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Abstract: This paper presents new directions in the modeling of electric arc furnaces.
This work is devoted to an overview of new approaches based on random differential
equations, artificial neural networks, chaos theory, and fractional calculus. The foundation
of proposed solutions consists of an instantaneous power balance equation related to the
electric arc phenomenon. The emphasis is mostly placed on the conclusions that come from
a novel interpretation of the equation coefficients.
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1. Introduction

Various branches of industry have been strongly dependent on steel elements for decades.
The range of applications of this robust metal is very wide and has not changed drastically
over the years. However, what does change is the idea behind its production, which due to the
properties of the metal, requires large amounts of energy. In modern industry, awareness of the
limitations related to environmental protection, economic costs, or availability of fossil fuels
resulted in increasing focus oriented on the use and improvement of steel production methods
such as electric arc furnaces (EAFs). The EAFs have been known to metallurgy for many years,
but relatively recently research related to their impact on power quality became very important.

Due to the dynamic, nonlinear and stochastic nature of the electric arc phenomenon occurring
in the EAFs, the power supply system can be exposed to, among others, harmonics, voltage sags
or swells, and other undesired transients [1]. In order to correctly design and implement power
quality improvement systems that mitigate these issues, it is necessary to have an accurate digital
or physical model of the EAF [2, 3]. Furthermore, such models can positively influence EAF
control systems, resulting in an improvement in their effectiveness [4].
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The most widely used and easiest to analyse EAF models are digital ones, most often based
on the Cassie, Mayr, hybrid Cassie-Mayr [5] and power balance equations. These, however, are
most often used to simulate steady state, which in a real furnace never occurs because of random
effects of the electric arc and behavior of the furnace charge. These properties are, sometimes,
incorporated into the considered models with the addition of chaotic [6], modulated [7], or
stochastic [8] components, mostly directly in the time domain, but such an approach can also
be used to represent variations in each harmonic component [9]. Apart from models based on
differential equations, models based on an artificial neural network (ANN) are also popular.
For example, supported with suitable feature extraction methods, such models are capable of
modeling the dynamic 𝑣− 𝑖 characteristic of the EAF without any physical model as support [10].

The aim of this work is to investigate the potential of four different theoretical approaches in
the development of more accurate models of the EAF. The proposed directions include random
differential equations, artificial neural networks, chaos theory, and fractional calculus. The foun-
dation for the development of each model consists of the instantaneous power balance equation.
In the following sections, the measurement data used for model development are presented along
with the implementation and comparison of the models taking into account the deterministic and
stochastic parts. Additionally, the occurrence of two types of stochastic properties of the EAF
is taken into account. The implications of methods required for the comparison of stochastic
models are also discussed. This paper is a summary and comparison of previous research made
throughout recent years regarding the topic of EAF modeling. The results of comparison allow
indication of strengths and weaknesses of each method. Consequently, it leads to selection of the
model that will best suit further sharing through direct implementation in transient simulation
software. This, in turn, would support analyses related to the design of power systems or power
quality improvement systems in real industrial facilities.

2. Electric arc furnace

2.1. Construction and electrical equipment
The main part of the three-phase EAF consists of a chamber in which the furnace charge

is placed. The roof of the chamber is equipped with three movable graphite electrodes. The
electrodes are electrified, and when they reach a certain height in close proximity to the load,
the electric arcs ignite. The heat generated by this phenomenon melts the steel until it reaches
the desired physical conditions. The furnace work cycle includes: charging, melting, refining,
de-slagging, and tapping stages.

