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Abstract. The condition monitoring of offshore wind power plants is an important topic that remains open. This monitoring aims to lower the
maintenance cost of these plants. One of the main components of the wind power plant is the wind turbine foundation. This study describes a
data-driven structural damage classification methodology applied in a wind turbine foundation. A vibration response was captured in the structure
using an accelerometer network. After arranging the obtained data, a feature vector of 58 008 features was obtained. An ensemble approach of
feature extraction methods was applied to obtain a new set of features. Principal Component Analysis (PCA) and Laplacian eigenmaps were
used as dimensionality reduction methods, each one separately. The union of these new features is used to create a reduced feature matrix. The
reduced feature matrix is used as input to train an Extreme Gradient Boosting (XGBoost) machine learning-based classification model. Four
different damage scenarios were applied in the structure. Therefore, considering the healthy structure, there were 5 classes in total that were
correctly classified. Five-fold cross validation is used to obtain a final classification accuracy. As a result, 100% of classification accuracy was
obtained after applying the developed damage classification methodology in a wind-turbine offshore jacket-type foundation benchmark structure.

Key words: structural health monitoring; wind turbine foundation; damage classification; machine learning; feature extraction; XGBoost.

1. INTRODUCTION
Structural health monitoring (SHM) of wind turbine founda-
tions can consider the effects that marine waves and wind exert
on the structure. The environmental and operational conditions
to which these wind turbines are subjected can be extreme [1].
The approaches of using guided waves that propagate through
the structure and classifying the damage that it may have com-
pared to the healthy structure do not consider the effects of envi-
ronmental conditions [2]. Therefore, an approach that uses the
vibration response of the structure has been successfully used
to classify damage to jacket-type wind turbine foundations [3].
To accomplish this, a shaker excites the structure and a series of
accelerometers capture the vibration response of the structure.
To perform the processing of the large amount of data obtained
in the structure, different machine learning methods have been
used, such as Support Vector Machines [4], Convolutional Neu-
ral Networks [5], k-Nearest Neighbors(k-NN) [6], Autoencoder
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Neural Network [7], Siamese Neural Networks [8], among
others.

Some studies in the literature are found related to combine
principal component analysis (PCA) with t-distributed stochas-
tic neighbor embedding (t-SNE) to perform classification of
structural changes in an aluminum plate using a piezoelectric
sensor network and lamb waves. One approach was based on
transforming the acquired signals into the frequency domain us-
ing the Fast Fourier Transform (FFT) algorithm [9]. A similar
approach is used in the time domain [10] reaching high values
of classification accuracy.

This study shows the development of a damage classifica-
tion methodology in jacket-type wind turbine foundations that
is based on using an ensemble of feature extraction methods
to reduce the high dimensionality of the acquired data and im-
prove the final average classification accuracy. The novelty of
this study is twofold. On one hand, with respect to data normal-
ization, it is worth noting the application of the so-called mean-
centered unitary group-scaling method (MCUGS), instead of
the more standard approaches, such as the z-score normaliza-
tion. On the other hand, the input of the classifier is the com-
bination of a linear (principal component analysis, PCA) and
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a non-linear (Laplacian eigenmaps) feature extraction strate-
gies. The combination of these two approaches is genuinely en-
riching: the transformation due to PCA maximizes the variabil-
ity of the original data while the Laplacian eigenmaps provide
locality-preserving properties and a natural connection to clus-
tering. The remainder of this paper is described as follows: Sec-
tion 2 shows the experimental setup. Next, Section 3 describes
the damage classification methodology. Following, Section 4
illustrates the results and finally, Section 5 outlines the main
conclusions of this study.

