by a discrete-
time stochastic process {X∗(k); k = 0, 1, 2, . . .}. In Section 2, we assumed that
{X(k)} is a nonhomogeneous Markov chain, then the process{X∗(k)} is also a
nonhomogeneous Markov chain with {Q∗(k)}n−1

k=0 , where Q∗(k) =
(
q∗ij(k)

)N∗

i,j=1 and
q∗ij(k) = P(X*(k+1)=j | X*(k)=i). It appears that the transition matrix Q∗(k)
can be described based on elements of the transition matrix (1) (Dębicka 2003). In
particular, for k ∈ {0, 1, 2, . . . , n− 1}, x+ k < ω and y+ k < ω, the transition matrix
has the following form

Q∗(k) =



q11(k) q12(k) 0 0 q13(k) 0 0 q14(k) 0
0 0 q22(k) q24(k) 0 0 0 0 0
0 0 q22(k) q24(k) 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 q33(k) q34(k) 0 0
0 0 0 0 0 q33(k) q34(k) 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1


.

(31)
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In the model shown in Figure 2, the stay of process{X∗(k)} in state 1 and transitions
to other states are the same as in the models shown in Figure 1. Due to the
renumbering of states (3 and 4 in Figure 1 to 5 and 8 in Figure 2), we have
q∗11(k) = q11(k), q∗12(k) = q12(k), q∗15(k) = q13(k) and q∗18(k) = q14(k) Note that
states 2, 4, 5, 7 and 8 are reflex states, which are strictly transitional and after
one unit of time, the insured risk leaves this state thus for such states q∗ii(k) = 0.
In addition, the probabilities of transition from state 2 to state 3 and staying in
state 3 by the insured risk concern the survival of the year by the widow, therefore
q∗23(k) = q∗33(k) = q22(k) and as a result q∗24(k) = q∗34(k) = 1 − q22(k) = q24(k). We
have an analogous situation related to states 5 and 6 regarding the survival of the year
by a widower thus q∗56(k) = q∗66(k) = q33(k) and q∗57(k) = q∗67(k) = 1−q33(k) = q34(k).
Analogous to the classical model (S, T ), for k such that x+k ≥ ω or y+k ≥ ω, matrices
Q∗(k) consists of rows that have only zero elements. After the husband’s death model
(S∗, T ∗) degenerates into the model ({2, 3, 4, 9} , {(2, 3), (2, 4), (3, 4), (4, 9)}), where
states 2 and 4 are reflex. Then for k ∈ {1, 2, . . . , n− 1} such that x + k ≥ ω and
y + k < ω, matrix (31) is reduced to a matrix of the form

Q∗x(k) =



0 0 0 0 0 0 0 0 0
0 0 q22(k) q24(k) 0 0 0 0 0
0 0 q22(k) q24(k) 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


. (32)

Whereas after the wife’s death we analyse model ({5,6,7,9},{(5,6),(5,7),(6,7),(7,9)})
with two reflex states 5 and 7. Thus for x+ k < ω and y + k ≥ ω we obtain

Q∗y(k) =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 q33(k) q34(k) 0 0
0 0 0 0 0 q33(k) q34(k) 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1


. (33)

Note that the matrices given by formula (32) and (33) are not typical transition
matrices for the model shown in Figure 2, because from a certain point in the insurance
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period the model with 9 states reduces to a 4-state model. For those states where the
probability of stay of the process {X∗(k)} in particular state is equal to zero we have
rows containing only zeros, if we remove them the remaining rows create a transition
matrix for the 4-state model. In this sense matrices (32) and (33) can be treated as
reduced transition matrices of the 9-state model.
Let matrix D consist of probabilities of process {X∗(k)} staying at states in each
moment of the insurance period

D =


PT (0)
PT (1)

...
PT (n)

 ∈ R(n+1)×N∗

where PT (k) = (P (X∗(k) = 1), P (X∗(k) = 2), . . . , P (X∗(k) = N∗)) and
PT (0) = (1, 0, 0, . . . , 0) ∈ RN∗ is a vector of the initial distribution.
Based on {Q∗(k)}n−1

k=0 we describe columns of the matrix D as follows
PT (k) = (P (X∗(k) = 1), P (X∗(k) = 2), . . . , P (X∗(k) = 9))T (note that for
multistate model presented in Figure 2 N∗ = 9) and based on matrices (31)–(33) we
obtain

PT (k) =


PT (0) ·

∏ω−x−1
k=0 Q∗(k)

∏t−1
k=ω−x Q∗x(k) for x+ t ≥ ω ∧ y + t < ω,

PT (0) ·
∏t−1
k=0 Q∗(k) for x+ t < ω ∧ y + t < ω,

PT (0) ·
∏ω−y−1
k=0 Q∗(k)

∏t−1
k=ω−y Q∗y(k) for x+ t < ω ∧ y + t ≥ ω.