A simplified schematic of the EAF electrical circuit is presented in Fig. 1. It consists of
a supply HV/MV transformer (𝑇1) and an electric arc furnace MV/LV transformer (𝑇2). Next,
𝑋LSC represents short circuit reactance at Bus 1, 𝐿 𝑓 and 𝑅 𝑓 represent the inductance and
resistance of the feeder connecting the supply transformer and the EAF transformer, 𝐿𝑐 and 𝑅𝑐

represent the equivalent impedance of the flexible cables, bus conductors, and graphite electrodes.
𝑇1 is a 400/63/33 kV transformer. Then a 𝑇2 63/0.718 kV transformer is connected to the EAF
with flexible cables. During measurements conducted on the low voltage side of the furnace
transformer, the 𝐿𝑐 and 𝑅𝑐 parameters can significantly influence the results, so it is necessary to
subtract related voltage drops.
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Fig. 1. Simplified diagram of the EAF circuit

2.2. Deterministic model
Although the EAF is most often constructed as a three-phase device, a description of a single-

phase current and voltage is sufficient as it can then be extended to three phases. Therefore,
we will limit further considerations to the description of a single electric arc phenomenon. The
solutions proposed in this paper are based on a nonlinear differential equation originating from
an instantaneous power balance of the electric arc. It was introduced by Acha, Semlyen, and
Rajakovic [11] and takes the following form:

𝑘1𝑟
𝑛 (𝑡) + 𝑘2𝑟 (𝑡)

d𝑟 (𝑡)
d𝑡

=
𝑘3

𝑟𝑚+2 (𝑡)
𝑖2 (𝑡), (1)

where: 𝑘 𝑗 represents model coefficients ( 𝑗 = 1, 2, 3), 𝑚 and 𝑛 are the parameters related to an
EAF work cycle (𝑚, 𝑛 = 0, 1, 2), 𝑟 (𝑡) is the arc radius, 𝑖(𝑡) is the arc current.

The model is also supplemented by an additional equation that describes the voltage:

𝑣(𝑡) = 𝑘3

𝑟𝑚+2 (𝑡)
𝑖(𝑡). (2)

The parameters 𝑚 and 𝑛 of (1) are related to a stage in which EAF operates. Most often, their
values are assumed to take values of 𝑚 = 0 and 𝑛 = 2, which corresponds to the melting stage.
On the other hand, 𝑘 𝑗 coefficients are related to the proportionality of power accumulated and
dissipated through the arc column. Most often, they are assumed constant and their original values
were proposed by Ozgun and Abur [12]: 𝑘1 = 3 000, 𝑘2 = 1 and 𝑘3 = 12.5. The paper focuses
specifically on the EAF melting stage, so the parameters 𝑚 and 𝑛 are assumed to be constant and
equal to 0 and 2, respectively.

The model described by (1) has been approved by the IEEE Task Force on Harmonics
Modeling and Simulation as one of the most important arc models [13]. Additionally, it has been
implemented, among others, in PSCAD software [14]. However, in the presented form, it is only
capable of representing the deterministic properties of the EAF characteristic.

2.3. Stochastic properties of the EAF
As stated in the introduction, the EAF is an example of disturbing load which can cause many

different power quality problems. The most challenging aspect of the EAF influence on the power
system is that the arc behaves randomly. These stochastic properties are also observable in the
measurement data, which is a foundation for the development of the EAF model. Figure 2 presents
an exemplary measurement data set consisting of single-phase current and voltage waveforms,
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both in long- and short-term perspective. The figure shows the measurement dataset that was a base
for the development of the EAF models presented in our previous works, cited appropriately in
the following sections.

(a) (b)

Fig. 2. Measured current and voltage waveform of a single phase of EAF during the melting stage in long- (a)
and short-term perspective (b) [15]

As shown, there are two main stochastic properties that are observable in the data. The first
one is related to global changes of the characteristic shape, which is also related to variations
in the envelope of both measured signals. The second local stochastic behavior is more visible
around the peak values of the voltage waveforms. It takes the form of high-frequency ripples,
which are only present in the voltage signal.

3. New models of the electric arc furnace

An accurate model of the electric arc phenomenon should incorporate all of its properties,
including not only the deterministic part, but also both stochastic properties. The main goal of this
paper is to examine the possibilities of developing an arc representation more accurate than that
based solely on (1). For this purpose, we have investigated several different theoretical approaches,
such as random differential equations (RDEs), artificial neural networks (ANNs), chaos theory,
and fractional calculus.

