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Abstract: Small Arctic catchments that are sensitive to climate change reinforced by Arctic 
amplification remain poorly studied. Since the end of the Little Ice Age (LIA) glaciers on 
Svalbard have been retreating, and thus, many catchments have transformed from glaciated 
or partly glaciated to ice-free conditions. Our study focuses on changes that have occurred 
since the end of the LIA in a small High Arctic mountain catchment, Bratteggdalen. In this 
study, we traced changes in the Bratteggbreen glacier areal extent since 1976 with parallel 
vegetation analysis using Landsat and Sentinel data. The geomorphology of Bratteggdalen 
was mapped and basic morphometric analyses, such as long profile, hypsometric curve, 
slope and aspect orientation analyses were carried out. We also present a map of landforms 
in Bratteggdalen based on a fieldwork in 2018 and an analysis of orthophotomaps. Through 
this research, we enhance the knowledge of small catchments in polar regions.  

Keywords: Arctic, Spitsbergen, small catchment, geomorphology, environmental changes. 

Introduction 

Small mountain catchments in the High Arctic are indicators of rapid 
environmental changes due to Arctic amplification (Serreze and Barry 2011; 
Francis and Vavrus 2012; Goosse et al. 2018; Szafraniec 2018; Hanssen-Bauer 
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et al. 2019; Fang et al. 2022). Moreover, among the High Arctic, Svalbard mean 
annual air temperatures are noticeably higher (Eckerstorfer and Christiansen 
2011). While it is difficult to specify the watershed of small drainage basins, it 
can be assumed that these areas are not conducive to snow accretion. Glaciers in 
small, High Arctic catchments are drastically thinning and retreating (Noël et al. 
2020; Geyman et al. 2022a; Małecki 2022). The rapid glaciological and 
hydrological changes as well as active layer deepening lead to enhanced surface 
and slope processes in the summer months (Hanssen-Bauer et al. 2019). These, in 
turn, are strongly influenced by ground thermics, and thus, by increasing active 
layer depth thaw in the summer months (Christiansen et al. 2010, 2019; Peng 
et al. 2018; Strand et al. 2021). Modern-day factors, which increase snow 
ablation and permafrost thawing, cause changes in surface and groundwater 
runoff regimes (Dugan et al. 2009; Lamoureux et al. 2014; Owczarek et al. 2014; 
Lafrenière and Lamoureux 2019). 

Bratteggdalen (nor. dalen means valley) is a small mountain catchment in 
Wedel Jarlsberg Land, on the southwestern coast of Spitsbergen. The Stanisław 
Baranowski Polar Station is located at the mouth of this valley, and it is also in 
the vicinity of the intensively studied glaciated valley of Werenskioldbreen 
(Ignatiuk et al. 2022). Consequently, Bratteggdalen is one of the most 
investigated sites in this part of Spitsbergen. Research and observations carried 
out there have formed the core for publications on hydrogeology (Marszałek and 
Wąsik 2013; Marszałek et al. 2013), mass movements and slope processes (Jahn 
1967; Jokiel et al. 2012; Kasprzak 2015; Senderak and Wąsowski 2016; 
Senderak et al. 2019) and lake water chemistry (Marszałek and Wąsik 2013; 
Górniak et al. 2015; Marszałek and Górniak 2017). However, the surface 
morphology and surface conditions have not been explored in detail (Brázdil 
et al. 1988; Migoń and Kasprzak 2013). 