The matrix D determined for n = max
{
wMx , w

W
y

}
(for last surviving status) can be

used in actuarial values calculations for both statuses, as shown in the next sections.

3.2 Cash flows matrices and statuses
Let cfj(k) be the future cash flow payable at the time k if X∗(k) = j (j ∈ S∗) and
C = (cfj(k))j=1,2,...,N∗

k=0,1,...,n
be the cash flows matrix. Let us note that from the financial

point of view, the cash flow cfj(k) is a sum of inflows (benefits) representing an income
to the insurer total loss fund and outflows (premiums) representing an outgo from
this fund, then premiums and benefits take the opposite signs. Hence C = Cin +Cout.
In the article, we assume that all lump sum benefits are cash flows paid from below.
The form of the matrix Cin depends on the status. Note that for joint-life status,
when the insured risk falls in one of the states 2 or 5, the insurance contract will
expire; therefore, the benefits from states 4 and 7 cannot be realised. That is for
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i) last surviving status

Cin =


0 0 0 0 0 0 0 0 0
0 cM 0 0 cW 0 0 c 0
0 cM 0 cW cW 0 cM c 0
...

...
...

...
...

...
...

...
...

0 cM 0 cW cW 0 cM c 0

 ∈ R(n+1)×9, (34)

ii) joint-life status

Cin =



0 0 0 0 0 0 0 0 0
0 cM 0 0 cW 0 0 c 0
0 cM 0 0 cW 0 0 c 0
...

...
...

...
...

...
...

...
...

0 cM 0 0 cW 0 0 c 0
0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0


∈ R(n+1)×9. (35)

Independently of statuses, the cash flow matrix consisting only of outflow from the
insurer loss fund has the following form; for:

i) π - net single premium paid at the beginning of the insurance period

Cout =


−π 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0

 ∈ R(n+1)×9

ii) p - net period premiums paid at the first m units of the insured period

Cout =



−p 0 · · · 0
−p 0 · · · 0
...

...
. . .

...
−p 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∈ R(n+1)×9

where n = max
{
wMx , w

W
y

}
.
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3.3 Actuarial values
Let I ∈ R(n+1)×(n+1) be the identity matrix and S = (1, 1, . . . , 1)T ∈ Rn+1,

Ik =
(

0, . . . , 0, 1
k
, 0, . . . , 0

)T
∈ Rn+1, Ji =

(
0, . . . , 0, 1

i
, 0, . . . , 0

)T
∈ RN∗ for each

k = 0, 1, 2, . . . , n and j = 1, 2, . . . , N∗. Furthermore, for any matrix A = (aij)n+1
i,j=1,

let Diag(A) be a diagonal matrix whose diagonal elements consist of a diagonal of
the matrix A.
The following notation is necessary to describe the interest rate. Let υ(k) = e−Y (k)

be the discount function, where Y (k) denotes the rate of interest in the time interval
[0, k]. Then υ(k1, k2) = e−(Y (k2)−Y (k1)) is a discount function for a period of time
[k1, k2]. We introduce a matrix Λ = (λk1k2)n+1

k1,k2=1 where

λk1k2 =


E(υ(k2, k1)) for k1 > k2,

1 for k1 = k2,

E(υ(k1, k2)) for k1 < k2,

where E(υ(k1, k2)) means the expected value of the discount function υ(k1, k2)
(cf. Dębicka et al. 2022).
If the interest rate is constant and equal to u, then λk1k2 = υk2−k1 and υ = (1 + u)−1

is a discount factor. Namely, if the interest rate is a function of time then
λk1k2 = e−(k2−k1)Rk1,k2 , where Rk1,k2 is the immediate interest rate.
In order to obtain matrix formulas for premiums and reserves, we make the following
standard assumptions (see also Dębicka 2013; Frees 1990; Parker 1994):
Assumption A1. The random variable X∗(k) is independent of Y (k).
Assumption A2. The first moment of the random discounting function e−Y (k) is
finite.
The net single premium paid in advance (at time 0, whenX∗(0) = 1) for the insurance
modelled by (S∗, T ∗) equals (cf. Dębicka 2013, p. 217)

