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Generalized observer design of index one for descriptor
systems with unknown inputs

Abhinav KUMAR and Mahendra Kumar GUPTA

Generalized observers are proposed to relax the existing conditions required to design
Luenberger observers for rectangular linear descriptor systemswith unknown inputs. The current
work is focused on designing index one generalized observers, which can be naturally extended to
higher indexes. Sufficient conditions in terms of system operators for the existence of generalized
observers are given and proved. Orthogonal transformations are used to derive the results.
A physical model is presented to show the usefulness of the proposed theory.
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1. Introduction

Descriptor systems – also known as differential algebraic equations (DAEs)
or singular systems – are combinations of differential and algebraic equations
implicitly. Many real life plants are naturally modelled as descriptor systems,
such as constrained mechanical systems [1, 2], chemical control processes [3, 4],
electrical circuits [5, 6], and secure communications [7], for instance.
This work discusses the linear time invariant descriptor system with unknown

inputs as follows

𝐸̄ ¤𝑥 = 𝐴̄𝑥 + 𝐵̄𝑢 + 𝐹̄𝑣, (1a)
𝑦̄ = 𝐶̄𝑥 + 𝐺̄𝑣, (1b)
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where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑘 , and 𝑦̄ ∈ R𝑝 are the state vector, the control input vector, and
the output (measurement) vector, respectively. 𝑣 ∈ R𝑞 is the vector of unknown
inputs. 𝐸̄ ∈ R𝑚×𝑛, 𝐴̄ ∈ R𝑚×𝑛, 𝐵̄ ∈ R𝑚×𝑘 , 𝐹̄ ∈ R𝑚×𝑞, 𝐶̄ ∈ R𝑝×𝑛, and 𝐺̄ ∈ R𝑝×𝑞
are constant matrices. System (1) is called regular descriptor system if matrices
𝐸 and 𝐴 are square and ∃ 𝜆 ∈ C such that det(𝜆𝐸̄ − 𝐴̄) ≠ 0. Regularity is the
condition for the existence and uniqueness of the solution for descriptor systems.
A descriptor system that is not regular is called irregular. In the case, where 𝐸̄
and 𝐴̄ are square and 𝐸̄ is nonsingular, the system is well known as state space
representation. In this article, we study rectangular descriptor systems where the
number of equations is not necessarily equal to the number of states. It is evident
that rectangular descriptor systems, often referred as over- or under-determined
systems [8], are the most general form of irregular descriptor systems. Therefore,
the system (1) is sufficiently general and covers enormous types of linear control
systems.
In the literature, unknown inputs are also referred as noises or disturbances [9].

In many practical situations, descriptor systems are modeled with presence of
unknown inputs. Contrary to state space systems, solutions of descriptor sys-
tems contain higher ordered input derivatives, see [2, 10]. As a result, descriptor
systems are exceptionally delicate to slight input changes. Thus, considering
unknown inputs in observers design problems for descriptor systems are more
important compared to observer design for state space systems. In this work, we
are considering unknown inputs in the most general form by considering their
presence in the both dynamic and output equations. Considering the presence of
unknown inputs in the measurement equation (1b) is essential because contrary
to known inputs, it is not possible to take out unknown inputs from the output
equation without loss of generality.
The problem of state estimation for dynamical systems is well established in

the control theory since it is utilized for various purposes e.g. feedback control
and synchronization [11]. Various kinds of observers have been designed for
system (1) for state estimation. For a comparison, we enlist a few types of the
observers given in the previous works.

(O1) ¤𝑧 = 𝐿1𝑧 + 𝐿2𝑦 + 𝐿3𝑢,
𝑥 = 𝐹1𝑧 + 𝐹2𝑦 + 𝐹3𝑢.

(O2) ¤𝑧 = 𝐿1𝑧 + 𝐿2𝑦 + 𝐿3𝑢,

𝑥 = 𝐹1𝑧 +
𝑠∑︁
𝑖=0

(𝐹2,𝑖𝑢(𝑖) + 𝐹3,𝑖𝑦 (𝑖)),

where (𝑖) denotes the 𝑖-th derivative. Integer 𝑠 > 0 is called index of the
observer (O2).

