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Abstract: Many countries, including Indonesia, face severe water scarcity and groundwater depletion. Monitoring 
and evaluation of water resources need to be done. In addition, it is also necessary to improve the method of 
calculating water, which was initially based on a biophysical approach, replaced by a socio-ecological approach. 
Water yields were estimated using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) 
model. The Ordinary Least Square (OLS) and geographic weighted regression (GWR) methods were used to 
identify and analyze socio-ecological variables for changes in water yields. The purpose of this study was: 
(1) to analyze the spatial and temporal changes in water yield from 2000 to 2018 in the Citarum River Basin
Unit (Citarum RBU) using the InVEST model, and (2) to identify socio-ecological variables as driving factors
for changes in water yields using the OLS and GWR methods. The findings revealed the overall annual water
yield decreased from 16.64 billion m3 year-1 in the year 2000 to 12.16 billion m3 year-1 in 2018; it was about
4.48 billion m3 (26.91%). The socio-ecological variables in water yields in the Citarum RBU show that climate
and socio-economic characteristics contributed 6% and 44%, respectively. Land use/Land cover (LU/LC) and
land configuration contribution fell by 20% and 40%, respectively.The main factors underlying the recent changes
in water yields include average rainfall, pure dry agriculture, and bare land at 28.53%, 27.73%, and 15.08% for
the biophysical model, while 30.28%, 23.77%, and 10.24% for the socio-ecological model, respectively. However,
the social-ecological model demonstrated an increase in the contribution rate of climate and socio-economic
factors and vice versa for the land use and landscape contribution rate. This circumstance demonstrates that the
socio-ecological model is more comprehensive than the biophysical one for evaluating water scarcity.

Introduction

Population growth has an impact on increasing water 
consumption (directly), at the same time increasing food 
production and consumption (indirect water consumption). 
In the perception of water management, we must take into 
account the fact that the world is developing very dynamically, 
the world population is continuously increasing, and thus the 
amount of water consumption is also increasing, while the 
amount of water per capita is continuously decreasing (Nie et 
al. 2019). 

Water demand is expected to increase in all production 
sectors (WWAP. 2021), while the world is expected to witness 
a shortage of global water of 40% by 2030 in the business-
-as-usual climate scenario (Young and Esau 2013). Scarcity

of water and groundwater depletion are major issues in many 
countries (Figueroa et al. 2020).

Indonesia’s total renewable water resources in 2017 were 
2,019 billion m3 year-1. Meanwhile, the total water demand 
is around 222.6 billion m3 year-1 (Worldmeter), and water 
resources per capita 7,648 m3 person-1 year-1. Based on 
a national-level climate risk study by (Suroso et al. 2010, Sriyanti 
2009), it was found that one area with a strong likelihood of water 
scarcity is the Java-Bali region (the water deficits, especially in 
several locations in the north and south of West Java). 

One of the focus areas for the evaluation of climate risk 
is the Citarum RBU, West Java. The Citarum RBU ecosystem 
services must understand hydrological conditions by estimating 
elements affecting water yield. The potential availability of 
water in the Citarum river area in 2017 was 1.29 billion m3 
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year-1, while its utilization has only reached 7.65 billion m3 
year-1 (Kementerian Pekerjaan Umum 2016). 

Several factors affect the ecosystem services of 
a watershed (i.e., water yield); however, climate change and 
land use are significant determinants of ecological processes 
and ecosystem services (Pei et al. 2022). In its development, 
the approach based on biophysics has begun to be replaced 
with socio-ecological, namely biophysical factors plus social 
factors. The socio-ecological system is closely related between 
the community and the ecosystem (Francis and Bekera 2014). 
Glaser et al. 2008 defined a socio-ecological system (SES) 
consisting of a bio-geo-physical unit and associated social 
actors and institutions. SES are adaptive and complex and are 
limited by spatial boundaries. 

The study on water yields in Poland, which analyzed the 
assessment of changes in water yields due to climate change, 
was carried out by (Kubiak-Wójcicka and Machul 2020, 
Borowski 2020, Sawicka et al. 2022, Szarek-Gwiazda and 
Gwiazda 2022, Borowski 2020, Zemełka 2019). In contrast, 
the relationship between water and land use can be explained 
by previous research (Dinka and Chaka 2019, Ambarwulan 
et al. 2021, Szwagrzyk, et al. 2018, Bucała-Hrabia 2018, 
Muhammed et al. 2021).

Climate change impact (an increase in air temperature 
per decade) caused higher evaporation and depletion of 
water resources. As a result, there was a decreasing tendency 
in the flow of the two major rivers (the Vistula and Oder) in 
Poland, which determined the size of Poland’s water resources 
(Kubiak-Wójcicka and Machula 2020). Sawicka et al. 2022 
explained that the impact of the rise in average temperature in 
April–May and June–July in Southeastern Poland, the potato 
yield was expected to escalate, assuming that the temperature 
escalation would be accompanied by a rise in rainfall during 
the period 2000 to 2019.

Meanwhile, the research of Barbieri et al. (2021) on Central 
Italy’s carbonate aquifers shows that the impacts of climate 
change indicate that groundwater is more resilient than surface 
water. Climate change has the potential to impact groundwater 
quality by decreasing groundwater infiltration and enhancing 
anthropogenic stresses, negatively exacerbating water quality 
trends. According to Szarek-Gwiazda and Gwiazda (2022), 
climate change (from prolonged droughts to heavy rains) can 
significantly alter river flow regimes. The temperature and 
nutrient concentration in southern Poland’s medium-sized 
mountain rivers are determined by the hydrological conditions of 
the year. The conductivity value and the amount of NO3- and P-tot 
in the water above the dam depend on how fast the water moves.

An rise in the frequency and intensity of precipitation 
in many parts of Europe (including Poland) will result in 
severe and frequent flooding. However, in other parts of 
Europe, including southern Europe, higher temperatures and 
less rainfall mean many areas could be affected by drought 
(Borowski 2020). Zemełka (2019) states that trends in land 
use change (conversion of agricultural areas into housing 
structures and services) influence the aquatic environment’s 
pollution, ecological balance (decrease in the number of living 
organisms and biodiversity), as well as deterioration and 
quantitative changes in water quality.

The impact of changes in land use/land cover dynamics 
(LU/LC) (changes in vegetated natural areas for agriculture, 

grazing, and other land uses) in the watershed affects the 
hydrological process in the watershed by disturbing the 
ecological and environmental properties of the watershed, 
causing an increase in surface water and the formation of 
areas prone to erosion (Dinka and Chaka 2019, Bucała-Hrabia 
2018), road density as a material and water transfer route to 
the Bucała-Hrabia channel (2018) and has an impact on land 
degradation (Ambarwulan et al. 2021). It also has a significant 
influence against flood risk because it reduces the effect on 
peak flood discharge (Szwagrzyk et al. 2018). 

Referring to the research of Muhammed et al. (2021), 
the forest cover and rainfall rate relationship with water yield 
assessed on a global scale showed a relatively high correlation 
coefficient. In the rainy season, regional watershed deforestation 
causes a significant rise in discharge and flooding. On the other 
hand, it exacerbates the dry season flow. 

One technique for monitoring and evaluating water yield 
was InVEST Model. The InVEST model is widely used, and 
it has been shown to be especially useful for strengthening 
ecosystem services like water yield (Yang et al. 2020). 
Sensitivity analysis of the InVEST model for water yield was 
carried out in a number of river basin areas, including the 
China watershed (Pei et al. 2022) and also in several locations 
in Indonesia (Nahib et al. 2021, Yudistiro et al. 2019, Siswanto 
and Francés 2019). Meanwhile, a study of water supply and 
demand in the Citarum watershed has also been carried out. 
The results show an inconsistency between water supply 
and demand caused by changes in the LU/LC due to human 
activities (Nahib et al. 2023).

Many countries, including Indonesia, are experiencing 
severe water scarcity and groundwater depletion. Monitoring 
and evaluation of water resources need to be done. Few studies 
examine the impact of changes in water yields on local scale 
watersheds in tropical Indonesia using a socio-ecological 
approach. Therefore, it is necessary to develop and improve 
a socio-ecological approach, to replace the biophysical 
approach. In the initial stage, applying socio-ecology in water 
resources for the tropical watershed level needs to choose the 
correct variables, namely landscape, and social integration. 
The method of determining the selection of variables as 
a driving factor for changes in water yields uses the OLS and 
GWR methods. 

This study is aimed: (1) to analyze the temporal and spatial 
changes in water yield from 2000 to 2018 in the Citarum RBU 
using the InVEST model, and (2) to identify socio-ecological 
variables as driving factors for changes in water yields using the 
OLS and GWR methods. The results of this study are expected 
to be beneficial for decision-makers and environmental experts 
to manage watersheds sustainably.