π = IT1 ΛTDiag(CinDT )S. (36)

Additionally, the net period premium payable in advance at the beginning of the time
unit during the first m units (m ≤ n) if X∗(k) = 1 equals (cf. Dębicka 2013, p. 217)

p = IT1 ΛTDiag(CinDT )S
IT1 ΛT

(
I−

∑n+1
t=m+1 ItITt

)
DJ1

, (37)

where the denominator in (37)is equal to the actuarial value of a temporary (m-year)
life annuity-due contract.
In general terms, a reserve is a retained part of the generated increase in funds to
cover expected costs and losses. The structure of insurance provides for the creation
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of insurance reserves, which are a fund created from the surplus of net premiums over
the sum of claims in a given year. This fund is intended to cover current and future
liabilities arising from concluding an insurance contract. Insurers use this actuarial
value, among other things, to monitor the solvency of the company and to determine
the (average) profit expected to emerge at the end of each year of the insurance
contract.
One of the methods of creating the reserve is the prospective method, which consists in
determining the amount needed at time t (of the duration of the insurance contract),
which, together with the premiums paid in the future, will allow for the payment
of future benefits. Let Lk be the insurer’s prospective loss at time k, defined as the
difference between the present value of future benefits and the present value of future
net premiums. Thus, the prospective reserve Vi(k) is the conditional expected value
of the insurer’s prospective loss under the condition at moment k process {X∗(k)} is
at state i i.e. Vi(k) = E (Lk|X∗(k) = i). Let reserves matrix V consist of net reserves
in each moment of the insurance period

V =


VT (0)
VT (1)

...
VT (n)

 ∈ R(n+1)×N∗
,

where (cf. Dębicka 2013, p. 220)

V(k) = (V1(k), V2(k), . . . , VN∗(k))T =

=
(

CT
out + CT

in +
n∑

t=k+1

t−1∏
u=k

Q∗(u)CT It+1ITt+1Λ
)

Ik+1 (38)

is a vector containing net prospective reserves Vi(k) for each state i = 1, 2, . . . , N∗at
the moment k = 0, 1, 2, . . . , n. Note that not all elements of the matrix V may occur

V real
i (k) =

{
JTi VT Ik+1 for P (X∗(k)) > 0,
− for P (X∗(k)) = 0.

Finally, we analyse only the prospective insurance reserves, which have a chance to
come into being

Vreal =


VrealT (0)
VrealT (1)

...
VrealT (n)

 ∈ R(n+1)×N∗
.

Matrix formulas for actuarial values described in this section can be used for both
statuses. Note that it is possible to determine matrix D only for n = max

{
wMx , w

W
y

}
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(for last surviving status) and use it for counting actuarial values in the case of two
statuses. In this case, the matrix Cin decides on the type of status, i.e. we have (34)
for the last surviving status and (35) for the joint-life status.

4 Applications
Insurance contract For numerical illustrative purpose we consider the last
surviving status marriage insurance contract. We assume that the lump sum paid
when the husband (wife) dies equals 1 unit (cM = cW = 1) and the lump sum paid
if both spouses die equals 2 units (c = cM + cW = 2). Moreover, the constant period
premium p is paid when both spouses are alive (i.e. if X∗(k) = 1).

Probabilistic structure of the model We investigate three scenarios. In the first
one, valuation of marriage insurance is done under the assumption of independence
of future lifetimes of husband and wife. In the pricing insurance contracts, the Czech
Statistical Office Life Tables 2017 are used. The next two scenarios are the Markov
models based on the stationary Markov chain (see: Wolthuis and Van Hoeck 1986;
Norberg 1989; Denuit et al. 2001). These models let us establish the joint distribution
of the lifetimes of spouses, i.e. (TMx , TWy ), for fixed ages x and y.
Based on the data for the Czech Republic in 2017 obtained from the Czech Statistical
Office and Eurostat (2020) the joint cumulative distribution was determined