(O3) ¤̂𝑥 = 𝐿1𝑥 + 𝐿2𝑦 + 𝐿3𝑢 + 𝐿4 ¤𝑦.
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(O4) 𝐸 ¤̂𝑥 = 𝐿1𝑥 + 𝐿2𝑦 + 𝐿3𝑢 + 𝐿4
𝑞∑︁
𝑖=1

𝑤𝑖,

𝑤
(𝑖)
𝑖

= 𝐹𝑖 (𝑦 − 𝐶𝑥) + 𝑀𝑖𝑤, 𝑖 = 1, 2...𝑞.
In the literature, observers of the form (O1) are called Luenberger observers

[9, 11, 12]. Observers of the form (O2) are called generalized observers [13].
Observers of the form (O3) and (O4) are called proportional–derivative (PD)
observers [14,15], and proportional–integral (PI) observers [16,17], respectively.
The literature reflects that Luenberger observers (O1) are themost adopted among
all other observers. It is because of the fact that Luenberger observers are explicit
in nature and consequently simple to carry out for implementation. However, for
descriptor systems with unknown inputs, designing of generalized observers is
still an untouched area of research.
Darouach et al. [18] have utilized the ideas of generalized Sylvester equation

and generalized inverse to design a Luenberger observer for system (1) under
assumptions (H1) and (H2) as follows. Proportional Multiple-Integral observer
of the form (O4) has also been designed using the assumptions (H1) and (H2) [17].

(H1) rank


𝐸̄ 𝐴̄ 𝐹̄ 0
0 𝐸̄ 0 𝐹̄

0 𝐶̄ 𝐺̄ 0
0 0 0 𝐺̄

 = rank
[
𝐸̄ 𝐹̄

0 𝐺̄

]
+ 𝑛 + 𝑞,

(H2) rank
[
𝐴̄ − 𝜆𝐸̄ 𝐹̄

𝐶̄ 𝐺̄

]
= 𝑛 + 𝑞 ∀ 𝜆 ∈ C̄+,

where C stands for the set of complex numbers. C̄+ = {𝑠 |𝑠 ∈ C, 𝑅𝑒(𝑠) ­ 0}
is the closed right half complex plane.
Luenberger PD or PI observers for system (1) have been designed under the

least restrictive assumptions (H1) and (H2). As a matter of fact, (H1) and (H2) are
the generalizations of the impulse observability and detectability properties of
linear descriptor systemswithout unknown inputs to (1), respectively [19].We can
obtain these conditions by substituting 𝐹̄ and 𝐺̄ as zeromatrices in (H1) and (H2).
Hou and Müller [13] have proved that the detectability is a necessary condition
and therefore, can not be relaxed further for Luenberger or generalized observer
design. It has been observed that many practical models do not fulfill (H1). To
loosen up the condition (H1), observers of the form (O2) are introduced, which
can be designed under milder conditions. In generalized observers, the minimum
possible index is preferred to minimize the noise which may be occurred due
appearance of derivatives terms.
In this paper, we replace the condition (H1) with the following proposed con-

dition (H0) for designing index one generalized observer which can be understood
as the main contribution of the paper.
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(H0) rank


𝐸̄ 𝐴̄ 𝐹̄ 0 0
0 𝐸̄ 0 𝐹̄ 𝐴̄

0 𝐶̄ 𝐺̄ 0 0
0 0 0 𝐺̄ 𝐶̄

0 0 0 0 𝐸̄


= rank


𝐸̄ 𝐹̄ 𝐴̄

0 𝐺̄ 𝐶̄

0 0 𝐸̄

 + 𝑛 + 𝑞.
This work is devoted to design index one generalized observers of the form

(O2) under the conditions (H0) and (H2). The proof of (H1)⇒(H0) is given in
Section 2, which shows that (H0) is milder than (H1). On the other hand, an
example that satisfies only the condition (H0) but not (H1), is given in Section
4. It is also notable that the condition (H0) is being proposed for the first time
and has never been used in the literature for any other control theory purposes.
In order to prove our results, we use orthogonal transformations to ensure the
numerical stability of the proposed methods.
The notational convention is as follows. A matrix is called to be full column

(row) rank provided that its rank is equal to the number of its columns (rows). 0
and 𝐼 are the zero and identity matrices of compatible dimensions, respectively.
Sometimes, to be specific, we use 𝐼𝑛 to represent the identity matrix of dimen-
sion 𝑛. R𝑚×𝑛 represents the 𝑚 × 𝑛 real matrix set. 𝐴𝑇 stands for the transpose of
a matrix 𝐴.
The rest of the paper is structured as follows: In Section 2, it is proved that

the condition (H1) implies (H0). Section 3 describes the designing of the index
one generalized observer for system (1). In Section 4, one real-life model is given
to show the requirement and efficiency of the proposed technique. At the end,
Section 5 concludes the paper.