This paper aims to give the broadest possible topographic characteristics of 
the catchment of Bratteggelva (nor. elva means river). In this work, we present 
a detailed geomorphological and surficial geologic map as well as high- 
resolution digital terrain models (DTMs). The DTMs are derived from airborne 
laser scanning or photogrammetric processing of aerial photographs (Dudek and 
Pętlicki 2021; Geyman et al. 2022a). Furthermore, on a basis of available 
LANDSAT (USGS 1976–2017) and Sentinel (2018–2021) satellite imagery, we 
assess the scale of landscape change. The information provided in this paper may 
be useful not only for further research work in Bratteggdalen but also as 
a reference for studies of other small mountain catchments in the High Arctic.  
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Study area 

Bratteggdalen is a small (7.44 km2) catchment located in Wedel Jarlsberg 
Land, SW Spitsbergen (Fig. 1). The elevation of the catchment area range from 
4 to 645 m a.s.l. with a north-northwest flow direction. The bedrock of the 
catchment is mainly composed of the Eimfjellet Group (Fig. 2), including 
amphibolites and mica schists of the Bratteggdalen Formation, and white and 
green quartzites of the Guliksenfjellet Formation (Czerny et al. 1993; Manecki 
et al. 1993; Majka et al. 2010). The surface morphology of the lower part of the 
valley is dominated by raised marine beaches with bedrock cropping out 

Fig. 1. Overview map of the study area: A - the Bratteggelva catchment, modified from ArcticDEM 
(Porter et al. 2018), contours based on digital elevation model; B - map of Svalbard, location of 
study area indicated by red square (Modified from Norwegian Polar Institute 2014a); C - polar 
projection map of the Arctic Ocean (data provided by Arctic-SDI geoportal). 
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occasionally up to 100 m a.s.l. (Karczewski 1984). The catchment has continuous 
permafrost, verified by geophysical surveys (Kasprzak 2015, 2020). In this part, 
the river is braided (Kowalska and Sroka 2008; Owczarek et al. 2014). The 
central part of the valley is dominated by a series of talus cones on the western 
side of the catchment and a long, slightly sloping solifluction area on the opposite 
side. 

Fig. 2. Geological map of the study area modified from Czerny et al. (1993). Note different extent 
of the glacier and lakes as compared to Fig. 1, which is due to considerably earlier time of mapping. 
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The local climate is cold but relatively mild due to the influence of the West 
Spitsbergen Current (Piechura and Walczowski 2009; Walczowski and Piechura 
2011). A 40-year-long meteorological data series from 1979 to 2018 is available 
from the Polish Polar Station in Hornsund 14 km from the study site. Based on 
the meteorological record, the mean annual air temperatures of the Hornsund area 
is estimated at −3.7°C (extreme values −35.9°C on 16th January 1981 and 15.6°C 
on 31st of July 2015) with March as the coldest month (mean temp. −10.2°C) and 
July as the warmest (mean temp. 4.6°C) (Wawrzyniak and Osuch 2020). 
A meteorological station was installed in Bratteggdalen from 2005 to 2011 and 
showed a difference of +0.6°C in mean annual air temperatures, compared to the 
Hornsund data for the same time period (Pereyma et al. 2013). Pereyma et al. 
(2013) give values ranging from 20 mm to 120 mm as a monthly precipitation 
sum and highlight that precipitation is highly variable within the research area. 

Bratteggelva forms a lotic-lentic system with three lakes (Górniak et al. 2012). 
Bratteggelva flows into the Werenskioldelva at 4 m a.s.l. (Fig. 1). The middle part 
of the Bratteggdalen contains two lakes that are located on the Bratteggelva flow 
(Fig. 1). The first one is unnamed (outlet at 136.5 m a.s.l.). According to Marszałek 
and Górniak (2017), it is up to 6.7 m deep and covers 0.013 km2. The second one is 
Myrktjørna (outlet at 83 m a.s.l.). It is up to 6.9 m deep and covers 0.136 km2. 

In the upper part of the catchment, a retreating cirque glacier Bratteggbreen 
(nor. breen means glacier) is located. It has well-preserved LIA frontal moraines 
(Migoń and Kasprzak 2013). Jania (1988) classified Bratteggbreen as a polythermal 
land-terminating valley glacier where glacial erosion occurs only under the central 
part of the glacier. The glacier front ends in an unnamed lake (0.091 km2, 236 m a. 
s.l.), which is up to 40.3 m deep (Marszałek and Górniak 2017), from which 
Bratteggelva flows (Fig. 1). On the Angellfjellet slope, a small unnamed lake 
(0.004 km2, 247 m a.s.l.) surrounded by organogenic accumulation is located. 