Fx0y0(w, z) = P (TMx0
≤ w, TWy0

≤ z)

for x0 = y0 = 60 where values x0 and y0are treated as base ages for men and
women. The Kendall correlation coefficient was calculated for lifetimes TMx0

and TWy0
as following

τ = 4
∫ ∞
x0

∫ ∞
y0

Fx0y0(t, s)dFx0y0(t, s)− 1,

and based on the above-mentioned data, is equal τ = 0.1064.
In the next step, copula C(u, v) was selected to describe the dependency structure
between TMx0

and TWy0
. For this purpose, four copula families were considered: AMH,

Clayton, Gumber and Frank (Dębicka et al. manuscript). These are Archimedean
copula families, and each family is described by a parameter α reflecting the degree of
dependence. Namely, there is a relation α = g(τ) between the parameter α and the
value of Kendall correlation coefficient τ , e.g. for Gumbel copula there is a relation
α = 1/(1 − τ) . Then, copula with parameters α satisfying the relation α = g(τ)
were selected in each family. From among these four representatives, copula C(u, v)
was selected as the one that best describes the structure of the relationship between
TMx0

and TWy0
using a criterion based on the distance between the distribution and the
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theoretical distribution function induced by copula C(u, v)

d2(Fx0y0 , FC) =
(∫ ∞

0

∫ ∞
0
|Fx0y0(t, s)− C(Fx0(t), Fy0(s))|2 dtds

)1/2
,

where Fx0 are Fy0the marginal distributions of the lifetimes TMx0
and TWy0

. The
technical details are included in Durrleman et al. (2000); Heilpern (2015). The
Gumbel copula C(u, v) = exp

(
−((− ln u)α + (− ln v)α)1/α

)
, whereα = 1.1190

(scenario II), gives us the smallest value of this criterion while the AMH copula
C(u, v) = uv/(1− α(1− u)(1− v)), where α = 0.4240 (scenario III), took the second
place. We must remember that we use the survival copula C∗, not the classical copula,
in our analyses. In this paper, we will use Gumbel(α) and AMH(α) to denote copulas
with the parameter α.

Interest rate We based on real European Union market data related to the yield
euro area central government bonds from January the 2nd 2017 (European Central
Bank 2020). It appears, that the best fitted model of short term rate R0,k (k is time
to maturity) is Svensson model. In this case, the function R0,k has the following form
(cf. Marciniuk 2009)

R0,k = β0 + β1
τ1

k

(
1− e−

k
τ1

)
+ β2

(τ1

k

(
1− e−

k
τ1

)
− e−

k
τ1

)
+

+ β3

(τ2

k

(
1− e−

k
τ2

)
− e−

k
τ2

)
,

where β0 = 0.01450, β1 = −0.02274, β2 = 0.11886, β3 = −0.016085, τ1 = 1.33662,
τ2 = 1.57465. Since β0 is interpreted as a long term rate of interest, we assume that
the r = β0 = 1.45%.
In the remaining part of this section, we observe the influence of dependence between
future lifetimes of spouses on premiums and prospective reserves. Let pair (x, y)
denote the age at entry of husband and wife. We start our considerations with
an analysis for couples at the following ages: (60, 60), (65, 60), (60, 65). Insurance
periods (n), periods of premium payment (m), net single premiums (π) and net
period premiums (p) for such insurance contracts are presented in Table 1. Single
and periodical premiums are calculated according to the formulas (36) and (37),
respectively.
Let us observe that premiums are lower on the condition that future lifetimes of
spouses are dependent. In the age of asymmetric case (for x 6= y), the net single
premium is higher when the wife is older. But the net period premium is higher
when the husband is older, which is directly connected with the actuarial value of a
temporary (m - year) life annuity-due contract (see the denominator in (36)). In the
case of scenario I, a single premium for a married couple at the age of (60, 65) is 0.33%
higher than for a pair at the age of (65, 60), while for scenario II, these differences
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Table 1: Net premiums for marriage insurance contracts

(x, y) (60, 60) (65, 60) (60, 65)

n 45 45 45
m 45 40 40
scenario I TM

x , TW
y independent

π 1.463983328 1.502732787 1.507648167
p 0.099801522 0.116481266 0.112476636
scenario II TM

x , TW
y dependent Gumbel(1.1190)