2. System Decompositions and Preliminaries

In this section, we exhibit system decompositions and establish some funda-
mental theorems, which are used for observer design in the next section. Firstly,
we state the following proposition which is used to develop subsequent results.

Proposition 1 [20] Let 𝑋 ∈ R𝑚1×𝑟1 , 𝑆 ∈ R𝑚1×𝑟2 , and 𝑌 ∈ R𝑚2×𝑟2 . Then

rank
[
𝑋 𝑆

0 𝑌

]
= rank 𝑋 + rank 𝑌,

if at least one of the following conditions holds.

(i) 𝑋 is full row rank,

(ii) 𝑌 is full column rank.
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Let rank 𝐸̄ = 𝑛0 then there exists an orthogonal matrix 𝑃 such that 𝑃𝐸̄ =

[
𝐸

0

]
,

where 𝐸 is a full row rank matrix. Other system matrices are also decomposed

accordingly as 𝑃𝐴̄ =

[
𝐴

𝐴1

]
, 𝑃𝐵̄ =

[
𝐵

𝐵1

]
, 𝑃𝐹̄ =

[
𝐹

𝐹1

]
. Applying the above decom-

positions, (1) is a restricted system equivalent to the following system

𝐸 ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝐹𝑣, (2a)
𝑦 = 𝐶𝑥 + 𝐺𝑣, (2b)

where 𝐸 ∈ R𝑛0×𝑛, 𝐴 ∈ R𝑛0×𝑛, 𝐵 ∈ R𝑛0×𝑘 , 𝐹 ∈ R𝑛0×𝑞, 𝐶 =

[
𝐴1
𝐶̄

]
∈ R𝑡×𝑛,

𝐺 =

[
𝐹1
𝐺̄

]
∈ R𝑡×𝑞, and 𝑦 =

[
−𝐵1𝑢
𝑦̄

]
∈ R𝑡 with 𝑡 = 𝑝 + 𝑚 − 𝑛0.

Let rank 𝐺 := 𝑞1 ¬ 𝑞, taking the singular value decomposition (SVD) of 𝐺,

there exist orthogonal matrices𝑈 and 𝑉 such that𝑈𝐺𝑉 =

[
Σ𝑞1 0
0 0

]
, where Σ𝑞1 is

a nonsingular diagonal matrix of rank 𝑞1. System (2) can now be reformulated as
follows.

𝐸 ¤𝑥 = Φ𝑥 + 𝐵𝑢 + 𝐹11Σ−1
𝑞1
𝑦1 + 𝐹12𝑣2 , (3a)

𝑦2 = 𝐶12𝑥, (3b)
along with

𝑦1 = 𝐶11𝑥 + Σ𝑞1𝑣1, (3c)

where
[
𝑦1
𝑦2

]
= 𝑈𝑦,

[
𝐶11
𝐶12

]
= 𝑈𝐶, 𝑣 = 𝑉

[
𝑣1
𝑣2

]
, 𝐹𝑉 =

[
𝐹11 𝐹12

]
, and Φ = 𝐴 −

𝐹11Σ
−1
𝑞1
𝐶11.

Similar transformations have been carried out in [9, 18]. For system (1) and
(3), we have the following lemmas.

Lemma 1 Descriptor system (1) satisfies (H1) if and only if descriptor system
(3) satisfies the following condition.

(H1.1) rank
[
𝐸 𝐹12
𝐶12 0

]
= 𝑛 + 𝑞 − 𝑞1 (full column rank).

Lemma 2 Descriptor system (1) satisfies (H2) if and only if descriptor system
(3) satisfies the following condition.

(H2.1) rank
[
Φ − 𝜆𝐸 𝐹12
𝐶12 0

]
= 𝑛 + 𝑞 − 𝑞1 (full column rank) ∀ 𝜆 ∈ C̄+.
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It is easy to prove Lemma 1 and Lemma 2 by applying orthogonal transformations
𝑃,𝑈, and 𝑉 in assumptions (H1) and (H2).

Now, let rank
[
𝐸

𝐶12

]
= 𝑛1, then there exists an orthogonal matrix 𝑄 ∈ R𝑛×𝑛

such that
[
𝐸

𝐶12

]
𝑄 =

[
𝐸1 0
𝐶12𝑎 0

]
, where

[
𝐸1
𝐶12𝑎

]
is full column rank.