2. EXPERIMENTAL SETUP
A data-driven approach was performed in a laboratory-scaled
jacket-type wind turbine foundation. This laboratory-scaled
structure is composed of three parts from bottom to top: the
jacket, the tower and the nacelle. The total height of the struc-
ture is 2.7 m. The jacket was made of steel bars and bolts. Fig-
ure 1 illustrates the structure. The experimental setup includes:
• An arbitrary function generator (GW INSTEK AFG-2005),

to apply a white noise signal to the structure.
• The white noise signal is amplified and applied to an inertial

shaker (GW-IV47 from Data Physics).
• This signal produces a vibration response that is cap-

tured using eight triaxial accelerometers (PCB Piezotronics,
Model 356A17).

• The data acquisition process was performed using a cDAQ-
9188 chassis from National Instruments and six NI-9234
modules, each of which has four channels.

The experimental procedure is detailed as follows: first an
arbitrary function generator inserts a white noise signal. This
signal is amplified with factors 0.5, 1, 2 and 3 and it is ap-
plied through an inertial shaker placed in the nacelle that pro-
duces vibrations in the structure. The vibration-response-only
generated by the shaker is acquired by a set of 8 accelerome-
ters, bonded to the structure using petro wax (PCB Piezotronics,
model 080A109). The location of the accelerometers shown in
Fig. 1a was strategically defined according to a modal study [3].
Eight triaxial accelerometers capture the data, thus 24 sensors
in total acquired signals with a sampling frequency of 275 Hz
during 8.789 s obtaining 2417 data points per sensor. These 24
signals are arranged one after the other following an unfolding
procedure to finally obtain a feature vector in every experiment
of 58 008 features. This high dimensionality must be treated to
reduce the size of the feature matrix.

Figure 2 shows random samples of data collected before nor-
malization. More precisely, two samples associated with the
undamaged structure with minimum and maximum amplitudes
are shown in Fig. 2.

The jacket-type wind turbine foundation was made of steel
angle bars, also known as L-shaped profiles. In this work,
a 5 mm crack is performed at four different bars of the jacket,

(a) Sensor location in the structure

sensor 1

sensor 2

sensor 3

sensor 4sensor 5

sensor 6

sensor 7

sensor 8

(b) Introduced damage in different links of the structure

damage 1

damage 2

damage 3

damage 4

Fig. 1. Small-scale wind-turbine foundation structure
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(a) Raw signal for an undamaged sample using an amplitude of 0.5
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(b) Raw signal for an undamaged sample using an amplitude of 3
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Fig. 2. Raw signals [3] (blue) are shown along with the mean values µk
j (green) and the representation of the standard deviations

µk
j ±σ k

MCUGS (cyan) and µk
j ±σ k

MCGS (magenta). Dashed vertical lines separate the measures of the 24 sensors

one at a time. Figure 1b shows the jacket-type wind turbine
foundation structure with the four different types of damage,
applied one by one.

Experiments were performed following a number of different
measurements for the healthy and damage structures. Particu-
larly, 2460 measurements were obtained for the healthy struc-
ture and 820 measurements for every one of the four types of
damages applied to a link of the wind turbine foundation.

3. DAMAGE CLASSIFICATION METHODOLOGY
A feature extraction-based approach using manifold learning
algorithms is developed to improve the classification accu-
racy in a wind turbine foundation structural damage classi-
fication problem. The developed signal-processing methodol-
ogy is composed of four stages: data unfolding, normaliza-

tion using the mean centered unitary group scaling method
(MCUGS) [11], ensemble feature extraction and classification
through a XGBoost [12] model. This study aims to use an en-
semble of feature extraction algorithms, which include princi-
pal component analysis (PCA) [13] as linear feature extraction
method and Laplacian eigenmaps [14] as nonlinear manifold
learning algorithm. Figure 3 illustrates the stages of the devel-
oped structural damage classification methodology

A sensitivity study of the k parameter of the Laplacian Eigen-
maps algorithm is performed. A data set of five different struc-
tural states in a wind turbine foundation is used to validate
the proposed methodology. A 5-fold cross-validation procedure
was applied to obtain the final confusion matrix in the classifi-
cation problem. The final confusion matrix obtained after ap-
plying the ensemble feature extraction procedure represents a
classification accuracy of 100%.