π 1.463981321 1.500960718 1.506651958
p 0.097632138 0.113867543 0.109420526
scenario III TM

x , TW
y dependent AMH(0.4240)

π 1.463981300 1.500544872 1.506543419
p 0.097611342 0.11375613 0.109363979

equal 0.38% and for scenario III 0.40%. Therefore, according to formula (36), the
period premium for a married couple at the age of (60, 65) is 3.44% lower than the
age of (65, 60) (and, according to scenario II and scenario III of 3.91% and 3.86%,
respectively). Note that for certain spouses, the insurance premiums specified for the
scenario I are higher than for scenario II, and these in turn are higher than those
calculated for scenario III.
Differences between premiums for scenarios I, II and III result from the difference
between the elements of matrix D (i.e. probabilities of the process {X∗(k)} being at
a given time in a particular state), which is graphically presented in Figure 3.
In order to explain in detail in which state and moment of insurance period the
differences between the probabilities are the largest, the relative differences between
the elements of matrices D defined for individual scenarios are presented in the next
three figures.
In Figure 4, it is observed that the probability that both spouses are alive (state
1) is greater for scenario II (dependence-Gumbel(1.1190)) than for scenario I
(independence), especially in the second half of the insurance period. A higher
probability of survival of a married couple means that the premium according to
scenario II is lower, and the insurer also has a possibility to create lower net premium
reserves (compare Table 1 and Figure 7). Moreover, the biggest relative differences can
be observed at the end of the term of insurance. We observe analogous relationships
for the situation related to the death of the husband (state 2) and the death of the
wife (state 5).
The relative difference between the probabilities of a widower’s life (when the wife has
been dead for at least a year) grows year by year (state 6) when the husband is not
younger than his wife. This means that according to the scenario I, the probability
that the widower is alive is higher than in scenario II.We observe a much lower
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Figure 4: The relative differences between elements of matrices D (for states 1,2,. . . 9)
for scenario I (independent) and scenario II (dependent - Gumbel(1.1190)) of spouses
at the ages (60,60), (65,60) and (60,65) for the kth year of the insurance contract
(k = 0, 1, 2, . . . , 45)

-100%

-50%

0%

50%

100%

0 10 20 30 40

(60,60)

1 2 3 4 5 6 7 8 9

-100%

-50%

0%

50%

100%

0 10 20 30 40

(65,60)

1 2 3 4 5 6 7 8 9

-100%

-50%

0%

50%

100%

0 10 20 30 40

(60,65)

1 2 3 4 5 6 8 9

relative difference between the probability of a widow’s life (when the husband has
been dead for at least a year) for couples in which the husband is not younger than
his wife (state 3). The difference in probabilities is significant when the husband is
younger than his wife.
Note that in the first half of the insurance period, we observe that the probability of
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a widow’s death (state 4) is always higher, according to scenario II. However, in the
second half of the insurance period, this probability is higher for scenario I (when the
wife is older), or the probabilities for both scenarios are similar (when the wife is at
most as old as the husband). Analysing the relationships concerning the probabilities
of the widower’s death (state 7), it can be noticed that in the first half of the insurance
period, it is visible that scenario I gives a much higher probability than scenario II
only if the woman is younger. On the other hand, in the second half of the insurance
period, one can observe that regardless of the age of the spouses, the probability that
the widower is dead is higher when it is calculated according to scenario II.
The relative differences between elements of matrices D for scenario I (independent)
and scenario III (dependent - AHM(0.4240)) and for scenario III (dependent -
AHM(0.4240)) and scenario II (dependent – Gumbel(1.1190)) are presented in
Figure 5 and Figure 6, respectively. The largest range of relative differences (up
to 149%) is observed when the probabilities are determined under the assumptions
of independence and the Gumbel copula (Figure 4), as well as the Gumbel copula
and the AMH copula (Figure 6) are compared. The range of differences between
the probabilities specified for independence and the AMH copula (Figure 5) is 65%.
Regardless of the compared scenarios, the biggest range of relative differences between
the probabilities is observed when the husband is older than the wife. These differences
can, among other things, be explained by the different dependence in the upper tail
of the copulas present in the considered scenarios. We define the upper dependence in
the tail of variables TMx0

and TWy0
, reflecting the life expectancy dependence of elderly

spouses, as a limit (Embrechts et al. 2003; Heilpern 2007)

λU (TMx0
, TWy0

) = lim
u→0

P (TMx0
≤ F−1

x0
(u)|TWy0

≤ F−1
y0

(u)) = lim
u→0

C∗(u, u)
u

.