Methods 

Research in this study was based mainly on the remote sensing analysis 
supported with fieldwork in the summer of 2018. The geomorphological map was 
generated in ESRI ArcMap 10.6.1 and is based on orthophotomap derived from 
aerial photos from 2011 provided by the Norwegian Polar Institute as well as 
field mapping and photo documentation carried out during the fieldwork. The 
map follows the standard unified key to the detailed geomorphological map of 
the world (Gilewska 1968). 

Geomorphometric analyses, such as slope, aspect, hypsometric curve and 
long profile, were carried out based on the modified ArcticDEM digital elevation 
model of 2 m resolution (Porter et al. 2018). Modifications of the digital 
elevation model (DEM) were undertaken in the upper part of the valley above the 
glacier with the northern to northwestern aspect, by deleting false area and 
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replenishing it with statistical methods, i.e., the nearest neighbor, followed by 
focal statistics. We carried out a substraction of two DEMs (DEMs of Difference, 
DoD) with a 20 m resolution from 1936 (Geyman et al. 2022b) and a 20 m 
resolution from 1990s (Norwegian Polar Institute 2014b) to measure elevation 
change. Changes in the Bratteggbreen were investigated based on LANDSAT 
data provided by the United States Geological Survey (Landsat 1976, 1979, 1980, 
1983, 1985, 1988, 1990, 1993, 2010, 2014, 2016, 2017; www.earthexplorer.usgs. 
gov/ accessed 25.05.2022) and by the European Space Agency SentinelHub 
EOBrowser (Sentinel 2018, 2020, 2021; https://apps.sentinel-hub.com/eo- 
browser/ accessed 26.05.2022). The glacier surface on each satellite image was 
mapped in ArcMap. 

To trace vegetation cover, spectral and quality changes in temporal 
variability, we used the Normalized Difference Vegetation Index (NDVI). The 
NDVI for the years 1976, 1980, 1990, 2010 and 2020 was calculated using the 
raster calculator tool with standard formula (Bhatt et al. 2021):  

NDV I ¼
NIR � RED

NIRþRED

We used the following bands for calculating the vegetation index: the years 
1976 and 1980 bands 6 and 7 (Markham and Barker 1983), for 1990 and 2010 
bands 3 and 4 (Johansen and Tømmervik 2014) and for 2020 bands 8 and 4 (Phiri 
et al. 2020). The satellite data differ in spatial resolution from 60 m to 5 m 
accuracy. The presence of a shadow and/or clouds on the Gullichsenfjellet slope 
(Fig. 1) prevents the analysis of this part of the catchment. Thus this data was 
excluded from the analyses. All GIS analyses were carried out in ArcMap 10.6.1. 

Results 

Valley morphology. — The Bratteggdalen is 4.5 km long and its mean 
width, i.e., the ratio of the catchment area to its maximum length, is 1.64 km. The 
course of Bratteggelva (Fig. 1) in the upper part of the valley is NW orientated, 
then shifts to WSW and then continues in NW direction until it flows to 
Werenskioldelva. In the long valley profile (Fig. 3A), a stepped structure with 
three distinguishing levels can be observed. The topmost one forms the upper 
part of the valley with the glacier and its landforms ending with the Bratteggelva 
outflow. Well-preserved lateral and frontal moraines surround the glacier (Fig. 4). 
In the 1970s, there was a small pond on the western moraine (Szponar 1989) 
indicating the presence of an ice core within. The second step is located at ca. 
80 m a.s.l. where the river is cutting into the bedrock. From the river outflow 
from Myrktjørna, deep erosional gorge is visible over the next ca. 600 m down 
the valley (Figs. 4 and 5). 
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A cumulated hypsometric curve is presented in Fig. 3B. In regard of the 
aspect (Fig. 6A), the catchment is split into two parts by the boundary following 
the NW-SE direction, from which half of it is orientated to the East and the other 
to the West. Slope values (Fig. 6B) vary from low values <4° up to 12° in the 
valley bottom to numbers >36° above 100 m a.s.l, with a mean catchment slope 
of 22°. Noteworthy, there are three flattened areas, visible as green patches in 
Fig. 6B, one on the Angellfjellet slope and one at the Jahnskaret continuation, 
which could be possible locations for snow accumulation and glacier formation 
during colder periods. The third flat surface, at the prolongation of the glacier 
axis, is likely shaped by a former glacial advance, evidenced by the presence of 
an old terminal moraine, labelled as ‘older moraine’ in Fig. 4. 