Materials and Methods
Study Area
The research was carried out in the Citarum RBU, composed 
of 19 sub-watersheds situated in West Java Province, Indonesia 
(Figure 1).

The Citarum River (297 km) is the main river in this 
study area and has three major dams (Cirata, Saguling, and 
Jatiluhur) used for agriculture, electricity, and freshwater for 
the people who live in several regencies in West Java. The 
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Citarum river meets 80% of Jakarta’s freshwater requirements. 
The Citarum watershed covers an area of 11,317 km2 that 
encompasses 13 regencies. Geographically, the watershed 
is located at 7°19’–6°24’ S and 106°51’36”–107°51’ E. The 
Citarum RBU is situated in a humid tropical region with an 
average rainfall of 2,358 mm. Temperature in the lowlands is 
averaged around 27°C, while in the upstream part of the river 
in the highlands/mountains, the minimum air temperature is 
averaged at 15.3°C. Morphological conditions can be found in 
a wide range of environments, including volcanic edifices and 
hillsides. In addition, the highlands upstream of the Citarum 
tributary range in elevation from 750 to 2,300 meters above sea 
level, with slopes varying from 5 to 15% at the foot, 15 to 30% 
on the mountain slope, and 30 to 90% at the apex, whereas 
the plains upstream are morphologically formed by volcanic 
edifices with mild relief (Sholeh et al. 2018, BBWS Citarum 
Ciliwung).

The new paradigm in water resources management tries 
to describe watersheds as an integrated ecological system, 
and encourages stakeholders to pay attention to social and 
environmental aspects (Hasan 2011). The Citarum River 
which is located in West Java Province has very strategic 
natural resource potential. Environmental surroundings and 
water availability along the Citarum River, on the other hand, 
have deteriorated significantly over the last 20 years. This 

event is due to socio-ecological changes (climate, landscape 
configuration, land use, and socio-economic changes).

Infiltration is restricted to liquid water and more accurately 
describes the physical phenomena by which rain tries to enter 
the soil (Horton 1993). Infiltration greatly affects variations 
in surface runoff in addition to rainfall intensity, soil water 
content, and watershed size and slope.

Dataset and Data Preparation
Calculating Water Yield using the InVEST Model 
Table 1 shows remote sensing data as well as a variety of 
secondary data. Data were processed using the InVEST Model, 
geographic information system (GIS) technique, and R Studio.

As input for InVEST, the input data was transformed into 
raster data format with a spatial resolution of 30 m and referred 
to the WGS84 datum. 

Water Yield Change’s Driving Factors
This study considered four factors, referring to Zhang et al. 
(2021), i.e., climate, landscape configuration, socio-economic 
variables and land use (Table 2).

Land-use, climate, and socio-economic factors were 
considered as grid data and summarized using zonal statistics 
at the sub-watershed level. Referring to the previous study by 
Bin et al. (2018), five landscape-level metrics were chosen for 

Fig. 1. Location and topography of Citarum RBU in West Java, Indonesia
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each of the 19 sub-watersheds. To calculate landscape metrics, 
we used Fragstats 4.2 software.

Methods
This research was divided into two stages (see Figure 3): at 
the first stage, The InVEST model was used to determine 
water yield and, at the second stage, socio-ecological 
variables were identified as the driving factors for changes 
in water yields. 

The first stage of activity was carried out to answer the first 
objective, namely (i) calculating changes in water yields from 
the RBU Citarum from 2000, 2012, and 2018, (ii) simulating 
and analyzing variations in LU/LC and climate change in water 
yields from 2000–2012 and 2012–2018.

Water yield data (2000, 2012, and 2018) were validated 
with water yield data published by Geospatial Information 
Agency (BIG). The data from the modeled and actual water 
results were paired according to the location of the watershed/
sub-basin. Furthermore, the paired data were analyzed using 
a linear regression model. To validate the model, root mean 
square error (RMSE), Pearson correlation (r), and the coefficient 
of determination (R2) were calculated and used as a reference.

Water yield change data (the treatment result in the first 
stage) were used as the dependent variable (Yi). Meanwhile, 
as the independent variable (Xi), 20 variables were used 
(consisting of 3 climate variables, nine land use variables, five 
variable landscape configurations, and three socio-economic 
variables), as presented in Table 2. Furthermore, the dependent 
variable data and independent variables were paired with linear 
regression analysis to predict whether there was a relationship 
between the independent variables and changes in water yield. 
The analysis was carried out with the help of R Studio. This 
analysis was carried out using biophysical and socio-ecological 
models (by adding the integration of landscape variables to 
socio variables). The significance of each interaction model 
was compared, whether it strengthens or reduces changes in 
water yield. The results of the OLS model obtained a standard 
beta coefficient with a significant level, and the contribution 
rate of each variable to change in water yield.

The dependent and independent variables produced by the 
OLS model were then analyzed using the GWR approach to 
determine whether the model is global or local. Finally, the 
GWR Model could explain the site-specific and more detailed 
role of related factors in influencing changes in water yields. 

Table 1. The data set used in this research

Type of Dataset Data Sources Processing Data Layout 
LU/LC maps (2000, 
2012, 2018
Land-use maps

Ministry of Environment 
and Forestry; 

US Geological Survey, http://www.
usgs.govUSGS path/row122-121/64

Converting Polygon to raster 

Extraction and reclassifi cation
Normalized Diff erence
Vegetation Index (NDVI)

Raster data with a spatial
resolution of 30 m

Rainfall and 
temperature

The National Bureau of Meteorology, 
Climatology, and Geophysics; 
Citarum Ciliwung River Basin Center; 
PT. Jasa Tirta II

Numerical/Table Data, with location 
coordinates 

a spline interpolation technique

Raster data with a spatial
resolution of 30 m

Evapotranspiration 
map

WorldClim 
(https://worldclim.org/data/index.html)

a spline interpolation technique Raster data with a spatial 
resolution of 30 m

Soil texture, organic 
matter content, 
and eff ective rooting 
depth 
Soil type data

Citarum Ciliwung River Basin Center Extraction and resampling, 
convertion poligon to raster

Raster data with a spatial
resolution of 30 m 

Watershed 
boundaries

Citarum Ciliwung River Basin Center Digital watershed atlas of natural 
resources

Vector

Biophysical CSV

Table 2. Description of potential driving factors investigated in this study 

Types Factors
Climatic (Average precipitation (mm), Average Evapotranspiration (mm), Average temperature (°C) 

Land-use
Virgin Forest (%), Plantation Forest (%), Shrub (%),Estate Crops Plantation (%), Settlement Area (%), 
Bare land (%), Pure Dry Agriculture (%), Mixed Dry Agriculture (%), Paddy Field (%), Fishpond (%)*, 
Lake (%)*, Airport (%)* 

Landscape 
confi guration

Mean Patch Size (AREA_MN), Largest Patch Index (LPI), Aggregation Index (AI), Contagion (CONTAG), 
Mean Fractal Dimension Index (FRAC_MN)

Socio-economic** Total GDP (IDR), GDP per capita (IDR/person), Total population (person)

** not included in the driving factor because there is only one sub-basin.
** The source of socio-economic data: the Central Bureau of Statistics of the Republic of Indonesia.
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The results of the OLS model were a standard beta coefficient 
with a significant level and the level of contribution of each 
variable to changes in water yield.

In this study, both adaptive and fixed kernels were used to 
compute the bandwidth. The models from OLS, fixed GWR 
(FGWR), and adaptive GWR (AGWR) were compared, and 
their qualities were assessed in terms of the coefficient of 
correlation (r) and the residual sum of squares (RSS).

Calculating Water Yield using the InVEST Model
For this research, the data source come from custodians. 
Watershed and sub-watershed boundaries, LU/LC maps, rainfall 
(mm), plant available water content (PAWC) percentage, soil 
depth (mm), and average yearly evapotranspiration potential 
(mm) are among the data used. The input data was all converted 
to raster. Among the data used are rainfall (mm), watershed 
and sub-watershed boundaries, LU/LC maps, average yearly 

evapotranspiration potential (mm), soil depth (mm), and plant 
available water content (PAWC) percentage. All of the input 
data was converted to raster. 
Land use/Land cover (LU/LC). The year 2000 was selected 
as the initial year based on the management of the Citarum 
RBU, stating that a paradigm shift and broadly comprehensive 
data availability had been established. When a six-year period 
is chosen, alterations in the forest (woody plants) in Landsat 
imagery can be effectively identified. All LU/LC data were 
divided into 12 categories: virgin forest, shrub, planned forest, 
settlement area, estate crops plantation, pure dry agriculture, 
bare land, paddy field, mixed dry agriculture, lake, fishpond, 
and airport.