Each approach has its strengths and weaknesses – each has a potential for improving the
representation of the electric arc phenomenon, but some are limited to improving the accuracy
only in chosen areas, e.g., only in terms of global stochastic properties. In order to organize
and provide a clear layout of the contribution of this paper, we have sorted all of the developed
models into categories designated by a theoretical basis and the type of property that the model
reflects. The summary was introduced in Table 1, which contains the names or abbreviations of
the specific methods used for the implementation of each approach. The following subsections
provide their description and exemplary.

What is significant is that all of the proposed solutions that incorporate stochastic processes
of the EAF rely on a novel interpretation of the existing coefficients of (1). Namely, we propose
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Table 1. Summary of EAF models with a breakdown between theoretical approaches and their ability to
reflect different EAF properties

Model range
Model type

ODE RDE ANN Chaos
theory

Fractional
calculus

Deterministic part Power balance
equation – Dual MLP –

HW-based

Stochastic Global – Stochastic
processes M-NARX

LSTM

Chaotic
models

models

part
Local – identification – – -

a resignation from the assumption that 𝑘 𝑗 are constant. Instead, we suggest the assumption that
the aforementioned stochastic properties are caused by the variations of those coefficients.

3.1. Random differential equations

The first proposed model is focused on the novel interpretation of the 𝑘 𝑗 coefficients. The
main assumption is that their values are no longer constant, and instead they are responsible for
the variations observed in the EAF characteristic. Due to the frequency of those variations, we
have also assumed that the 𝑘 𝑗 coefficients are not continuous but discrete-time processes. Namely,
it is assumed that they are constant throughout a frame of a certain length, and then their value
changes for the next frame.

The estimation of the 𝑘 𝑗 values was conducted based on the measurement data but separately
and iteratively for each frame. Estimation related to a single frame was performed with a genetic
algorithm (GA). The frame-long clipping of the current waveform was taken as input to (1),
which, together with (2), allows the calculation of the output voltage. The output voltage was then
compared to the clipping of the measured voltage. The GA was applied in order to minimize the
root mean square error (RMSE) between both signals to obtain best fitting values of 𝑘 𝑗 coefficients
for each frame. Formally, the optimization problem can be described as follows:

min
𝑘1 ,𝑘2 ,𝑘3

√√√
1
𝑁

𝑁∑︁
𝑖=1

(𝑣𝑖 − 𝑣̂𝑖)2 , (3)

where: 𝑣𝑖 is the 𝑖-th sample of the measurement voltage, 𝑣̂𝑖 is the 𝑖-th sample of the simulated
voltage, 𝑁 is the number of samples in the frame.

In this way, three discrete-time stochastic processes 𝐾 𝑗 , were obtained. In order to ensure
proper identification, we have tested different lengths of the frame and starting points of the data
division. The analysis suggested that period-long frames are appropriate, and it did not show
any significant differences between different starting points. The 𝐾 𝑗 processes are visualized
in Fig. 3. Detailed investigation of properties of the coefficient estimation can be found in our
previous papers [15] and [16].



162 D. Grabowski, M. Klimas Arch. Elect. Eng.

Fig. 3. 𝐾 𝑗 discrete-time stochastic processes obtained from the measurement data [17]

Due to such an interpretation of the coefficients of (1), the formula actually becomes an RDE:

𝐾1 (𝑙)𝑅2 (𝑡) + 𝐾2 (𝑙)𝑅(𝑡)
d𝑅(𝑡)

d𝑡
=
𝐾3 (𝑙)
𝑅2 (𝑡)

𝐼2 (𝑡), (4)

where: 𝐾 𝑗 (𝑙) are coefficients represented by discrete-time stochastic processes ( 𝑗 = 1, 2, 3),