Let 𝑥 = 𝑄
[
𝑥1
𝑥2

]
, Φ𝑄 =

[
Φ1 Φ2

]
. Then, system (3) can be written as follows.

𝐸1 ¤𝑥1 = Φ1𝑥1 +Φ2𝑥2 + 𝐵𝑢 + 𝐹11Σ−1
𝑞1
𝑦1 + 𝐹12𝑣2 , (4a)

𝑦2 = 𝐶12𝑎𝑥1 , (4b)

We have the following theorems for systems (1) and (4). Proposition 1 is used
throughout to establish the proofs.

Theorem 1 Descriptor system (1) satisfies (H0) if and only if system (4) satisfies
the following condition.

(H0.1) rank
[
𝐸1 Φ2 𝐹12
𝐶12𝑎 0 0

]
= 𝑛 + 𝑞 − 𝑞1 (full column rank)

Proof.

rank


𝐸̄ 𝐴̄ 𝐹̄ 0 0
0 𝐸̄ 0 𝐹̄ 𝐴̄

0 𝐶̄ 𝐺̄ 0 0
0 0 0 𝐺̄ 𝐶̄

0 0 0 0 𝐸̄


= rank


𝑃 0 0 0 0
0 𝑃 0 0 0
0 0 𝐼 0 0
0 0 0 𝐼 0
0 0 0 0 𝑃



𝐸̄ 𝐴̄ 𝐹̄ 0 0
0 𝐸̄ 0 𝐹̄ 𝐴̄

0 𝐶̄ 𝐺̄ 0 0
0 0 0 𝐺̄ 𝐶̄

0 0 0 0 𝐸̄


= rank



𝐸 𝐴 𝐹 0 0
0 𝐴1 𝐹1 0 0
0 𝐸 0 𝐹 𝐴

0 0 0 𝐹1 𝐴1
0 𝐶̄ 𝐺̄ 0 0
0 0 0 𝐺̄ 𝐶̄

0 0 0 0 𝐸


= rank


𝐸 0 𝐹 𝐴

𝐶 𝐺 0 0
0 0 𝐺 𝐶

0 0 0 𝐸

 + rank 𝐸

= rank


𝐼 0 0 0
0 𝑈 0 0
0 0 𝑈 0
0 0 0 𝐼



𝐸 0 𝐹 𝐴

𝐶 𝐺 0 0
0 0 𝐺 𝐶

0 0 0 𝐸



𝐼 0 0 0
0 𝑉 0 0
0 0 𝑉 0
0 0 0 𝐼

 + rank 𝐸
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= rank



𝐸 0 0 𝐹11 𝐹12 𝐴

𝐶11 Σ𝑞1 0 0 0 0
𝐶12 0 0 0 0 0
0 0 0 Σ𝑞1 0 𝐶11
0 0 0 0 0 𝐶12
0 0 0 0 0 𝐸


+ rank 𝐸

= rank


𝐸 𝐹11 𝐹12 𝐴

𝐶12 0 0 0
0 Σ𝑞1 0 𝐶11
0 0 0 𝐶12
0 0 0 𝐸


+ 𝑞1 + rank 𝐸

= rank


𝐸 𝐹11 𝐹12 𝐴

𝐶12 0 0 0
0 Σ𝑞1 0 𝐶11
0 0 0 𝐶12
0 0 0 𝐸



𝐼 0 0 0
0 𝐼 0 −Σ−1

𝑞1
𝐶11

0 0 𝐼 0
0 0 0 𝐼

 + 𝑞1 + rank 𝐸
= rank


𝐸 𝐹12 Φ

𝐶12 0 0
0 0 𝐶12
0 0 𝐸


[
𝑄 0 0
0 𝐼 0
0 0 𝑄

]
+ 2𝑞1 + rank 𝐸

= rank


𝐸1 𝐹12 Φ1 Φ2
𝐶12𝑎 0 0 0
0 0 𝐶12𝑎 0
0 0 𝐸1 0

 + 2𝑞1 + rank 𝐸
= rank

[
𝐸1 𝐹12 Φ2
𝐶12𝑎 0 0

]
+ rank

[
𝐸1
𝐶12𝑎

]
+ 2𝑞1 + rank 𝐸. (5)

Likewise, we can write

rank

𝐸̄ 𝐹̄ 𝐴̄

0 𝐺̄ 𝐶̄

0 0 𝐸̄

 = rank
[
𝐸1
𝐶12𝑎

]
+ 𝑞1 + rank 𝐸. (6)

Equations (5) and (6) clearly reflect that the condition (H0) is equivalent to the
condition (H0.1). 2

Theorem 2 Descriptor system (1) satisfies (H2) if and only if descriptor system
(4) satisfies the following condition.