For independence and AMH copula we get λU (TMx0
, TWy0

) = 0, i.e. independence in
the tail. In contrast, for Gumbel copula we have λU (TMx0

, TWy0
) = 2 − 21−τ ≈ 0.142,

i.e. dependence in the tail. This explains the larger differences for older individuals
in Figure 4 and Figure 6 and the smaller differences in Figure 5. What is also shown
in Table 1 and the impact on insurance premiums is noticeable. The probabilistic
structure also has a special impact on the amount of insurance reserves.
In Figure 7, net real prospective reserves for marriage insurance contracts (calculated
according to Equation (38)) are presented for a married couple in which at least
one spouse is 60 years old. Note that net real prospective reserves for state 2 and
state 3 have the same value because they are associated with the same random event
(the death of the husband), and every prospective reserve Vi(k) is calculated at the
moment k after paying the benefits due at time k for the period [0, k) (but before
the insurer receives the premium at the moment k and will pay the benefits payable
in advance for the period [k, k + 1)). The difference between them lies in the fact
that V real

3 (1) does not exist because in the first year of the insurance period the
transition to state 3 is not possible. A similar situation can be observed for states
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Figure 5: The relative differences between elements of matrices D (for states 1,2,. . . ,9)
for scenario I (independent) and scenario III (dependent - AMH(0.4240)) of spouses
at the ages (60,60), (65,60) and (60,65) for the kth year of the insurance contract
(k = 0, 1, 2, . . . , 45)
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4 and 5. Let us note that net real premium prospective reserves (reserves for state
1) are lower on condition that future lifetimes of spouses are dependent (scenario II).
Let us observe that net prospective reserves for other states for scenario II are higher
than for scenario I at the end of the insurance contract. The net premium reserve
calculated for scenario III in the first half of the insurance period is close to the reserve
specified for scenario II, and in the second half of the insurance period for scenario
I. Note that if the husband and wife are not the same age, then in the last years of
the insurance contract, the net premium reserve calculated for scenario III is greater
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Figure 6: The relative differences between elements of matrices D (for states
1,2,. . . , 9) for scenario III (dependent - AMH(0.4240)) and scenario II (dependent
- Gumbel(1.1190)) of spouses at the ages (60,60), (65,60) and (60,65) for the kth year
of the insurance contract (k = 0, 1, 2, . . . , 45)
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than those calculated for scenario I and scenario II. The prospective net premium
reserve calculated assuming that the future lifetimes of the spouses are dependent
(scenario II and scenario III) is lower than when assuming that the future lifetimes
of the husband and wife are independent (scenario I), which is visible in Figure 8.
We observe the greatest relative differences for scenarios I and II, and the range of
relative differences between the reserves is the greatest when the spouses are peers. If
the joint probability distribution of future lifetimes of the spouses is modelled by the
AMH copula, then the largest differences between reserves for state 1 in comparison
to other scenarios are observed in the first years of the insurance contract. On the
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Figure 7: Net real prospective reserves for marriage insurance contracts
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other hand, if the joint probability distribution of future lifetimes of the spouses is
modelled by the Gumbel copula, then the largest relative differences between reserves
for state 1 compared to other scenarios are observed in the last years of the insurance
contract.
So far, the comparative analysis concerned married couples in which at least one
spouse is 60 years old. Later in this section, we will also deal with older spouses.
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Figure 8: The relative differences between net real prospective reserves for scenarios
of spouses at the ages (60,60), (65,60) and (60,65) for the kth year of the insurance
contract (k = 0, 1, 2, . . . , 45)
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The premium for spouses of the same age presented in Table 2 is always greater
in independence cases than in those of Gumbel or AMH, which is also presented
in graphs of Figure 9. For the relation between premiums in the cases of Gumbel
or AMH we do not observe such regularities. For instance, for 60 and 65 years old
spouses, the premium in Gumbel case is greater than for AMH case (compare Table 1),
but for spouses older than 65 years we have the opposite situation. The reversal of
the relationship between contributions results from the significant differences between
the probabilities of process {X∗(k)} staying at states in a particular moment of the
insurance period (compare the graphs of Figure 6 for k > 25). And for spouses aged
70 and over, the period over 85 is a significant part of the insurance period. Note
that while for younger spouses, the choice of scenario II or scenario III does not result
in greater differences in the amount of premiums, it is nevertheless decisive in case
of older spouses. Therefore, choosing the copula that is better suited to the data
(in this case Gumbel(1.119)) results in lower premiums.
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Table 2: Net period premiums for marriage insurance contracts