𝑙 is the current frame number, 𝑙 =
[
𝑡

𝑇𝑤

]
, 𝑇𝑤 is the length of a frame, 𝑅(𝑡) is the stochastic

process representing arc radius, 𝐼 (𝑡) is the stochastic process representing arc current, 𝑉 (𝑡) is the
stochastic process representing arc voltage:

𝑉 (𝑡) = 𝐾3 (𝑙)
𝑅2 (𝑡)

𝐼 (𝑡). (5)

Such an approach results in a model capable of reflecting the global stochastic behavior of
the EAF. However, local stochastic properties are not included. Incorporation of those requires
a more detailed description of the voltage ripples observed in the measurement data. Firstly, we
have filtered out low-frequency components in order to investigate the ripples only. To do so,
we have applied a high-pass filter with cutoff frequency of 600 Hz to the voltage waveform. The
obtained signal is presented in Fig. 4.

Fig. 4. High-frequency component of the measured voltage waveform – ripples related to
local stochasticity [17]

The further analysis consisted of the calculation of autocorrelation (ACF) and partial auto-
correlation of the ripple signal, as well as of its first order difference Δ𝑣rip = 𝑣rip (𝑛) − 𝑣rip (𝑛− 1),
𝑛 = 2, 3, 4, . . ..
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The results presented in Fig. 4 and Fig. 5 suggest that the ripple signal can be directly
represented with a stochastic process. An addition of this high-frequency signal to the output
waveform obtained with (4) and (5) results in the overall output of the RDE model capable of
reflecting not only the deterministic part of the EAF characteristic, but also global and local
stochastic changes.

(a) (b)

Fig. 5. Autocorrelation and partial autocorrelation of the 𝑣rip (a) and Δ𝑣rip (b) signals [18]

3.2. Artificial neural networks

The next proposed approach is based on the application of ANNs, which are very popular
and widely used tools appropriate for many different purposes. There are a variety of different
topologies of ANNs. There are many advanced ANN-based approaches supporting functionality
of the EAFs, however, many of them are related to the metallurgical processes or the structural
health of the device itself, as shown, e.g., in [19] and [20]. Some of the other existing methods
are more similar to ours because they too are focused on modeling of the electrical properties of
the EAF. Sometimes various sets of features are taken into account, and the output information
differs – some methods model the 𝑣 − 𝑖 characteristic directly [21,22], while others focus, i.e., on
power quality measures [23]. Here, for EAF modeling, we have chosen three ANN models, two
of which belong to the group of shallow neural networks, while the third belongs to deep learning
methods.

The first shallow model comes in two versions, both of which apply a Multilayer Perceptron
(MLP) neural network. This universal approximator is designed to be trained to reflect the relation
between input and output with minimal error. In this paper, an MLP model was used as a black
box model trained directly with current waveform as input and voltage waveform as output. It
was intended as a reference point for other solutions. The second version of the MLP model
assumed the use of two identical MLP networks (dual MLP model), one reflecting the part of
EAF characteristic with rising current and the second for the part with falling current. This
allowed us to train the model to properly reflect the hysteresis visible in the characteristic, unlike
the first version. However, both versions could not reflect any stochastic properties.

A second shallow model was designed in order to reflect not only static hysteresis of the EAF
characteristic but also its dynamic changes. In order to do so, the model described with (1) was
transformed into a form where the current was still an input, but the arc conductance was an
output. This approach allows separation of a linear dynamic block which we have modeled with
a modified nonlinear exogenous model (M-NARX) presented in Fig. 6.
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Fig. 6. Topology of the M-NARX model used to simulate arc conductance [24]

The second shallow model has indeed introduced the dynamic properties into the simulated
EAF characteristic, but none of the shallow ANNs were able to include the local stochastic part.
In order to develop an ANN-based model that was capable of doing so and to test other, modern
solutions, we have developed a deep learning model based on long short-term memory (LSTM)
cells. An LSTM network consists of multiple LSTM cells that are equipped with gates that allow
certain information to be retained throughout its operation. In this way, the LSTM networks are
capable of learning and reproducing various properties of long signals.