Landforms. — The map of landforms and surface materials shown on Fig. 4 
presents the Bratteggelva catchment in a geomorphological approach. Well- 
shaped solifluction lobes and stripes are present in large parts of the catchment. 
In the central part of the valley, seven talus cones (Fig. 7B) terminate on the lake 
shore of Myrktjørna. The DoD (Fig. 8) illustrates material loss in the higher part 
of the Gullichsenfjellet slope and gain in the lower part. The depicted material 

Fig. 3. Longitudinal profile (A), map showing location of the profile (C) and hypsometric curve (B) 
of the Bratteggelva catchment, based on digital elevation model. 
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loss and overburden show relative values due to imperfections in the DEMs. The 
resulting values are unrealistic, nevertheless, we decided to show the result to 
demonstrate morphologically active zones. In the orthomosaic of Myrktjørna 
(Fig. 5), there is visible deposited slope material below the water surface on both 
banks of the Myrktjørna lake. A well-developed alluvial fan (Fig. 7D) is located 
right above the middle lake, coinciding with the first slight flattering of the 

Fig. 4. Geomorphological map of the Bratteggelva catchment. 
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Fig. 5. Orthomosaic of the vicinity of Myrktjørna lake with indicated geomorphological forms. 

Fig. 6. Aspect (A) and slope (B) in the Bratteggelva catchment, based on digital elevation model. 
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Fig. 7. Photographs from the fieldwork in 2018: A - the Myrktjørna lake; B - talus cones; C - view 
from Anglefjellet slope of the upper part of the Bratteggelva catchment; D - view of the middle 
lake; E - the LIA moraine of Bratteggbreen; F - view of the Bratteggbreen with the glacial lake and 
moraines; G - view of the Eastern side of the Bratteggbreen moraines and the slopes above 
Bratteggbreen; H - Bratteggbreen in 2018. 
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ground from the river efflux. The lake is surrounded by terminal and lateral 
moraines (Figs. 7E to 7H) composed of different-sized rocks. Inside the eastern 
lateral moraine, an ice core was observed. Most of the frontal parts of the 
moraines are progressively sprouted with lichens and mosses (Fig. 7E). 

Activity of geomorphological processes and slope cover deposits. — Little 
is known about slope processes in the Bratteggelva catchment as no continuous 
monitoring has been carried out therein. Nevertheless, the Myrktjørna lake 
shallowing and the presence of a cascade (Fig. 3A), which has a large influence 
on river debris transport, indicates their activity. The slope deposits are mainly 
composed of eroded bedrock, and thus consist of mica schists, quartzites or 
amphibolites. 

Fig. 8. Elevation change between years 1936 and 2011, based on 20x20 m resolution DEMs from 
1936 (Geyman et al. 2022b) and 2011 (Norwegian Polar Institute 2014b). 
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The NDVI analysis reveals a positive change in vegetation growth over the 
last 45 years (Fig. 9). The mean NDVI value has successively grown from −0.21 
in 1976 to 0.17 in 2020 (Table 1). The results for 2020 highlight the locations of 
water flow and stagnation and these locations provide the best environment for 
further vegetation growth. Clouds and shadows present in satellite images 
influence the spectral response of the land cover (Li et al. 2007; Peng et al. 2016; 
Xue et al. 2018; Yang et al. 2022) especially in uneven terrain (Burgess et al. 
1995; Yang et al. 2022), impeding the land-use classification (Anderson et al. 
2016; Karlsen et al. 2021). As the western slopes of the Bratteggelva catchment 
are often in a shadow, this data was not included during analysis. This is most 
pronounced for 2020, when the presence of a cloud highly influences NDVI’s 
extreme positive and negative values, thus resulting in a much higher mean value 
than expected. NDVI statistics for analysed years are presented in Table 1. 