(H2.2) rank
[
Φ1 − 𝜆𝐸1 Φ2 𝐹12
𝐶12𝑎 0 0

]
= 𝑛 + 𝑞 − 𝑞1 (full column rank) ∀ 𝜆 ∈ C̄+.
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Proof. Since

rank
[
Φ − 𝜆𝐸 𝐹12
𝐶12 0

]
= rank

[
Φ − 𝜆𝐸 𝐹12
𝐶12 0

] [
𝑄 0
0 𝐼

]
= rank

[
Φ1 − 𝜆𝐸1 Φ2 𝐹12
𝐶12𝑎 0 0

]
. (7)

Hence, from Lemma 2 and equation (7), Theorem 2 is proved. 2

The following corollary is immediate from any of Theorems 1 or 2.

Corollary 1 The matrix
[
Φ2 𝐹12

]
∈ R𝑛0×(𝑛−𝑛1+𝑞−𝑞1) is full column rank if the

descriptor system (1) satisfies any of the assumptions (H0) or (H2).

Theorem 3 The following implication always holds. (H1) ⇒ (H0).

Proof. It is obvious from (H1.1) in Lemma 1, that if the system fulfills the con-

dition (H1), then rank
[
𝐸

𝐶12

]
= 𝑛 (full column rank) and hence, Φ2 = 𝜙 (empty).

In that case, system (4) fulfills (H0.1), which is equivalent to the condition (H0)
on system (1). 2

3. Observer design

In this section, we will describe the methods to design index one generalized
observers for system (1) under the assumptions (H0) and (H2). The design meth-
ods are based on work [9], where ‘Luenberger’ observer is designed for system
(1) under the assumptions (H1) and (H2).
If we take vector 𝑥2 as an unknown input, the combined unknown input in the

dynamic equation (4a) would be
[
𝑥2
𝑣2

]
. It is clear from the assumptions (H0.1) and

(H2.1) and {Theorem 1 & 2, [9]} that considering the vectors
[
𝑥2
𝑣2

]
as unknown

inputs, Luenberger observers can be designed for system (4) to estimate the states
𝑥1 using the methods given in [9]. After estimating 𝑥1, states 𝑥2 and unknown
inputs 𝑣2 can be estimated by the equation (4a) itself, since from Corollary 1
matrix

[
Φ2 𝐹12

]
is full column rank. Based on Sections 3 and 4 of the paper [9],

the main result of the paper can be given in the form of the following theorem.

Theorem 4 Let (H0) and (H2) be satisfied by the coefficient matrices of sys-
tem (1). Then, there exists an index one generalized observer of the form (O2) for
system (1).
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Now, assuming (H0) and (H2), we briefly present two algorithms for design-
ing index one generalized observers (O2) for system (1). The reference [9] has
proved that all the steps in Algorithm 1 and Algorithm 2 below are executable
under assumptions (H0) and (H2). Prior to applying these algorithms, one must
transform (1) into (4).

3.1. Observer design approach I

In this subsection, a generalized observer of the following form is designed:

¤𝑧 = 𝑁𝑧 + 𝑇𝐵𝑢 + 𝑇𝐹11Σ−1
𝑞1
𝑦1 + 𝐿𝑦2 , (8a)

𝑥1 = 𝑧 + 𝑀𝑦2 , (8b)
𝑥2 = Σ1𝐸1 ¤̂𝑥1 − Σ1Φ1𝑥1 − Σ1𝐵𝑢 − Σ1𝐹11Σ

−1
𝑞1
𝑦1 , (8c)

𝑥(𝑡) = 𝑄
[
𝑥1(𝑡)
𝑥2(𝑡)

]
, (8d)

where 𝑧 ∈ R𝑛1 and
[
Σ1
Σ2

]
is any left inverse of

[
Φ2 𝐹12

]
. Matrix Σ2 is utilized

in Remark 3 to estimate actual unknown inputs. The remaining problem is to
compute 𝑁 , 𝑇 , 𝐿, and 𝑀 of appropriate dimensions such that 𝑥(𝑡) → 𝑥(𝑡) as
𝑡 → ∞ for arbitrary initial conditions 𝑥(0) and 𝑧(0). Algorithm 1 summarizes
the steps to design these matrices.