In our application, four separate LSTM networks were implemented and trained with the
stochastic processes obtained by estimating the parameters of (1). The exact datasets used for this
purpose are presented in a previous subsection devoted to the RDE model in Fig. 3 and Fig. 4. In
this way, the LSTM networks were applied instead of a detailed stochastic process identification
procedure in order to learn and replicate appropriate stochastic processes independently. This in
turn, once again results in an EAF model which is capable of reflecting both global and local
stochastic parts. A more detailed description of the proposed shallow and deep models has been
provided in our previous papers [17] and [18].

3.3. Chaos theory

The next proposed approach is based on an application of chaotic systems. Chaotic signals,
although deterministic, can behave unpredictably due to their high sensitivity to initial conditions
and limited numerical accuracy. Our idea was to incorporate chaotic properties in order to
obtain stochastic-like signals which would represent the global stochastic properties of the EAF.
A similar approach can be found in [25], where a signal from the Lorenz chaotic system is used
to modulate the arc resistance and inductance. Our method differs from this example because
it applies a chaotic signal to represent changes of power balance equation coefficients, not the
resistance and inductance directly.

Similarly to the model presented in previous subsection, we have proposed a solution to
adapt chosen chaotic system to the stochastic processes 𝐾 𝑗 described in Section 3.1, (shown in
Fig. 3). For this purpose, we have selected four different chaotic systems: Lorenz system, a system
that describes the Chua circuit, Rössler system, and a four-wing attractor system introduced
in [26]. In order to ensure the best match between the generated chaotic signals and stochastic
processes 𝐾 𝑗 , we have conducted an optimization of the selected parameters. In the following, we
present this approach on the example of the Lorenz system, which was formulated by E. Lorenz
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during his research on thermal convection. It can be described by the following set of differential
equations: 

d𝑥
d𝑡

= 𝐿1 (𝑦 − 𝑥),

d𝑦
d𝑡

= 𝑥 (𝐿2 − 𝑧) − 𝑦,

d𝑧
d𝑡

= 𝑥𝑦 − 𝐿3𝑧,

(6)

where: 𝐿1 is the coefficient related to the Prandtl number, 𝐿2 is the coefficient related to the
Rayleigh number, 𝐿3 is the geometric factor.

The Lorenz system dynamics is often considered for 𝐿1 = 10, 𝐿3 =
8
3

and a variable 𝐿2.
However, for chaotic behavior, 𝐿2 must be greater than

𝐿 ′
2 =

𝐿1 (𝐿1 + 𝐿3 + 3)
𝐿1 − 𝐿3 − 1

= 24.74.

In order to fit the selected variable 𝑥 to the 𝐾 𝑗 process, we have conducted an optimization
of the 𝐿2 value and of a sampling frequency of signal 𝑥, denoted by 𝑓𝑠 . Both parameters should
be fitted so as to obtain stochastic-like signals which correspond to the target not only with
the distribution of their values but also their autocorrelation. Therefore, we have proposed two
goal functions which apply the Cramér-von Mises distance between the simulated and target
histograms as well as their autocorrelation functions. The functions are as follows:

𝑓1 (·) =
𝑁∑︁
𝑝=1

(
ℎmeas
𝑝 − ℎchaotic

𝑝

)2
,

𝑓2 (·) =
𝑀∑︁
𝑝=1

(
𝐴𝐶𝐹meas

𝑝 − 𝐴𝐶𝐹chaotic
𝑝

)2
,

(7)

where: ℎ𝑝 is the 𝑝-th histogram bar (from measurement or simulated data), 𝑁 is the number of
the histogram bars, ACF𝑝 is the autocorrelation value for the 𝑝-th lag, 𝑀 is the number of the
considered lags.