InVEST requires information about LU/LC and the 
corresponding code, crop coefficient (Kc), and root depth. For 
land with no vegetation cover, root depth information is not 
required (Sharp et al. 2015). The vegetated LU/LC class was 

Fig. 2. Research fl owchart
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assigned a value of one in this study, while the non-vegetated 
LU/LC class (such as buildings, settlements, and water bodies) 
was assigned a value of zero.
Rainfall. Rainfall data for the 18 years were obtained from 
several agencies. Rainfall data from 35 climatological stations 
was provided by the National Bureau of Meteorology, 
Climatology, and Geophysics (BMKG), Citarum Ciliwung 
River Basin Center (BBWS), and PT Jasa Tirta II with locations 
spread across Bandung, Bandung Geophysics, Cicalengka, 
Pamanukan, Cikarang Dam, Cikao Bandung, Jatiasih, Bekasi 
Dam, and Coral (Figure 3).

The rainfall data analysis results were divided into three 
time periods, each of which lasted six years. During the first 
six years, the annual average precipitation in the Citarum RBU 
varied from 676 to 3,894 mm year-1 (2000–2012). Furthermore, 
the average rainfall at the study site was 817–3,446 mm year-1 
for the 2012–2018 analysis period and 789–3,284 mm year-1 
for the 2000–2018 analysis period.

By processing statistics on the average yearly rainfall at 
each rainfall station, the necessity for a yearly rainfall map 
in modeling with InVEST was fulfilled. Calculations were 
carried out for each period. Furthermore, the average rainfall 
data at each station was analyzed using a spline interpolation 
technique using the ArcGIS tool.
Evapotranspiration. Maximum and minimum air 
temperatures, extraterrestrial solar energy, and minimum and 

monthly rainfall were used to calculate daily extraterrestrial 
radiation from the sun for each rainfall station, create the 
yearly benchmark evapotranspiration plot, and add the 
findings to get monthly values. The monthly outer space 
solar radiation map was created using the spline interpolation 
technique once more.

Many researchers have applied satellite data to compute 
air temperature (Sun et al. 2005, Septiangga and Yuniar 2017, 
Ermida et al. 2020). Landsat 8 has been intensively used to 
derive land surface temperature, Ermida et al. (2020) calculated 
LST from Landsat 8 climate data records using the Statistical 
Mono-Window (SMW) algorithme. The method relied on an 
empirical relationship between calibrated TOA brightness 
temperatures in a single TIR channel and LST. In this study, 
we used the Google Earth Engine (GEE) to collect Landsat 
8 Collection 1 Tier 1 calibrated top-of-atmosphere (TOA) 
reflectance data and employ simple linear regression. For more 
information on how Radiance and Reflectance are calculated 
as part of TOA computation see Chander et al. (2009). 

A linear regression model was used to validate Landsat 8 
LST using imagery from Landsat 8 and ground-based LST. The 
validation used 60 points LST ground based distributed among 
the LST in-situ (1 Bandung, 8 Geofisika Bandung, 13 Saguling, 
18 Cirata, and 32 Pamanukan) stations. The relationship 
between air temperature derived from Landsat TM band 10 and 
LST ground based obtained a linear regression model of landsat 

Fig. 3. Distribution of climatology observation stations in the Citarum RBU
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8 band 10 with the equation result showed y = 0.082x + 15.751, 
where x is air temperature in Celsius. Validation of the model 
shows the coefficient of determination (R2) 0.526, and Root 
Mean Square (RMSE) 0.213. The results show a significant 
relationship for Landsat 8 to estimate LST in study area.

The lack of data on air temperature gathered from local 
meteorological stations is an obstacle in preparing air temperature 
maps. Alternatively, the mean maximum and minimum air 
temperatures calculated from global climate data (1 km spatial 
resolution) were resampled to a 30 m spatial resolution (Hijmans 
et al. 2005). The processing results using a raster calculator 
show that the annual reference evapotranspiration value varied 
between 792–1,921 mm year-1 (2000), 764–1,749 mm year-1 
(2012), and 794–2,039 mm year-1 (2018).
Soil Solum Depth and Plant Available Water Content 
(PAWC). The research area had ten soil types, according to 
BBWS Citarum data: (1) alluvial, (2) andosol, (3) latosol, (4) 
regosol, (5) grumusol, (6) lithosol, (7) Mediterranean, (8) gley 
humus, (9) Podsolic, and (10) resin. The soil solum depth was 
calculated using the map of land system. PAWC was calculated 
using Saxton, K. S software based on texture and soil type 
(Saxton 2022). To deal with the soil scarcity properties data, 
default values were used in the InVEST model for other factors.
Watershed Boundaries. The InVEST model, shapefile format, 
requires watershed and its 19 sub-watershed boundary data as 
its inputs. BBWS Citarum-Ciliwung provided information on 
the Citarum watershed and sub-watershed boundaries.

Water Yield estimation using the InVEST Model were 
calculated using formula. The yearly water yield for a given 
LU/LC at each pixel, Y(x), was set in the following manner 
using equation 1 (Sharp et al. 2015):

  (1)

where AET(x) is the yearly evapotranspiration measured at the 
pixel x and P(x) is the annual precipitation at pixel x.

For the vegetated type of LU/LC (Zhang et al. 2004),  

i is spatially explicit in its estimation of pixel x,
 
which is calculated using equation 2: 

  (2)

where PET(x) denotes pixel x’s potential evapotranspiration, 
and is the non-physical variable that determines the interaction 
between climate and soil conditions, also known as the 
coefficient of plant accessible water capacity. 

To compute the potential evapotranspiration, PET(x), the 
formula used was:

 PET(x) = ET0(x) × Kc(x) (3)

where ET0(x) is the evapotranspiration reference at pixel x and 
Kc(x) is the evapotranspiration coefficient of vegetation at pixel 
x related to its LU/LC (Fu 1981). 

The plant’s coefficient of water capacity available at each 
pixel, ω(x) referring to Montazar et al. (2020), was calculated in 
the following manner: 

  (4)

where AWC(x) is the plant available water capacity volume 
(mm), and Z is the seasonality factor/Zhang coefficient, an 
empirical constant that reflects the local rainfall pattern and 
other hydrogeological factors. In this experiment, the Z value 
was set to 4, the recommended number for tropical watersheds 
(Dissanayake et al. 2019). The physical and non-physical 
elements that define the properties of natural climatic soils are 
covered in this section. 

The quantity of water retained in the soil and released 
for plant use was determined by AWC(x) (Hamel and Guswa 
2015). This variable was derived using PAWC, the depth of 
the minimum root limiting layer, and the rooting depth of the 
vegetation in the following manner:

 AWC(x) = Min(Rest.layer.depth,root.depth) × PAWC (5)

ET0(x) indicates local climatic conditions based on reference 
plant evapotranspiration at that site. On the other hand, Kc(x) 
is primarily defined by the vegetation characteristics of each 
pixel’s land use/cover. 

Actual evapotranspiration was calculated using reference 
evapotranspiration data, ET0(x). While non-vegetation has an 
upper limit dictated by rainfall in this way:

 AET(x) = Min(Kc(x) × ET0(x), P(x)) (6)

The modified Hargreaves equation by Gentilucci et al. 
(2021) was used to determine reference evapotranspiration 
(mm day-1), ET0(x) with the following equation: 

  (7)

where Ra is the extraterrestrial solar radiation (MJ.m−2.day−1), 
T_max is the average maximum daily air temperature (°C), 
T_min is the average minimum daily air temperature (°C), and 
P is the monthly rainfall (mm day-1).

Next, to see the influence and contribution of parameters 
to fluctuations in water yield volume, we attempted three 
scenarios in modeling water yield: (1) baseline: no climate or 
LU/LC change, (2) climate change, but LU/LC in the exact 
condition, and (3) LU/LC change, but climate in the same 
condition. By computing the water yield variability under 
various scenarios, it was possible to quantify the influence of 
climate as well as LU/LC changes on the variability of water 
yield using Equations (8) and (9) (Wei et al. 2021):

  (8)

  (9)

where Z(C) is climatic rate contribution to alteration in water 
yield in the absence of LU/LC change, while Z(L) denotes the 
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rate at which LU/LC contributes to changing water yield in 
the absence of climate change. Δ Climate demonstrates the 
variation in annual mean water yield from (2000 to 2012) 
and (2000 to 2018) under a non-LU/LC change scenario, and 
Δ LU/LC indicates the difference between the mean annual 
water yield from (2000 to 2012), and (2000 to 2018) under 
a non-climate change scenario.