Age at entry
x = y

Insurance period
n = m

Scenario I
Independent

Scenario II
Gumbel(1.1190)

Scenario III
AMH(0.4240)

60 45 0.099802 0.097632 0.097611
65 40 0.128599 0.124565 0.124510
70 35 0.170235 0.162756 0.163112
75 30 0.232351 0.218038 0.220815
80 25 0.333625 0.303805 0.316117
85 20 0.493549 0.426572 0.471591

Figure 9: The relative differences between period premiums for marriage peers at 60,
65, . . . , 85 years of age
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Finally, we would like to test the robustness of premium value to the changing
coefficient values, i.e. the degree of dependency between spouses’ future lifetimes.
The example concerns scenario II (because the Gumbel copula is the best fit for the
data) for α ∈ {1.08, 1.10, 1.119, 1.14, 1.16} when both spouses are at the same age
(x, y ∈ {60, 65, 70, 75, 80, 85}). The premiums are presented in Table 3.
The premium is more sensitive to the value of the correlation coefficient, especially
for older people. It is noticeable that the older the spouses are, the more significant

59 J. Dębicka et al.
CEJEME 15: 31-64 (2023)



Joanna Dębicka, Stanisław Heilpern, Agnieszka Marciniuk

Table 3: The copula’s resistance to α coefficient in case of Scenario II

α 1.08 1.10 1.119 1.14 1.16
τ 0.0741 0.0909 0.1063 0.1228 0.1379
x = y net period premiums
60 0.098287 0.097945 0.097632 0.097299 0.096994
65 0.125766 0.125137 0.124565 0.123960 0.123409
70 0.164934 0.163788 0.162756 0.161675 0.160700
75 0.222072 0.219935 0.218038 0.216076 0.214329
80 0.311760 0.307505 0.303805 0.300056 0.296783
85 0.442517 0.433834 0.426572 0.419480 0.413495

the relative difference between premiums. Let us note that the higher the correlation
coefficient, the lower the premium. In the presented example, it can be observed that
as the correlation coefficient increases by an average of 1.6%, the premium falls by
an average of 0.33% for younger couples (x = y = 60) and by as much as 1.68% on
average for older couples (x = y = 85). Note that, for the oldest spouses, an increase
in the correlation coefficient of partners’ future lifetimes of about 0.02 can increase
premiums by as much as 2%. Such a change can be significant from an insurance
company’s point of view.