The same procedure as described above was repeated for remaining chaotic systems, where
again sampling frequency 𝑓𝑠 and one selected parameter was fitted. The overall combined model
had the best precision for the representation of 𝐾1 and 𝐾3 with the Lorenz system and 𝐾2 with
the four-wing attractor system. The details of this approach have been presented in our previous
paper [27].

3.4. Fractional calculus

Apart from the aforementioned solutions oriented on incorporating of the stochastic part into
the EAF model, we have also developed a solution for improving the deterministic part described
by the power balance equation. Due to the fact that the electric arc is a complex phenomenon, we
have proposed an extension of the ODE model to a more general form which includes non-integer
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order of differentiation. Such a model, based on the fractional calculus, would be suitable for
more states than a classic one.

The idea behind this approach can be well explained with the support of a visual representation
of (1). Figure 7 presents a block diagram of the basic power balance model [28]. This model is
a Hammerstein–Wiener (HW) model, which is characterized by the separation of two nonlinear
static blocks from one linear dynamic block in the middle. In order to incorporate the fractional
calculus into this model, we have replaced the integration block in the linear part of the model with
a more general block representing the integro-differential operator. Such an operator is described
as [29]:

𝑎𝐷
𝛼
𝑡 =


d𝛼

d𝑡𝛼
: 𝛼 > 0,

1 : 𝛼 = 0,
𝑡∫

𝑎

(d𝑡)𝛼 : 𝛼 < 0.

(8)

where: 𝑎 and 𝑡 are the bounds of the operation and 𝛼 is an order of the fractional operator, 𝛼 ∈ 𝑅.

Fig. 7. Block diagram of the power balance equation of the electric arc

For numerical calculations, the Grünwald-Letnikov (GL) implementation of operator (8) is
often used. It can be described as follows:

𝑎𝐷
𝛼
𝑡 𝑦(𝑡) = lim

𝑇𝑠→0

1
𝑇 𝛼
𝑠

[
𝑡−𝑎
𝑇𝑠

]∑︁
𝑗=0

(−1) 𝑗
(
𝛼

𝑗

)
𝑦 (𝑡 − 𝑗𝑇𝑠) , (9)

where 𝑇𝑠 is the sampling period.
In order to estimate 𝛼 fitting the measurement data in the best possible way, we have again

conducted the estimation process as described in Section 3.1 but with extension to two cases
that include the fractional version of the power balance equation: one with 𝛼 ≠ 1 throughout
all frames and one with variable 𝛼 = var. The variable 𝛼 case assumes that, similar to the 𝑘 𝑗
coefficients, its value remains constant for each period-long frame and then for the next frame
a new value is fitted independently. This way, we have obtained information regarding the quality
of representation of the arc characteristic extended to either constant or variable, non-integer order
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of differentiation. The results derived from this approach indicate that incorporation of a fractional
order to the equation allows better reflection of the EAF waveform shape. The identification of
stochastic processes governing the fractional order model is yet to be conducted in the nearest
future. Therefore, the fractional model, capable of generating appropriate stochastic realizations
by itself will be the subject of next publications.

4. Exemplary results

The procedures described in the previous section constitute the theoretical background for
the development of EAF models. Based on the results of data-driven optimization algorithms
and stochastic process identification, we have implemented the models in Matlab software. In
order to present and compare their capabilities, we have applied an exemplary clipping of the
measurement current waveform as the input and computed the output voltage. The applied input
current was the same for all models. The output waveform was then compared to the respective
clipping of the measurement voltage. The waveforms obtained for each implemented model were
presented in Fig. 8. It is worth stressing that every model that includes the stochastic part does not
exactly mimic the measurement waveform. The voltage signals generated by them are only single
exemplary realizations obtained by means of stochastic processes. Therefore, the discrepancies
between the presented realizations are not related to the errors in modeling but rather to differences
between two independent realizations of the stochastic processes. In the case of models reflecting
only the deterministic part, such an exact comparison is, in turn, desirable.