Dataset from the Geospatial Information Agency validated 
the water yield model resulting from InVEST (Badan Informasi 
Geospasial 2015). To validate the model, the coefficient of 
determination (R2), Pearson correlation (r), and root mean 
square error (RMSE), were calculated. Linear regression 
analysis was performed on both the observed data and the 
model.

Water Yield Change’s Driving Factors 
Multiple linear regression (MLR) analysis was conducted to 
ascertain a relationship between dependent variables (change 
of water yield) and land use, climate, socio-economic, and 
landscape as independent variables. The analysis was carried 
out using the R studio software. In order to obtain an optimal 
regression model, the major task at the initial stage was to 
select the key variables, eliminate unnecessary variables and 
ensure that the explanatory variables are not multicollinear, 
based on the Variance Inflation Factor (VIF) value. 

A significance test was performed to ensure that the 
sample used was typically distributed, which compares the 
sample distribution with the normal distribution to ascertain 
whether the data show serious deviations from normality. The 
normality test methods were the Kolmogorov-Smirnov (K-S) 
and the Shapiro-Wilk tests.

Subsequently, variable ranking was performed to determine 
the most critical variable based on its contribution rate in the 
model. We computed the contribution rate by comparing the 
difference of the residual sum of squares (RSS) value between 
the MLR results with all variables (RSSi) and without the 
variable whose contribution was calculated (RSSj). Due to the 
relative nature of contribution rate values, the aggregation of 
such values as overall predictors was 100. The formula for 
calculating the contribution rate (CR) is written as:

  (10)

Initially, we created a simple model (model A) to examine 
the consequences of changes in determining forces on the 
water yield alteration over 18 years (from 2000 to 2018). The 
model is as follows:

 Model A: ∆Y = β0 + β1∆X1 + β2∆X2 + ... + βi j∆Xi + ε (11)

where ∆Y is the change in the sub-watershed level, ∆Xi is the 
change in an explanatory variable between 2000 and 2018, βi 
is the model coefficient, β0 is the intercept, and ε is the error 
term.

In the second stage, we modified model A by introducing 
several combinations of interaction effects between landscape 
fragmentation metrics and socio-economic factors (social-
-ecological model). The modified model formula is stated as 
follows:

 ∆Y = β0 + αβ01∆X1 + α2∆X2 + ... + βm∆X  +
 + η + αj∆Xj∆X0 

(12)

where ∆Xj∆X0 denotes the interaction effect between ∆Xj (the 
landscape metrics) and ∆X0 (the socio-economic factors), αj 
denotes the model coefficient, η denotes the error term. The 
significance of each interaction model was compared, whether 
it strengthens or reduces changes in water yield.
Geographically Weighted Regression (GWR). SES is 
influenced by various interdependent elements, namely 
biophysical (climate, LU/LC, landscape), socio-economic, 
and integration socio-economic with the landscape. The GWR 
techniques can find relationships between dependent and 
explanatory variables when spatial influence is considered 
(Fang et al. 2021). Several previous studies have used the GWR 
method to simulate the spatial distribution model relationship 
between vegetation and rainfall and to identify the water yield 
ecosystem service’s driving parameter (Zhang et al. 2021). 

GWR augments the standard regression by qualifying the 
estimation of local rather than global parameters. The GWR 
model is given by Fotheringham et al. (2002):

  (13)

where (ui, vi) denotes the coordinates of the ith point. By 
considering the location of the dependent variable, the GWR 
model carries out separate regression at each observation and 
limits the number of observations used in the regression based 
on a specific distance to the observed location. Accordingly, 
the estimates parameters will become local and vary in each 
location. 

This study implements the GW model package in R 
(Gollini et al. 2015) for data processing. We chose the Gaussian 
function [exp (–.5 ⁎ (vdist/bw)^2)] to compute weights and 
the Akaike Information Criterion (AIC) approach to find 
the optimum bandwidth. The bandwidth defines the spatial 
coverage to limit a subset of points used in the regression. 
It can be calculated using a fixed kernel (a fixed distance) 
or adaptive kernel, where the bandwidth corresponds to the 
number of nearest neighbors.

This study used adaptive and fixed kernels to compute 
the bandwidth. The models from Ordinary Least Square 
(OLS), fixed GWR (FGWR), and adaptive GWR (AGWR) 
were compared, and their quality was assessed in terms of the 
coefficient of correlation (r) and the residual sum of squares 
(RSS).

Results
Water Yield Spatio-Temporal Dynamic 
The analysis of land use /land cover maps obtained area data 
for each type of LU/LC (Table 3). In Table 3, the dominant 
types of LU/LC are Paddy Field (45.1%), Plantation Forest 
(11.91%), Settlement Area (9.54%), Pure Dry Agriculture 
(8.12%), and Mixed Dry Agriculture (7.47%). The composition 
of land cover types in 2012 and 2018 is relatively the same as 
the land cover conditions in 2000 (Table 3).

Changes in land use and spatial land cover (LU/LC) in 
the Citarum watershed from 2000 to 2018 show Virgin Forest, 



 Spatial-temporal heterogeneity and driving factors of water yield services in Citarum river basin unit, West Java, Indonesia 11

Estate Crops Plantation, Plantation Forest Shrub, Shrub, Bare 
land, and Paddy Filed decreased. There was a decrease in 
Virgin Forest by 35.87%, Plantation Forest – 13.87%, Shrub 
– 77.97%, Estate Crops Plantation – 20.24%, Bare land 
– 24.56% and Paddy Filed – 6.57%.

Meanwhile, other types of LU/LC tend to increase. 
Settlement area gradually increased to 4.23%, Pure Dry 
Agriculture to 64.85%, and Mixed Dry Agriculture to 64.85%. 
This change in LU/LC type will affect the availability of water 
yields.

According to the InVEST model analysis findings, water 
yield volume at the Citarum RBU in 2018 was approximately 
12.16 billion m3 year-1 (Table 4 and Figure 4). 

In water yield, the most significant decrease occurred 
in the Cisadari sub-watershed of 1,241.38 mm (69.00%), 
and the smallest occurred in the Cibadak sub-watershed of 
98.74 mm (13.16%). Meanwhile, the Cibanteng sub-watershed 
increased by 2.83%. The water yield average depth in 2000 
was 1,373.00 mm, while in 2018, it was 764 mm.

Citarum sub-watershed has a maximum yearly rainfall of 
1,994 mm year-1 with a minimum evapotranspiration potential of 
1,291 mm year-1. This water yield reflects the natural river flow 
and does not consider human activities’ daily needs, including 
industry, households, and agriculture (Van Paddenburg et al. 
2012). As for 649 mm year-1 of actual evapotranspiration, 
amongst all sub-watersheds in the Citarum RBU, the four sub-
-watersheds with the highest water yields are the Citarum 
sub-watershed (1,220 mm year-1), Cipunara sub-watershed 
(1,126 mm year-1), Cimalaya sub-watershed (974 mm year-1), 
and Ciasem sub-watershed (969 mm year-1), sequentially. 

The Citarum sub-watershed is the widest, giving the most 
significant contribution to water yield, which is 8.05 billion 
m3 year-1 (66.18%), followed by the Cipunara sub-watershed at 
1.44 billion m3 year-1 (11.89%), the Ciasem sub-watershed at 
0.71 billion m3 year-1 (5.83%), and the Cimalaya sub-watershed 
0.51 billion m3 year-1 (4.17%).