Mean centered unitary
group scaling method

(MCUGS)

Data
Unfolding

Principal component
analysis (PCA)

Laplacian eigenmaps

Ensemble of feature extraction

Extreme gradient Boosting
XGBoost Classification

5-fold

Cross validation

Fig. 3. Stages of the developed structural damage classification methodology
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4. RESULTS
4.1. Classification performance measure
The average classification accuracy is selected as performance
measure in this study. The following equation represents its cal-
culation by each one of the 5 classes – t p: true positives, tn: true
negatives, f n: false negatives and f p: false positives in the con-
fusion matrix

accuracyi =
t pi + tni

t pi + tni + f ni + f pi
.

The final macro average is calculated for the accuracy as fol-
lows:

accuracy =
1
l

l

∑
i=1

accuracyi .

4.2. XGBoost parameters
In this study, a XGBoost classifier is used as a machine learn-
ing algorithm to classify the different classes in the wind turbine
foundation dataset. The hyperparameters of the XGBoost clas-
sifier were tuned using a GridSearchCV function. The selected
parameters in the XGBoost classifier algorithm are described in
Table 1.

Table 1
Parameters for the XGBoost classifier method

Parameter Value

learning_rate 0.1
n_estimators 1000
max_depth 8
min_child_weight 1
gamma 0
subsample 0.8
colsample_bytree 0.8
objective multi:softprob
nthread 4
scale_pos_weight 1
seed 27

4.3. PCA results
The results obtained when using PCA as the feature extraction
method are shown below in Fig. 4. The first 8 principal com-
ponents were selected to create a 5740×8 size feature matrix.

Fig. 4. 3D embedding obtained from PCA method, first three
components are plotted

The resulting average classification accuracy obtained after ap-
plying the combination of the PCA method with XGBoost
was 0.9992. Before the PCA method, the MCUGS method
was used to perform the scaling. The confusion matrix that ex-
presses the average accuracy value of 0.9992 obtained by using
the PCA and XGBoost methods is shown in Table 2. From Ta-
ble 2 is evident the perfect classification of DAMAGE 3 and 4
classes, while there were a few mistakes for the other classes
as the UNDAMAGED class had 3 mistakes, the DAMAGE 1
class had 5 mistakes and finally, the DAMAGE 2 class had 3
mistakes.

4.4. Laplacian eigenmaps eesults
Table 3 displays the average classification accuracy results for
the 5740× 8 size matrix obtained after applying the Laplacian
eigenmaps dimensionality reduction method. The values were
obtained by varying the parameter k proper to the Laplacian
eigenmaps method. It proves that as k increases the accuracy
value increases up to a maximum of 0.9995 when k = 100.

The best results obtained when using Laplacian eigenmaps
(k = 100) as a feature extraction algorithm are shown below in
Fig. 5. Figure 5 clearly shows the separation between classes
and interclass grouping. The output dimensionality after non-

Table 2
Confusion matrix obtained with the methods PCA + XGBoost, average accuracy = 0.9992

Predicted Class|

UNDAMAGED DAMAGE 1 DAMAGE 2 DAMAGE 3 DAMAGE 4

A
ct

ua
lC

la
ss

UNDAMAGED 2457 3 0 0 0

DAMAGE 1 5 815 0 0 0

DAMAGE 2 0 3 817 0 0

DAMAGE 3 0 0 0 820 0

DAMAGE 4 0 0 0 0 820
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Table 3
Average accuracy results obtained after varying the k parameter
of the Laplacian eigenmaps (LE) method when constructing its

neighborhood graph

k neighbors in LE Average accuracy

20 0.9615
30 0.9755
40 0.9894
50 0.9911
60 0.9935
70 0.9917
80 0.9954
90 0.9982

100 0.9995

linear feature extraction was fixed to 8 dimensions to create a
feature matrix of size 5740×8.