Ta b l e  1 .  

Normalized Difference Vegetation Index minimal, maximal and mean values  
for the years 1976, 1980, 1990, 2010 and 2020. 

Year Minimal Maximal Mean 
1976 −0.92 0.09 −0.19 
1980 −0.80 0.11 −0.12 
1990 −0.18 0.36 0.03 
2010 −0.18 0.42 0.09 
2020 −1 1 0.19 

Fig. 9. The Normalized Difference Vegetation Index for the years 1976, 1980, 1990, 2010 and 2020 
with marked cloud/shadow coverage excluded from the analysis in the Bratteggelva catchment. 
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The highest values are observed on eastern slopes where the southern aspect 
prevails. The flattened area in the catchment’s centre is also a place where 
vegetation is expanding. Organogenic accumulation area is not well presented in 
the years 1976 and 1980 as the spatial resolution of satellite images, thus the 
NDVI, is insufficient for its size. In the 1990, 2010 and 2020 images, the area can 
be distinguished and a gradual increase in the NDVI value can be observed. 
Hence, environmental conditions at that location were favourable for plant 
expansion. 

Glacial retreat since the Little Ice Age. — The areal extent of 
Bratteggbreen has decreased by 60–68% since the end of the LIA. Currently, 
the glacier covers 3.76% (0.28 km2) of the catchment area but during the LIA it 
occupied ca. 11.8%. The glacier front has, since the end of the LIA (1936–2021) 
retreated ca. 600 m, i.e., 5.8 m per year, and experience a significant surface 
lowering (Figs. 8 and 10). In parallel, a glacial lake has formed. As it is not 

Fig. 10. Bratteggbreen areal change since 1975. Based on satellite images for years 1976–2017 
Landsat, source: www.earthexplorer.usgs.gov/; 2018–2021 Sentinel, source: https://apps.sentinel- 
hub.com/eo-browser/ and based on Geyman et al. (2022b) for year 1936. Some shifts are caused by 
offsets of satellite images and their lower resolution. 
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visible in the photo from 1936, we can assume that it developed simultaneously 
with glacier retreat. The terminal moraines represent the maximum extent of 
Bratteggbreen from the LIA (Fig. 10). The frontal moraines do not seem to have 
changed its size in the last ca. 80 years but rock fall material sourced from the 
slopes above has been progressively deposited on them (Figs. 7F and 7G). Since 
1936, the glacier area has gradually decreased, and is currently at its minimum 
since the LIA. Between 2018 and 2020, the northeastern part of the glacier got 
isolated. On the glacier surface, single weathered rocks alternating with small 
holes 1–2 m wide are visible, from which meltwater channels originate. In the 
lower part of the glacier, meandering supraglacial streams and glacial ice 
lamination occur. Where the supraglacial stream flow enters the proglacial lake, 
a small delta is formed. The oldest known photograph of the glacier is from 1918, 
when the Norwegian Svalbard Expedition, led by Adolf Hoel, surveyed in the 
Hornsund region (https://bildearkiv.npolar.no/fotoweb/archives/, Filename: 
NBR9201_05574, 1918, The Norwegian Polar Institute photo archive). In the 
1918 photograph, the glacier front extends just beyond the LIA moraines. 

The moraine-like form, marked as ‘older moraine’ in Fig. 4, may mark the 
glacier’s maximum extent from its former advance. The organogenic accumula-
tion area (Fig. 4) is the witness of that previous glacial advance, with a small 
(0.004 km2) lake remaining. That area is also visible in the aerial photographs 
from 1936 (Fig. 11). 