The water yield spatial distribution of the Citarum RBU in 
2000 is shown in Figure 4a and Figure 4b for 2018. The most 

Table 3. Area of LU/LC classifi cation of 2000, 2012, and 2018 in Citarum RBU

No LU/LC type 2000 2012 2018* 2000–2012 2000–2018
Ha % Ha % Ha % Ha % Ha %

1 Virgin Forest 43.63 3.85 29.07 2.57 27.98 2.47 -14.56 -33.37 -15.65 -35.87
2 Plantation Forest 134.85 11.91 121.39 10.73 116.14 10.26 -13.46 -9.98 -18.71 -13.87
3 Shrub 33.55 2.96 19.61 1.73 7.39 0.65 -13.94 -41.55 -26.16 -77.97
4 Estate Crops Plantation 63.97 5.65 56.73 5.01 51.02 4.51 -7.24 -11.32 -12.95 -20.24
5 Settlement Area 108.04 9.54 112.61 9.95 108.8 9.61 4.57 4.23 0.76 0.70
6 Bare land 10.34 0.91 9.98 0.88 7.8 0.69 -0.36 -3.48 -2.54 -24.56
7 Lake 16.42 1.45 16.39 1.45 16.4 1.45 -0.03 -0.18 -0.02 -0.12
8 Pure Dry Agriculture 91.94 8.12 317.55 28.06 151.56 13.39 225.61 245.39 59.62 64.85
9 Mixed Dry Agriculture 84.52 7.47 144.8 12.79 132.99 11.75 60.28 71.32 48.47 57.35

10 Paddy Filed 510.56 45.10 269.37 23.8 477.02 42.15 -241.19 -47.24 -33.54 -6.57
11 Fishpond 34.08 3.01 34.07 3.01 34.47 3.05 -0.01 -0.03 0.39 1.14
12 Airport 0.19 0.02 0.19 0.02 0.19 0.02 0.00 0.00 0.00 0.00

* Source: Nahib et al. 2021

Table 4. Water yield in Citarum RBU from 2000 to 2018

Catchment
Area

Total Water Yield Change in Total Water Yield
billion m3 year-1 Percentage (%) Class of change

2000 2012 2018* 2000–2012 2012–2018 2000–2018 2000–2012 2012–2018 2000–2018
Citarum 9.87 8.17 8.05 -17.18 -1.47 -18.4 NC NC NC
Cipunara 1.83 1.57 1.44 -14.31 -7.87 -21.06 NC NC D
Ciasem 1.12 0.83 0.71 -26.25 -14.18 -36.71 D NC D
Cimalaya 0.99 0.61 0.51 -38.10 -17.21 -48.76 D NC ED
Cikarokrok 0.31 0.32 0.24 4.92 -25.77 -22.11 NC D D
Others** 2.53 1.64 1.22 -35.31 -25.8 -52.00 D D ED
SWS Citarum 16.64 13.14 12.16 -21.07 -7.38 -26.91 D NC D

** Source: Nahib et al. 2021
** Sum of 14 Catchment areas, 
ED = Extremely Decrease (<40%), I = Increase (20–40%), D = Decrease (-20% – -40%),
EI = Extremel Increase (> 40%), NC = Non Change (-20%–20%)
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significant change in the concentration of water yield values 
was found in the sub-watershed Citarum in 2000, and in 2018 
it was found in several locations in the Citarum and Cipunara 
sub-watershed areas. The condition of water yields in 2018 
decreased by 4.48 × billion m3 year-1 (26.91%) compared to the 
condition of water yields in 2000. The water yield reduction 
occurred in all sub-watersheds with varying decreasing levels 
(2000–2012) and (2012–2018).

According to the Mean Water Yield (MWY) change from 
18 years period (Figure 4c), around 45% of the Citarum RBU 
area, the status Non-Change (NC) spread from the north to the 
southern part of the Citarum sub-watershed. Meanwhile, 32% of 
the Citarum RBU area comes under Extremely Decrease (ED).

The results show that the status of Extremely Decrease (ED) 
is experienced by six sub-watershed areas on the north coast 
of Java, namely Cisedari, Cisaga, Sewo, Sukamaju, Bugel, 
and Cidongkol. Otherwise, most of the upstream part of the 
Citarum sub-watershed area (>50%) is NC status. A Decrease 
(D) status occurred in 19% of all Citarum RBU areas. 

Based on changes in water yields shown in Figure 4c and 
Table S1, 11 sub-watersheds belong to ED, five sub-watersheds 
belong to D, and three sub-watershed belong to NC. Most 
sub-watersheds that underwent ED alterations had an area 
of fewer than 25,000 hectares, except for the Cibodas 
(26,251 ha), Cidongkol (29,127 ha), and Cimalaya (52,063 ha). 
Meanwhile, there are four sub-watersheds with SD status with 

Fig. 4. Spatial distribution of water yield (a) in the year 2000, (b) in the year 2018, (c) water yield change from 2000–2018, 
(d) water yield change from 2000–2018 (%) in Citarum RBU
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an area of more than 25,000 ha, namely Cipunara (128,059 ha), 
Ciasem (73,192 ha), and Cikarokrok (36,329 ha). Although 
there are only three sub-watersheds with NC status, these 
sub-watersheds have a significant role in terms of area, 
namely the Citarum sub-watershed with an area of 659,501 ha 
(58.25%), which can be used as an indicator of changes in 
water yields in the Citarum RBU.

The InVEST model was validated using validation data 
for water yield from the Citarum RBU published by Badan 
Informasi Geospasial (2015) by combining this water yield 
data with the modeling data. Linear regression analysis 
between the model (Y) and the observations (X) of water yield 
deliver a coefficient of determination (R2) = 0.9885, coefficient 
of Pearson correlation (r) = 0.994,2 and the mean square error 
(RMSE) = 0.7 with equation Y = 0.8682x + 0.2798. 

The actual water yield for the catchment area of all 
sub-watersheds in the Citarum RBU was calculated, then 
a model simulation was implemented by including two 
scenarios without land-use change and climate change 
parameters. Detailed results of the five sub-watersheds having 
upstream and downstream sections are shown in Table 5.

The impact of water yield change in 2012 and 2018 without 
climate change is quite overestimated compared to actual 
conditions. The models considering climate change scenarios 
are close to actual conditions, consistent with prior study (Balis 
et al. 2022), which found that climate significantly influences 
runoff coefficients. 

To prove the results in Table 5, we calculated the 
contribution level of each parameter included in scenarios, 
LU/LC and climate change. Equations (8) and (9) explored 

the contribution level. Table 6 compared two scenarios to the 
actual condition and revealed the contribution rate between 
climate change (ZC) and LU/LC change (ZL) to the water yield. 

Climate change, particularly rising temperatures and 
rainfall changes, has a substantial impact on agricultural output 
through extreme weather – droughts and heat waves. Crop 
yields are highly dependent on water availability at the plant 
development stage. Projections of water availability indicate 
that the cost of obtaining water will continue to increase. 
Currently, evapotranspiration exceeds rainfall in summer, 
which causes water storage depletion (at the surface, in the 
soil, in the soil) (Szwed et al. 2010). 
3.2. Water Yield Change’s Driving Factors 
Based on the spatial pattern, there is a degree of spatial 
autocorrelation to the water yield at the sub-watershed level. 
The value of the Moran I coefficient is 0.17 with a score of 
Z = 5.50 (significantly higher than 2.58 and more than 1% in 
the level of significance test), revealing that changes in spatial 
distribution at the sub-watershed level are clustered rather than 
random. This theory is the foundation for the GWR model, 
which investigates the independent variables’ spatial effects on 
changes in water yields. Diagnostic parameters of the OLS and 
GWR models are shown in Table 7.

According to Table 7, the larger R2 and smaller AIC 
values are obtained for the GWR model compared to the OLS 
model. Based on this, it can be concluded that the GWR model 
estimation gives better results than the OLS model. The local 
linear model performed well in the study area, as indicated by 
R2 values of more than 80%. The high local R2 values ranged 
from 0.7977 to 0.8359 across the study area (Figure 5).

Table 5. Total water yield under diff erent scenarios for 2000–2018 in Citarum RBU

Catchment Area
Actual Conditions

Conditions without
Climate Change Land Use Change

billion m3 year-1 billion m3 year-1 billion m3 year-1

Name 103 Ha 2000 2012 2018 2012 2018 2012 2018
Citarum 659.501 9.87 8.17 8.05 9.97 9.93 8.09 7.99

Cipunara 128.059 1.83 1.57 1.44 1.88 1.83 1.53 1.44
Ciasem 73.192 1.12 0.83 0.71 1.19 1.12 0.77 0.71
Cimalaya 52.063 0.99 0.61 0.51 1.05 0.99 0.57 0.51
Cikarokrok 36.329 0.31 0.32 0.24 0.34 0.31 0.29 2.37
Others* 183.058 2.53 1.64 1.22 2.66 2.54 1.56 1.21
Total 1.132.202 16.64 13.14 12.16 17.09 16.92 12.81 12.09

* Sum of 14 Catchment Area

Table 6. Contribution of Climate (C) and LU/LC (L) to water yield change in Citarum RBU

Actual 2000 WTClimate WTLU/LC LU/LC(L) Climate(C) Total 
L+C

ZL
(%)

ZC
(%)

2012 2012
16.64 17.09 12.81 0.45 -3.83 4.28 10.42 -89.57

2018 2018
16.64 16.92 12.09 0.28 -4.54 4.82 5.8 -94.19

The contribution level of LU/LC to changes in water yields in the Citarum RBU in the 2000–2018 period ranges from 5.8–10.42%. Meanwhile, 
the more significant contribution was made by climate change, around 89.57–94.19%. 
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Based on the analysis of the multicollinearity of the 
independent variables, we obtained variables that do not 
have multicollinearity with other variables. Table S2 shows 
variables that do not significantly change the water yield. The 
results of multiple regression analysis using R studio software 
showed nine variables with significant contributions to water 
yields (Table 8).