Algorithm 1 Computational steps for construction of observer (8) for system (1)

Step 1. Compute a full row rank and left null matrix 𝑇0 ∈ R(𝑛0+𝑛1−𝑛−𝑞+𝑞1)×𝑛0 for matrix[
Φ2 𝐹12

]
.

Step 2. Compute a full column rank 𝑅 for matrix pair (𝑇0𝐸1, 𝐶12𝑎) such that

rank
[
𝐼𝑛1 − 𝑅𝑇0𝐸1

𝐶12𝑎

]
= rank(𝐶12𝑎).

Step 3. Solve matrix equation 𝑀𝐶12𝑎 = 𝐼𝑛1 − 𝑇𝐸1 for matrix 𝑀 , where 𝑇 = 𝑅𝑇0.

Step 4. Find a matrix 𝐾 such that 𝑁 = 𝑇Φ1 − 𝐾𝐶12𝑎 is a stable matrix (using pole
placement or LMI approach).

Step 5. Calculate 𝐿 = 𝐾 + 𝑁𝑀 .

We may simplify system (8) further. Take 𝑄 =
[
𝑄1 𝑄2

]
, 𝑄1 ∈ R𝑛×𝑛1 and

𝑄2 ∈ R𝑛×(𝑛−𝑛1) , then (8d) can be written as

𝑥(𝑡) = 𝑄1𝑥1(𝑡) +𝑄2𝑥2(𝑡). (9)
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Substituting values of 𝑥1 and 𝑥2 from (8b) and (8c), respectively, we obtain

𝑥(𝑡) = 𝑄1𝑧+𝑄1𝑀𝑦2+𝑄2Σ1𝐸1 ¤̂𝑥1−𝑄2Σ1Φ1𝑥1−𝑄2Σ1𝐵𝑢−𝑄2Σ1𝐹11Σ−1
𝑞1
𝑦1 . (10)

Now once again, substituting the value of 𝑥1 and ¤̂𝑥1 from (8b) in (10),

𝑥(𝑡) = (𝑄1 −𝑄2Σ1Φ1) 𝑧 + (𝑄1𝑀 −𝑄2Σ1Φ1𝑀) 𝑦2 +𝑄2Σ1𝐸1 ¤𝑧
+ 𝑊 ¤𝑦2 −𝑄2Σ1𝐵𝑢 −𝑄2Σ1𝐹11Σ−1

𝑞1
𝑦1 , (11)

where𝑊 = 𝑄2Σ1𝐸1𝑀 . Taking ¤𝑧 from (8a) in (11) and simplifying it,

𝑥(𝑡) = 𝑆𝑧 +𝒰𝑦2 + (𝑄2Σ1𝐸1𝑇 −𝑄2Σ1) 𝐵𝑢
+ (𝑄2Σ1𝐸1𝑇 −𝑄2Σ1) 𝐹11Σ−1

𝑞1
𝑦1 +𝑊 ¤𝑦2 . (12)

Combining (12) with (8a), the observer (8) can finally be simplified in the
form of (O2) as

¤𝑧 = 𝑁𝑧 + 𝑇𝐵𝑢 + 𝑇𝐹11Σ−1
𝑞1
𝑦1 + 𝐿𝑦2 , (13a)

𝑥(𝑡) = 𝑆𝑧 +𝑉
(
𝐵𝑢 + 𝐹11Σ−1

𝑞1
𝑦1

)
+𝒰𝑦2 +𝑊 ¤𝑦2 , (13b)

where,
𝑄 =

[
𝑄1 𝑄2

]
, 𝑄1 ∈ R𝑛×𝑛1 and 𝑄2 ∈ R𝑛×(𝑛−𝑛1) ,

𝑆 = 𝑄1 +𝑄2Σ1𝐸1𝑁 −𝑄2Σ1Φ1, 𝒰 = 𝑄1𝑀 +𝑄2Σ1𝐸1𝐿 −𝑄2Σ1Φ1𝑀 ,
𝑉 = 𝑄2Σ1𝐸1𝑇 −𝑄2Σ1, and

𝑊 = 𝑄2Σ1𝐸1𝑀. (14)