In order to bring more details for comparison between the models, we have also introduced
a statistical measure based on the RMS error of averaged voltage waveforms either from the
measurement or simulation data. Each sample of the averaged voltage has been calculated as
a mean value of corresponding points taken from the consecutive periods throughout all 10 s long
dataset. Additionally, we have calculated a standard deviation for each of those points. Similarly
to the approach presented in our previous work [18], we have calculated two errors, one is the
RMS of the difference between the averaged model output and averaged measurement voltage.
The second is the RMS value of the difference between the standard deviations computed from
the averaged model output and the averaged measurement voltage. Both results have been divided
by the RMS of the averaged voltage and expressed in percentages:

𝜀𝜇𝑣 =

√√√√√√√√√√√√√
𝑇0∫
0
(𝑣AVG (𝑡) − 𝑣̂AVG (𝑡))2 d𝑡

𝑇0∫
0
(𝑣AVG (𝑡))2 d𝑡

· 100% =
|Δ𝑉AVG |
|𝑉AVG |

· 100%, (10)

𝜀𝜎𝑣 =

√√√√√√√√√√√√√
𝑇0∫
0
(𝜎𝑣 (𝑡) − 𝜎̂𝑣 (𝑡))2 d𝑡

𝑇0∫
0
(𝑣AVG (𝑡))2 d𝑡

· 100% =
|Δ𝜎𝑣 |
|𝑉AVG |

· 100% . (11)
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(a)

(b) (c)

Fig. 8. Comparison between measurement voltage and the simulated voltages obtained by RDE, LSTM and
chaotic models (a); shallow ANN models (b) and fractional models (c)

What is different from the results from the cited paper is that here we have applied longer
datasets for the error calculation in order to investigate the performance of proposed models
throughout richer input data. Therefore, the models have been subjected to larger changes of the
shape and amplitude of the input signals. An exemplary visual comparison of the data used for
error calculation is presented in Fig. 9, while exact error measures are presented in Table 2.
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Fig. 9. Comparison between averaged measurement voltage and averaged LSTM model output, both with
95% confidence bounds calculated based on standard deviation of the samples

Table 2. Summary of EAF model performance using measure described with (10) and (11)

RDE Chaotic
ANN

Dual MLP M-NARX LSTM

Averaged voltage root
mean square error, 𝜺𝝁v

16.4% 8.5% 14.2% 13.9% 10.9%

Standard deviation root
mean square error, 𝜺𝝈v

27.2% 16.8% 12.5% 8.5% 13.2%

5. Conclusions

This article presents the development of some new EAF models using four different theoret-
ical approaches, i.e. random differential equations, artificial neural networks, chaos theory, and
fractional calculus. We have presented the potential of each new direction in modeling of both
the deterministic and stochastic components. We have implemented several models incorporat-
ing deterministic and stochastic properties and compared their outputs. Each proposed solution
effectively satisfies the appropriate initial assumptions about its performance. Moreover, every
model is based on the measurement data obtained from a real furnace and therefore accurately
reflects phenomena observable in industrial power systems.

Due to the random nature of the EAF, a detailed and quantitative comparison of stochastic
models requires suitable statistical methods. It is worth stressing that in the case of the models
which output only a single realization of a stochastic process, their output cannot be directly
compared with the target signal using classic error measures such as, for example, RMSE.
Instead, more complex statistical measures shall be applied. We have introduced such a measure
based on averaged voltage waveforms. The quantitative comparison indicated that among the
proposed models, the chaotic model is characterized by the lowest error related to the general
averaged shape of the waveform, whereas the M-NARX model has the lowest error in terms of
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the standard deviation. The relatively large error obtained for RDE models mainly connected
with the simplifying assumption that states the lack of correlation between the 𝑘 coefficients
described with the stochastic processes. The advantages of this model in terms of simplicity of
implementation and coverage of the autocorrelation features of the coefficients prevent one from
arguing that it is not useful compared to others before further investigation. Such research is
planned in the future.
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