In Table 8, variables from climate (mean rainfall) and land 
use (area of pure dry agriculture, area of bare land, and area 
of shrubs) were revealed as the primary controlling factors 
for changes in water yield, with a significant contribution rate 
of 79.28%. The highest contribution came from the average 
rainfall factor (28.53%), pure dry agriculture (27.73%), and 
bare land (15.03%).

Total land use factors give the most significant contribution 
to water yields, which is 50.75%, more significant than the 
climate factor. The contribution rate could positively and 
negatively impact the water yield, where pure dry agriculture 
and shrub positively impact while the bare land variable is 
the opposite. On the other hand, the landscape-level factor 
contributes less than 10% to the water yield. CONTAG and 
AI have positive impacts; however, LPI and FRAC_MN have 
negative impacts.

Socio-economic changes in Gross Domestic Product 
(GDP) per capita indicate a positive relationship to water yields. 
An increase in GDP per capita will improve infrastructure and 

increase the built-up area, where a boost in the built-up area 
results in higher water yield. The GDP per capita variable 
accounted for 8.58%.

The socio-ecological indicator has both negative and 
positive effects on water yields depending on the landscape 
variable and the level of its contribution. The interaction 
between landscape level and GDP per capita influences water 
yields with a contribution of 8%, while an increase in GDP 
per capita changes is integrated with changes in the LPI. The 
interaction of GDP per capita with the CONTAG variable is 
positively correlated with changes in water yields. Meanwhile, 
the interaction of changes in GDP per capita to the FRAC_MN 
has a negative correlation. 

Table 8 indicates the comparison between the simple model 
(Model A) with the social ecology model (Model B), where the 
correlation coefficient increase by 0.03 (from 0.76 to 0.79) in 
Model B. The simple model only considers climate, land use, 
and landscape variables, while the socio-ecology model added 
the effect of landscape and socio-economic variables in the water 
yield estimation. The results of testing on social-ecological 
variables, i.e., landscape configuration and the effect of social-
-ecological integration (Δ LPI * per capita GDP, FRAC * per 
capita GDP, Δ AI * Δ per capita GDP), show that there are 
changes in the contribution rate of each variable (climate, 
land-use, landscape, and socio-economic) to water yield. 
Climate and Socio-economic variables had increased 

Table 7. Summary OLS Model and GWR Model

Method
Metrics

RSS R2 AIC
OLS 1523.59 0.7913 161.22
Fixed GWR 1139.76 0.8439 143.23
Adaptive GWR 1140.58 0.8438 143.25

Fig. 5. The Local R2 of the GWR model
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contribution by around 6% and 44%, respectively. Meanwhile, 
the contribution from the other two variables decreased by 
–20% (LU/LC) and -40% (Landscape), with a coefficient of 
determination that is relatively the same as the standard model. 
In addition, the change in the level of contribution using the 
social ecology model (increasing climate and land use variables; 
while decreasing contribution level of landscape) due to the 
contribution of the landscape variable level is distributed for the 
landscape and the socio-economic simultaneously. In addition, 
the social ecology model demonstrates a rising contribution 
of climate and land use factors but a falling contribution of 
landscape variables; this is because the contribution of the 
landscape variable level is simultaneously dispersed for the 
landscape and the socio-economic variables. Thus, adding 
socio-ecological variables is better than the standard model. 

Based on the same dataset and nine explanatory variables as 
used in the OLS model, further analysis of the GWR model was 
carried out. GWR presents 19 local regressions with different 

predictive coefficient values (Figure S1). Furthermore, the 
predictive coefficients were classified into three classes, as the 
five largest sub-watersheds are presented in Table 9.

Based on Figure S1 and Table 9, the prediction coefficient 
values for each sub-basin are different, indicating the effect of 
spatial heterogeneity. Their spatial distribution differed from 
the precipitation and socio-economics distribution, which 
significantly impacted west water yield more than east.

The local mean regression coefficient for the main 
controlling factors variables are average rainfall, pure dry 
agriculture, and bare land, with values of 15.82, 16.93, 13.27, 
and -8.47, respectively.

Discussion
Water Yield Spatio-Temporal Dynamic 
The Citarum RBU has a water yield of 12.16 billion m3 year-1. 
The MWY is 935 mm year-1, consistent with published data 

Table 8. Results of OLS models (standardized beta coeffi  cients with signifi cant level)

Model Model A Model B1 Model B2 Model B3
R2 0.7636 0.7848 0.7895 0.7913
Driving factors β CR* (%) Β CR* (%) β CR* (%) β CR* (%)
Climate
Average precipitation 15.569 28.53 15.598 30.28 17.364 30.77 16.656 30.09
Land use
Shrub 16.993 7.99 16.859 8.53 18.457 9.68 18.204 9.49
Pure Dry Agriculture 11.806 27.73 9.977 23.77 10.068 23.56 10.068 23.38
Bare Land -6.376 15.03 -2.357 10.24 -2.591 10.48 -1.931 9.85
Landscape 
LPI** -0.070 2.27 0.188 1.81 0.204 1.86 0.213 2.04
FRAC_MN** -12.044 5.89 2.124 0.65 0.557 1.05 2.901 1.05
CONTAG** 1.277 2.66 0.339 0.81 -0.977 0.78 0.239 0.90
AI** 0.509 1.31 -15.707 2.09 -15.093 1.84 -15.052 1.95
Socio-economic 
Δ per capita GDP 5.967 8.58 -8.204 13.82 -7.961 12.67 -8.685 13.49
Eff ect of Landscape & Socio-economic
Δ LPI * Δ per capita GDP 9.072 8.00
Δ FRAC * Δ per capita GDP -9.774 7.29
Δ AI * Δ per capita GDP 8.736 7.74

** CR refers to that contribution rate to change in water yield (%).
** LPI: Larget patch Index, CONTAG: Contagion, FRAC_MN: Mean Fractal Dimension Index, AI: Aggregation Index.

Table 9. Predictive coeffi  cients of GWR model

No Catchment Area AP Sb PDA BL LPI FM CG AI GDP
1 Citarum M H L H H H H M H
2 Cipunara L M L M M H H H H
3 Ciasem L L L H H H L L H
4 Cimalaya H M H L L M H H M
5 Cikarokrok H H H L L L H M L

L: predictive coefficient low, M: predictive coefficient medium, H: predictive coefficient high, AP: Average Precipitation, Sb: Shrub, PDA: Pure Dry 
Agricultural, BL: Bare Land, LPI: Largest patch Index, FM: Mean Fractal Dimension Index, CG: Contagion, AI: Aggregation Index, GDP: per capita GDP.
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(BIG 2015, Kementerian Pekerjaan Umum 2016), which 
shows that the water yield at the Citarum RBU is 12.95 billion 
m3year-1, and the MWY is 994 mm year-1. The water yield’s 
spatial distribution pattern and magnitude from the modeling 
outcomes are comparable to the result of (Montazar et al. 2020); 
aside from that, this study’s water yield value is significantly 
lower than the previous outcome.

According to BIG 2015, the Citarum RBU has a large 
potential water resource of 12.95 billion m3 year-1, which 
is added by heavy rainfall of 2,000–4,000 mm year-1 
(Kementerian Pekerjaan Umum, 2016). The Citarum RBU 
yield requires only 7.65 billion m3year-1 of water. The water 
requirement is made up of the following components: urban 
water (municipal), 0.03 billion m3 year-1 (0.3%), industry, 
0.15 billion m3 year-1 (2%), maintenance, 0.38 billion m3 year-1 
(5%), freshwater, 0.49 billion m3 year-1 (6%), and irrigation, 
6.64 billion year-1 (86.7%). The remaining 5.30 billion m3year-1 
is made up of potentially wasted water (wasted at sea). Saguling 
Reservoir (for irrigation/hydropower), Cipanjuang Reservoir 
(hydropower), Cileunca Reservoir (hydropower), Jatiluhur 
(irrigation/hydropower), and Cirata Reservoir (hydropower) 
are the main irrigation facilities and infrastructure that currently 
supply water needs in the Citarum RBU.

Referring to Patuha’s research (Yudistiro et al. 2019), the 
water yield in Citarum (935.26 – 1,079.27 mm year-1) is lower 
than in the Patuha Mountains area, Bandung Regency, West Java 
(2,163 mm year-1), that shares the same climatic conditions.