5 Conclusions
In this paper, we applied and developed a matrix representation to the analysis of
all types of future cash flows arising from the marriage insurance contract. For this
purpose, we derived transition probabilities under the assumption that future lifetimes
of spouses are dependent and such dependence is modelled by a copula. It allowed
for efficient analysis of the stochastic structure of the model and cash flows resulting
from the realisation of contracts.
The analysis and comparison (dependence and independence) confirm that the
premiums and reserves depend on the probabilistic structure of the model. From
the empirical examples, it is obvious that this structure has a greater impact on
actuarial values for older spouses. Furthermore, premiums are lower when spouses
enter the contract at a younger age and live longer. This is confirmed for both
dependent and independent future life of spouses. Moreover, the premium is more
sensitive to the value of the correlation coefficient. The results provided in Section 4
indicated that in the case of the last survivor status, the independence assumption
overestimates net single and period premiums. The percentage differences are higher
for older spouses. To sum up, in pricing life insurance, age plays a crucial role in
determining the premiums for the insurance coverage in that the higher one’s age, the
higher the premium and vice versa when other risk factors are held constant.
In the case of reserves, the conclusions are not as clear as in the case of premiums.
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It turns out that net real prospective reserves for state 2 and state 3 have the same
value because they are associated with the same random event (the husband’s death).
A similar situation can be observed for states 4 and 5. Let us note that net real
premium prospective reserves (reserves for state 1) are lower on the condition that
the future lifetimes of spouses are dependent (scenario II). Let us observe that net
prospective reserves for other states for scenario II are higher than for scenario I at
the end of the insurance contract. The net premium reserve calculated for scenario III
in the first half of the insurance period is close to the reserve specified for scenario II
and in the second half of the insurance period for scenario I. Note that if the husband
and wife are not the same age, then in the last years of the insurance contract, the net
premium reserve calculated for scenario III is greater than those calculated for the
scenario I and scenario II. The prospective net premium reserve calculated assuming
that the future lifetimes of the spouses are dependent (scenario II and scenario III)
is lower than when assuming that the future lifetimes of the husband and wife are
independent (scenario I). Because the copula Gumbel(1.119) (scenario II) is the best
fit for the data not only results in lower premiums, but we observe the greatest relative
differences between reserves for scenarios I and II, and the range of differences is the
greatest when the spouses are peers.
Choosing the type of copula for modelling the joint probability distribution of the
future lifetimes of the spouses significantly affects the range of differences between the
reserves for individual scenarios. Choosing the AMH copula, the largest differences
between reserves for state 1 in comparison to other scenarios are observed in the
first years of the insurance contract. On the other hand, if the joint probability
distribution of future lifetimes of the spouses is modelled by the Gumbel copula, then
the largest relative differences between reserves for state 1 compared to other scenarios
are observed in the last years of the insurance contract.
We analysed three scenarios, which can be important elements of designing the policy
cash flows in the analysis of the expected profit and the expected cash flows for each
year of the insurance policy (compare Dębicka et al. 2016). It allows us to determine
the range of profit and is an element of profit testing. In particular, net premiums
are calculated securely. Then both the interest rate and the transition probabilities
in the model should be carefully chosen. This set of assumptions is often called
the first-order basis (scenario I can be used to describe the probabilistic structure
of the model). The second-order basis is the determination of the insurer’s profit
and loss on the basis of realistic parameters cf. Haberman and Pitacco (1999). In
this situation, the assumption that future lifetimes of spouses are dependent random
variables and the distribution of their future lifetime is modelled by copulas seems
to be the best. Especially scenario II, which gives a smaller value of the distance
between the distribution and the theoretical distribution function induced by copula
C(u,v) is better fitted than scenario III. In addition, a higher interest rate value is
usually included than in the first-order basis. Regardless of the compared scenarios,
the biggest range of relative differences between the probabilities is observed when
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the husband is older than the wife. These differences can, among other things, be
explained by the different dependence in the upper tail of the copulas present in the
considered scenarios. The analysis of the results, presented in Tables 1 and 2, shows
that the premium is higher when there is no correlation between the spouses’ future
lifetime. It is a more secure option from the insurer’s financial point of view. However,
if the insurer were to consider the relationship between the spouses’ future lifetimes,
its insurance offering could become more competitive in the market. It is a common
actuarial practice to calculate premiums and reserves under a set of assumptions that
represent a worst-case scenario for the insurer, which corresponds to the application
of the assumptions defining the first-order base in the calculations (in the context of
our considerations this brings us to the scenario I - in particular the assumptions that
the lifetimes of the spouses are independent - because it gives higher premiums). The
analysis performed in this article may also be useful for the insurer in determining
the expected profit or solvency margin. The new solvency regime of the European
Union (Solvency II) uses worst-case scenarios for the calculation of solvency capital
requirements for life insurance business. Research involving profit testing with the
results obtained in the article may be an interesting direction for future research.
In summary, the most accurate determination of the probability structure of the
multistate model is very important from the point of view of the valuation and
profitability assessment of marriage insurance contracts. It is possible to continue the
research to define this structure as accurately as possible. One possible alternative is
to use a time-varying copula, which is especially important for long-term contracts.
The broken heart syndrome can also be taken into account (cf., e.g. Henshaw et al.
2020) but, for this purpose, it would be necessary to expand the multistate model
presented in Figure 2. In particular, state 3 should be divided into two states 31
(widow is alive during the second year after bereavement) and 32+ (widow is alive
beyond the second year after bereavement) and similarly state 6, which would allow
for increased widow (widower) mortality; see Ji et al. (2011). Note that increasing the
number of states would increase the number of columns of the cash flow matrices and
the matrices related to the probability structure of such an extended multistate model
but would not complicate the calculation of actuarial values (matrix formulas (36)–
(38) would remain unchanged).
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