The confusion matrix that expresses the average accuracy
value of 0.9995 obtained by using the Laplacian eigenmaps
(k = 100) and XGBoost methods with the MCUGS scaling is
shown in Table 4. The perfect classification of DAMAGE 1 and
2 classes is evident from Table 4, while there were a few mis-
takes for the other classes as the UNDAMAGED class had 2
mistakes, the DAMAGE 3 class had 2 mistakes and finally, the
DAMAGE 4 class had 3 mistakes.

It is worth mentioning that for large values of k in the cal-
culation of the neighborhood graph in the Laplacian egienmaps
method, results are obtained that are close to those obtained
by the PCA method. As an example to illustrate the above, in
Fig. 6 the results of the first three dimensions of the embedding
produced by the Laplacian eigenmaps method are shown when

Fig. 5. 3D Embedding obtained from the Laplacian eigenmaps method, k = 100, first three dimensions are plotted
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Fig. 6. Representation of the first three dimensions obtained with the Laplacian Eigenmaps method, k = 700
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Table 4
Confusion matrix obtained with the Laplacian Eigenmaps and XGBoost methods, average accuracy = 0.9995, scaling with MCGS

Predicted Class|

UNDAMAGED DAMAGE 1 DAMAGE 2 DAMAGE 3 DAMAGE 4

A
ct

ua
lC

la
ss

UNDAMAGED 2458 0 2 0 0

DAMAGE 1 0 820 0 0 0

DAMAGE 2 0 0 820 0 0

DAMAGE 3 0 0 0 818 2

DAMAGE 4 0 0 2 1 817

Table 5
Confusion matrix obtained with the ensemble PCA and Laplacian Eigenmaps using XGBoost classifier method

Predicted Class|

UNDAMAGED DAMAGE 1 DAMAGE 2 DAMAGE 3 DAMAGE 4

A
ct

ua
lC

la
ss

UNDAMAGED 2460 0 0 0 0

DAMAGE 1 0 820 0 0 0

DAMAGE 2 0 0 820 0 0

DAMAGE 3 0 0 0 820 0

DAMAGE 4 0 0 0 0 820

k = 700. As seen in Fig. 6 the classes form rings but in particu-
lar, in the resulting representation, the Damage2, Damage3 and
Damage4 classes are mixed together.

4.5. Ensemble of PCA and Laplacian Eigenmaps
for feature extraction

Taking advantage of the first 8 principal components of the PCA
method and the 8 dimensions resulting of applying the Lapla-
cian Eigenmaps method. It is developed an ensemble of the
aforementioned features for a total of 8+8 = 16 features. The
final feature matrix has a size of 5740×16. This feature matrix
is used to train and validate a XGBoost classifier using a 5-
fold cross validation. The final average classification accuracy
reaches a value of 100% and its confusion matrix is showed in
Table 5.

5. CONCLUSIONS
In this study, a methodology for damage classification in a wind
turbine foundation was developed. The experimental test con-
sidered a only vibration response of the structure. It was excited
using a shaker and its response was measured with 8 triaxial ac-
celerometers. The following insights were found in the devel-
opment of the data processing methodology:

Data unfolding: the acquired data is arranged in a two-
dimensional matrix. Its rows are composed of the experimental
trials, and its columns are the product of time instant signals
multiplied by the number of sensors.

Data normalization: The MCUGS method was used to pre-
process the data to consider the differences in magnitude of the
signals acquired by different accelerometers.

Ensemble of feature extraction: a combination of the fea-
ture matrices obtained after applying the PCA method and after
applying the Laplacian eigenmaps method was used to improve
the average classification accuracy.

Data classification: The XGBoost classifier method was
used satisfactorily as machine learning algorithm, a 5-fold cross
validation was performed obtaining a 100% of average classifi-
cation accuracy.

As future work it is desirable to test the developed method-
ology in a real scale wind turbine foundation structure.
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