These findings are consistent with previous studies (Nahib 
et al. 2021, Wei et al. 2021), which state that water yield 
indicates a watershed’s health, and a healthy watershed has 
slight water variation. In 18 years, water yield has decreased 
by 0–20% (NC), 20–40% (I), and more than 40% (EI). A low 
level of decreased water yield indicates that the watershed has 
been well managed, a moderate level of decreased water yield 
indicates poor watershed management, and a high level of 
decreased water yield indicates poor watershed management.

The contribution level of LU/LC to changes in water yields 
in the Citarum RBU in the 2000–2018 period is in the range 
of 5.8–10.42%. Meanwhile, the more significant contribution 
was made by climate change, around 89.57–94.19%. 

The more dominant climate contribution from changes in 
LU/LC to changes in water yields in the Citarum is along with 
research results by Wei et al. (2021), concerning the Shule River 
Basin, China, which stated that the contribution of climate 
change to total water yield was higher than LU/LC change. In 
that case, 90.56% accounted for contribution from climate, and 
the rest, 9.44%, came from LU/LC change. Moreover, research 
in the Qinghai River (Lian et al. 2020) also mentioned that LU/LC 
change contributed 10%, while precipitation dominated water 
yield (about 90%). A similar result was found in Black Sea 
Catchment (including Poland) (Rouholahnejad Freund et al. 
2017), where the climatic variables were more significant to 
model the water yield than different land use change scenarios.

The contribution of LU/LC change and climate change 
is strengthened by research at the exact location, the Citarum 
upstream. Some research (Nahib et al. 2021; Siswantoto 
and Frances 2019) confirmed the findings in estimating 
the relationship of LU/LC to water in the upper side of the 
Citarum watershed (with the TETIS application, distributed 
hydrological model). While Nahib et al. (2021) revealed that 

climate change has a greater consequences on water yield 
than changes in LU/LC in the Citarum watershed, the effect of 
alteration in rainfall (14.06–27.53%) are the most significant, 
followed by the evapotranspiration effect (10.97–23.86%) and 
LU/LC (10.29–12.96%). According to Siswantoto and Frances 
(2019), changing the LU/LC reduces evapotranspiration, 
which in turn increases water yield by 15% to 40%.

Water Yield Change’s Driving Factors 
It is essential to look for drivers’ multi-level impact on water 
yield changes. In order to assess the GWR model, modified 
R2 was used. The adaptive bandwidth and fixed bandwidth 
applications do not significantly differ in R2. The application 
of the GWR model shows that there can be heterogeneity. This 
condition indicates that the selection of the GWR model is more 
appropriate than the OLS model. Based on the comparison 
between the OLS model and the GWR model, the GWR model 
shows better performance than the OLS model; GWR models 
have higher R2 and lower AIC and RSS values.

This finding aligns with the results by Wang et al. (2017) 
which stated that the GWR model is more robust on the driving 
variable than the OLS method. The GWR model can explain 
the location-specific and more detailed role of the related 
factors in influencing changes in water yields, while OLS only 
produces global coefficients for each explanatory variable.

Precipitation is one of the main variables affecting water 
yield. The average precipitation at the Citarum RBU decreased 
from 2,320 mm in 2000 to 1,783 mm in 2018. The InVEST 
model estimated a corresponding decrease in water yield from 
1,469 mm to 1,074 mm. 

A positive correlation between rainfall change and water 
yield change is in line with (Nahib et al. 2021, Sun et al. 2017, 
Łabędzki and Bąk 2017). Referring to Nahib et al. (2021), the 
water yield spatial pattern and rainfall in the Citarum RBU 
have a linear correation, where lower rainfalls are linked with 
a smaller water yield and vice versa. In general, the mean 
annual precipitation (MAP) correlates to the MWY linearly, 
so that a high MAP will lead to a large MWY and vice versa. 
Anomalies occur in the land use type bare land area, where the 
amount of rain is relatively high but MWY low. In line with 
that, the correlation between the variation of water yield and 
precipitation is positive and the strongest (Sun et al. 2017). 

Based on the analysis of the standard rainfall index (SPI) 
with the crop drought index (CDI), the impact of meteorological 
climate change (drought) causes crop water deficits and 
reduces crop yields in various regions of Poland and reduces 
crop yields. The most obvious impact of drought on cultivated 
plants is reduced evapotranspiration, resulting in a decrease in 
crop yields (Łabędzki and Bąk 2017). Meanwhile, Ferencz et 
al. 2022 reported that an increase in the frequency of torrential 
rainfall (above 50 mm) favors surface runoff over infiltration. 
As a result, groundwater resources are depleting. Extreme 
meteorological events, as presented in the study and projected 
in the future, pose a serious threat to natural groundwater 
outflow sites.

The correlation between vegetation and water yield depends 
on the vegetation types; some have a positive correlation, 
and others the opposite (Nahib et al. 2021, Muhammed et 
al. 2021). Water yield based on LU/LC in the Citarum RBU 
depicted shrubs producing the highest average water yield of 
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1,516 mm year-1 (Nahib et al. 2021). The second-largest water 
yield is from virgin forests (1,444 mm year-1), the next is pure 
dry agriculture (1,348 mm year-1), as well as plantation forests 
(1,226 mm year-1).

For long-term studies, the spatial scale of the watershed is 
critical in determining the hydrological effect of forest cover 
(Muhammed et al. 2021). On the micro and meso scales, there 
is no relationship between forest cover and rainfall and water 
yields. On the other hand, on a global scale, there is a relatively 
high correlation coefficient (r = 0.77, p 0.05) between forest 
cover and water yield. According to the findings of the analysis, 
during the rainy season, deforestation in regional watersheds 
leads to high discharge and flooding. On the other hand, it 
exacerbates the dry season flow.

Although the model resolution was coarse about 100 km, 
to model water yield, researchers combined human impacts, 
surface interaction, groundwater pumping, and runoff. The 
study revealed that considering human impacts, such as 
irrigation and reservoir operation, results in a better water yield 
model (Pokhrel et al. 2017).

Previous research stated the relationship between 
landscape level and water yield. Xu et al. (2019) found that 
from 2000 to 2010, patch richness density (PRD), aggregation 
index (AI), Shannon’s diversity index (SHDI), the construction 
land (CL) portion, and the average yearly precipitation (AP) 
were the motivating forces whose explanatory power for the 
spatial variability of water yields in the Beiyun River Basin, 
Beijing, was always greater than 30%. AI and AP are the two 
landscape indices most relevant to annual water yields that 
are positively correlated with water yield, and the others are 
the opposite. Besides that, Hu et al. (2020) found that the 
correlation between landscape heterogeneity and water yields 
suggests that reduced landscape fragmentation and increased 
aggregation are beneficial for water conservation. This 
condition is confirmed by Gwate et al. (2022), where there 
is an inverse relationship between landscape fragmentation 
and evapotranspiration (ETo), suggesting that unregulated 
landscape fragmentation can affect the catchment’s water 
balance. 

The water yield in Batu Pahat, Malaysia, using the InVEST 
model, shows that the vegetated area produces a higher water 
yield than the built-up area (Ziexin 2020). Meanwhile, Dinka 
and Chaka discovered that land degradation can jeopardize 
agricultural sustainability and the availability of natural 
resources in the area. Similar changes are expected in the 
future, which could be a major cause of land degradation in 
the watershed, resulting in decreased crop production and 
a scarcity of fodder unless proper consideration for natural 
resource conservation practices is given (Dinka and Chaka 
2019).

The landscape metric approach was used to measure 
land-use landscape patterns at the landscape level, landscape 
shape index (LSI), specifically patch density (PD), most 
extensive patch index (LPI), and average patch area (AREA 
MN). According to the study findings, green open space (GOS) 
underwent patch loss aggregation and fragmentation. As 
a result, it is critical to maintaining the vegetation to generate 
water yield for the area.

Changes in LPI correlated significantly and inversely 
with changes in water yield. These study results follow Li et 

al. (2020), where forest fragmentation (vegetated area) was 
conducive to increasing water yield. Meanwhile, Cao et al. 
(2009) stated that vegetated area aggregation, on the other 
hand, reduced water yield by boosting the canopy intercept of 
precipitation and accelerating water consumption.

Poverty, population growth, and a lack of strong institutional 
and technological support are the primary drivers of change in 
LU/LC in watersheds. The majority of changes in watershed 
areas are the result of reduced agricultural production activities 
for food self-sufficiency (Dinka and Chaka 2019).