Regional context and future predictions 

Bratteggbreen LIA moraines will probably change their current shape due to 
the melting of buried ice (Midgley et al. 2018). The slightly curved, convex form 
was named “the older moraine”, given its shape which is similar to such forms. 
Its location suggests a linkage with Bratteggbreen or with a small glacier, which 
remnant is the area of organogenic accumulation. However, the old moraine is the 
only evidence of a potential pre-LIA glacial advance. The landform is similar to 
other examples of subtle, potential pre-LIA moraines in Svalbard (Farnsworth 
et al. 2018). 

The catchment areas with elevation higher than ca. 100 m a.s.l., have high 
values of slope (>30°) favorable for rock fall, which is common on Svalbard (de 
Haas et al. 2015) and subsequent deposition in the lower parts, resulting in the 
growth of talus cones (Jahn 1967, 1976; Åkerman 1984; de Haas et al. 2015). In 
the permafrost underlined catchments, water flow is immediate, but with 
a deepening of the active layer, water absorption is increasingly important. 
Tananaev and Lotsari (2022) demonstrate the effects of climate warming as an 
increase in rainfall erosion and both a decrease and increase in soil erosion on 
hillslopes, due to sparser vegetation cover caused by physical permafrost 
disturbance. The presented geomorphological map may be used in the future to 

240 Aleksandra Wołoszyn and Marek Kasprzak 

https://bildearkiv.npolar.no/fotoweb/archives/


track environmental changes in a spatiotemporal approach (Chandler et al. 2018; 
Allaart et al. 2021) and to monitor the activity of slope processes. 

Our results are comparable to similar research conducted near glaciers with 
area <5 km2 in northwest Svalbard with negative net mass balance in the last ca. 
30 years of the 20th century (Hagen et al. 2003). A study carried out by Huss and 
Fisher (2016) on mountain glaciers, with an area of <0.5 km2, suggests that their 
sensibility to changes in precipitation and temperature does not differ much 
compared with larger ice masses. However, their morphometric features, such as 
slope, elevation and presence of debris on ice surface results in large sensibility. 
The Bratteggbreen fits into the above-mentioned trend with its predominantly 
gentle slope, with mean value of 15° and 37° at most, supraglacial debris and 
altitude. Single rocks laying on the glacier’s surface blend into the glacier, 

Fig. 11. Aerial photo of the Bratteggelva catchment from 1936, modified after Geyman et al. 
(2022b). 
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accelerating its melting (Conway et al. 1996; Hansen and Nazaranko 2004; Vacco 
et al. 2010). It is predicted that ice volume in the High Arctic will decrease 
drastically in the near future and mountain glaciers will likely be the first glaciers 
to vanish (Huss and Fisher 2016; Małecki 2022). Based on our results, we expect 
Bratteggbreen to follow this trend. 

Svalbard glaciers have low elevations, with a glacier hypsometry peak (area- 
elevation distribution) at ca. 450 m a.s.l. and ca. 60% of Svalbard glaciers located 
at lower altitudes (Noël et al. 2020). Since 1985, the average equilibrium line 
altitude (ELA) has increased from 350 ± 60 m a.s.l. to 440 ± 80 m a.s.l., 
accelerating glacier ablation and lowering their refreezing capacity (Noël et al. 
2020). The Bratteggbreen hypsometry (Fig. 1) is situated between 250 and 550 m 
a.s.l, and thus, a major part of the glacier lies below Svalbard’s average ELA. As 
only 4 satellite images were captured before 1985, it is hard to say if the shift in 
ELA influenced Bratteggbreen. Noteworthy, satellite images taken before 
1985 had the lowest resolution. This could influence the precision of tracing 
Bratteggbreen areal decrease. Nevertheless, in the last 40 years, clear decrease in 
glacier area and frontal retreat can be noticed. Recent fast glacial retreat, and the 
high probability of the glacier vanishing in this small catchment, will lead to high 
sediment release into the catchment (Ballantyne 2002). This will be enhanced by 
the steep slopes of glaciers, resulting in greater sediment release (Hooke 2000; 
Ballantyne 2002). In smaller catchments, permafrost perturbance results in 
intensified transport of particles (Tananaev and Lotsari 2022), thus sediment 
yield from the catchment will increase in the future. On the other hand, the 
proglacial lake in front of Bratteggbreen may serve as a sediment trap and slow 
down sediment release from the upper part of the catchment (Kavan et al. 2022). 