According to Li et al. (2018) research in the Taihu Lake 
Basin (TLB) of China, the development of local water yields is 
strongly related to GDP per capita. GDP per capita was found 
to be positively correlated with water yield. This discovery is 
consistent with the research results of (Yang et al. 2021, Sun et 
al. 2017, Li et al. 2018). The increased water yield with GDB 
per capita and the growth rate of construction land have a firm 
consistency, with correlation coefficients of 0.89 (p < 0.05) and 
0.93 (p < 0.05), respectively.

While the study of Yang et al. (2021) shows that the 
correlation of GDP per capita to vegetation cover (and the 
result correlation with water yield) shows no clear pattern, 
it can be positively or negatively correlated. Research in the 
Loess Plateau, China, found that the relationship of GDP per 
capita to vegetation change (individually effect) was positive. 
In contrast, the comprehensive effect (and other variables) 
negatively correlated to vegetation change in 2000 and there 
was a positive correlation in 2015. The variables used in the 
two periods are the same.

This condition is reinforced by the research findings by 
Sun et al. (2017), which are affected by natural geographical 
elements. The spatial distribution of water yield is not following 
the spatial distribution of social-economic development level, 
namely GDP and population. In China’s Nansi Lake Basin 
region, a significant positive correlation was found between 
water yields and socio-economic factors (GDP and population) 
variations. The increase in GDP will lead to urbanization. The 
impact of urbanization causes an increase in the development 
of built-up areas and urban construction lands so that the 
impermeable water surface increases, encouraging an increase 
in water yield.

 Modeled annual water yield in the 1985–1994 and 
2008–2017 periods across catchments in England by Gosal et 
al. (2017) found that human-driven landscape change, including 
water abstraction, affected the accuracy of the water yield 
change model. In more detail, the research result by Redhead et 
al. (2016) suggests that anthropologically influenced processes 
have become critical factors in water yield modeling. Since the 
model is sensitive to variation in the explanatory variables, the 
selection of input data is critical and should be validated. 

The landscape interaction model with GDP per capita 
shows that the contribution of the individual landscape variables 
decreases. On the other hand, the GDP per capita variable 
increases, increasing the contribution of the average rainfall. 
This finding is in line with the research of Zhang et al. (2021) 
in the Yangtze River Basin, China, which states that there is no 
clear correlation between the interaction of per capita income 
with landscape patterns on water yields. Meanwhile, research 
conducted by Scown et al. (2017), which explores the socio-
-ecological conditions of watersheds across the US, shows that 
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regional averages of the Integrity Watershed Index (IWI) are 
strongly associated with ecoregions, industrial dependencies, 
and landscape states in an explicit spatial-regression model 
(R2 = 0.77, p < 0.001). We also identified associations between 
environmental and socio-economic drivers and watershed 
integrity, which may prove helpful in developing action plans 
or large-scale watershed management strategies. 

Another research by Bai et al. (2020) combines statistical 
data and InVEST models in China’s TLB region. The study 
discovered that correlations between characteristic landscape 
metrics and ecosystem service indicators changed over time 
for various ecosystem service indicators at the district and 
pixel scale levels. The impact of characteristic landscape 
metrics on several ecosystem service indicators, as well as the 
trade-offs between these ecosystem service indicators, reveals 
the impact of scale effects on correlations and trade-offs. As 
a result, planners and managers must consider effective metrics 
of landscape characteristics and scale effects to improve 
ecosystem services while minimizing undesirable trade-offs.

Based on the urban and SES approach, the analysis 
found that the institutional design characteristics of land use 
regulations (local autonomy regimes), resource productivity, 
and predictability of land use dynamics – influenced landscape 
change more intensively during the study period (Deslatte 
et al. 2022). In the Social ecological model, the correlation 
coefficient increased by 0.03 (from 0.76 to 0.79), showing 
a stronger relationship. Besides that, there is an increase in 
the contribution rate for climate and land-use variables. This 
condition reveals that the socio-ecological model is superior to 
the simple model.

Conclusions
The InVEST model is used to analyze the Spatio-temporal 
pattern of water yield in the Citarum watershed and local scale 
watersheds in tropical Indonesia. Meanwhile, to determine 
the driving factors for changes in water yields, 20 variables 
were used, consisting of 3 climate variables, nine land use 
variables, five landscape configuration variables, and three 
socio-economic variables. The GWR model analyzes the 
heterogeneity of the factors driving changes in water yields. 

In general, the annual water yield decreased from 
16.64 billion m3 year-1 in 2000 to 12.16 billion m3 year-1 in 2018. 
The decrease in water yield was 4.48 billion m3 year-1 ( 26.91%) 
and almost occurred in all parts of the watershed. However, it 
was discovered that socio-ecological variables in water yields 
in the Citarum RBU, such as landscape configuration and 
the effect of social-ecological integration (LPI * per capita 
GDP, FRAC * per capita GDP, AI * per capita GDP), show 
that each variable (climate, land-use, landscape configuration, 
and socio-economic) contributes differently to water yield. 
Climate and Socio-economic characteristics contributed 6% 
and 44%, respectively. LU/LC and Landscape Configuration 
contributions fell by 20% and 40%, respectively, with a similar 
coefficient of determination to the conventional model. Adding 
socio-ecological variables improves the model. The GWR 
model can explain the site-specific and more detailed role of 
related factors in influencing changes in water yields, while 
OLS only produces global coefficients for each explanatory 
variable.

The biophysical technique for calculating water yields is 
projected to develop socio-ecological models soon. Adding 
social variables (such as water costs and community perceptions 
of natural resources) and testing the model’s applicability on 
various watershed dimensions and features (urban/developed 
vs rural/underdeveloped areas) are essential to constructing 
a socio-ecological model. The research methods established 
here can be utilized in other tropical countries like Indonesia. 
Finally, this research (social-ecological system) can be 
applied by planners to monitor and evaluate water resources’ 
availability in sustainably managing watersheds. 

Limitations of this study 
Not all meteorology stations record air temperature conditions, 
so the air temperature we used does not reflect the actual 
temperature conditions at the meteorological station. The 
air temperature data used is the estimated temperature of the 
global air temperature.
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Supplementary Materials

Appendix B

Tabel S1. Changes in Water Yield at Citarum RBU in 2000 and 2018

ID Watershed Name 2000 
mm

2018
mm

Changes 
2000–2018

(mm)

Changes 
2000–2018

(%)
Status

1 Cikarokrok 842.65 656.34 -186.31 -22.11 D

2 Cibadak 750.31 651.57 -98.74 -13.16 NC

3 Cimalaya 1,901.34 974.30 -927.04 -48.76 ED

4 Ciasem 1,531.45 969.28 -562.17 -36.71 D

5 Cireungit 1,072.90 534.83 -538.07 -50.15 ED

6 Cipunara 1,427.59 1,126.94 -300.65 -21.06 D

7 Cirandu 1,007.31 473.78 -533.54 -52.97 ED

8 Sewo 1,725.18 700.08 -1,025.10 -59.42 ED

9 Sukamaju 1,731.13 663.62 -1,067.51 -61.67 ED

10 Cibodas 1,411.56 616.43 -795.13 -56.33 ED

11 Bugel 1,763.13 723.96 -1,039.16 -58.94 ED

12 Cidongkol 1,571.77 590.83 -980.94 -62.41 ED

13 Batang Leutik 1,055.72 592.31 -463.41 -43.90 ED

14 Cibadar Dua 1,208.09 756.29 -451.80 -37.40 SD

15 Cisaga 1,617.09 773.87 -843.22 -52.14 ED

16 Cisedari 1,799.12 557.74 -1,241.38 -69.00 ED

17 Citarum 1,495.98 1,220.71 -275.27 -18.40 NC

18 Cibanteng 946.56 973.33 26.76 2.83 NC

19 Cigemari 1,237.30 953.30 -284.00 -22.95 D

Table S2. Tolerance and Variance Infl ation Factor (VIF)

Variables Tolerance VIF
Average precipitation 0.6991885 1.430229

Shrub 0.1689563 5.918689

Pure Dry Agriculture 0.4497479 2.223468

Bare Land 0.3374543 2.963364

Larget patch Index 0.1492413 6.700558

Mean Fractal Dimension Index 0.4337878 2.305275

Contagion 0.3310035 3.021116

Aggregation Index 0.2782403 3.594015

Δ per capita GDP 0.3229058 3.096878
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Fig. S1. Local spatial distribution of regression coeffi  cients of GWR model (A) Average precipitation, (B) Shrub, 
(C) Pure Dry Agriculture, (D) Bare Land, (E) Largest Patch Index (F) Mean Fractal Dimension Index, (G) Contagion, 

(H) Aggregation Index, (I) Index Δ per capita GDP
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