The NDVI analysis aimed to show expected growth of vegetation for almost 
50 years. For the oldest data, where image resolution was 60 m, the probability of 
data generalization was greater mainly in smaller research areas. Modern NDVI 
values, with high resolution, may help with tracing surface and shallow near- 
surface groundwater runoff. Water flow paths in thawing permafrost conditions 
and increasing rainfall events for 2020 are visible in Fig. 9. As solifluction takes 
place in the majority of the Bratteggelva catchment (Fig. 4), we could expect its 
influence on plant growth (Kemppinen et al. 2022). At low levels of movement, 
solifluction has a positive effect on plant growth but a negative at higher rates 
(Kemppinen et al. 2022). As we mentioned, no continuous monitoring of slope 
processes is carried out in the catchment, but we believe its rate may be estimated 
by a more detailed analysis of NDVI during summer periods. On the other hand, 
plant size and leaf area, which are used for NDVI analysis, are negatively 
impacted by cryoturbation (Kemppinen et al. 2022). As fluvial processes are 
likely to increase due to rainfall reinforcement (Owczarek et al. 2014; Hanssen- 
Bauer et al. 2019), we expect the leaf area and plant size effect to play a role also 
in the Bratteggelva catchment soon, similar to observations by Kemppinen et al. 
(2022). Our results point to vegetation growth within the catchment, but 
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depending on how environmental changes occur in the near future, this trend may 
vary, and it is worth future monitoring, preferably with fieldwork. 

Further climate warming in the Arctic is expected (Hanssen-Bauer et al. 2019). 
In the area of this study, Bratteggbreen will likely continue retreat and contribute 
abundant meltwater, resulting in significant hydrological changes within the 
catchment. We expect the proglacial lake to increase in size and gradually fill in the 
cirque after Bratteggbreen disappears entirely. Large changes will occur in the river 
regime as it will be more dependent on rain and snowfall events and thawing 
permafrost, increasing thickness of the active layer (Isaksen et al. 2022). Glacial 
retreat and eventual disappearance will highly influence river discharge (Owczarek 
et al. 2014), affecting lake water supply, which is already evidenced by shallowing 
of Myrktjørna. We expect decreasing permafrost thickness and an increase in the 
number of rainfall events to accelerate slope processes in Bratteggdalen, similar to 
elsewhere around Svalbard (Hanssen-Bauer et al. 2019). Talus cones will continue 
to develop as the DoD at the Gullichsenfjellet slope showed relative loss and gain 
of the surface. Debris flows are expected to occur at the Gullichsenfjellet slope, as 
it is of northeast aspect (Åkerman 1984, 1987). Our NDVI analyses show that the 
Bratteggelva catchment has become increasingly vegetated during the past 40 years 
and we expect the trend to continue as a consequence of the ongoing climate 
change (Hanssen-Bauer et al. 2019). 

Conclusions 

Our study provides data about the effects of climate change in a small 
(<10 km2) Arctic catchment and shows how fast changes are reflected in its 
geosystem. Our results highlight changes in the Bratteggelva catchment since the 
end of the LIA. The areal extent of Bratteggbreen has decreased 60–68%, the 
glacier margin has retreated 600 m at the rate of 5.8 m/year, a proglacial lake has 
formed, and the vegetation cover has expanded, i.e., the Normalized Difference 
Vegetation Index mean value increased from −0.19 to 0.19 in 45 years. Slope 
processes are active and expected to increase in the level of activity due to the 
ongoing climate change. The river regime will likely change due to glacier 
melting, predicted rainfall increase and permafrost thawing. 
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