3.2. Observer design approach II

In this subsection, we propose another generalized observer as follows

¤𝑧 = 𝑁̄𝑧 + 𝑇0𝐵𝑢 + 𝑇0𝐹11Σ−1
𝑞1
𝑦1 + 𝐿̄𝑦2 , (15a)

𝑥1 = 𝑅𝑧 + 𝑀𝑦2 , (15b)
𝑥2 = Σ1𝐸1 ¤̂𝑥1 − Σ1Φ1𝑥1 − Σ1𝐵𝑢 − Σ1𝐹11Σ

−1
𝑞1
𝑦1 , (15c)

𝑥(𝑡) = 𝑄
[
𝑥1(𝑡)
𝑥2(𝑡)

]
, (15d)

where 𝑧 ∈ R𝑛0−(𝑞−𝑞1)−(𝑛−𝑛1) . 𝑇0, 𝑅, and 𝑀 are the same from the previous sub-
section. The remaining matrices 𝑁̄ and 𝐿̄ would be calculated in such a way that
𝑥(𝑡) → 𝑥(𝑡) as 𝑡 → ∞ ∀ 𝑥(0), 𝑧(0). The observer design method is summarized
in the following Algorithm 2.
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Algorithm 2 Computational steps for construction of observer (15) for descriptor sys-
tem (1)

Step 1. Repeat Steps 1–3 of Algorithm 1.

Step 2. Find matrix 𝐾̄ such that 𝑁̄ = 𝑇0Φ1𝑅 − 𝐾̄𝐶12𝑎𝑅 is a stable matrix.

Step 3. Calculate 𝐿̄ = 𝑇0Φ1𝑀 + 𝐾̄ − 𝐾̄𝐶12𝑎𝑀 .

Again, observer (15) can be formulated in the form of (O2) as

¤𝑧 = 𝑁̄𝑧 + 𝑇0𝐵𝑢 + 𝑇0𝐹11Σ−1
𝑞1
𝑦1 + 𝐿̄𝑦2 , (16a)

𝑥(𝑡) = 𝑆𝑧 +𝑉
(
𝐵𝑢 + 𝐹11Σ−1

𝑞1
𝑦1

)
+ 𝑈̄𝑦2 +𝑊 ¤𝑦2 , (16b)

where, 𝑆 = 𝑄1𝑅 + 𝑄2Σ1𝐸1𝑅𝑁̄ − 𝑄2Σ1Φ1𝑅 and 𝑈̄ = 𝑄1𝑀 + 𝑄2Σ1𝐸1𝑅𝐿̄ −
𝑄2Σ1Φ1𝑀 . Remaining matrices are the same as discussed in Subsection 3.1.
Derivation of (16b) can be done as given in Subsection 3.1, Observer design

approach I.

Remark 1 Approach I and II both provide reduced-ordered observers. To be

specific, order of the observer given by approach I is 𝑛1, which is rank

𝐸̄ 𝐴̄ 𝐹̄

0 𝐸̄ 0
0 𝐶̄ 𝐺̄

−
rank

[
𝐸̄ 𝐹̄

0 𝐺̄

]
and by approach II is 𝑛0−(𝑞−𝑞1)−(𝑛−𝑛1), which is rank


𝐸̄ 𝐴̄ 𝐹̄

0 𝐸̄ 0
0 𝐶̄ 𝐺̄

−
rank


𝐴̄ 𝐹̄

𝐸̄ 0
𝐶̄ 𝐺̄

 .
Remark 2 From the equations (13b) and (16b), it is evident that if the matrix𝑊
is zero or empty, then the generalized observers discussed in this section result
in Luenberger observers. Because, in this case, they do not contain derivatives of
the output or input. Equation (14) reflects that if (H1) is satisfied, then 𝑊 turns
out to be empty because 𝑄2 is empty and observer design methods delivered in
this article coincide with design techniques of Luenberger observers presented
in [9]. However, there may be other cases where𝑊 is obtained as a zero matrix
and system (1) satisfies only (H0) but not (H1).
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Remark 3 After estimating the states, unknown input vector 𝑣̂ = 𝑉
[
𝑣̂1
𝑣̂2

]
may be

estimated as follows.

𝑣̂1 = Σ−1
𝑞1
𝑦1 − Σ−1

𝑞1
𝐶11𝑥, (17)

𝑣̂2 = Σ2𝐸1 ¤̂𝑥1 − Σ2Φ1𝑥1 − Σ2

(
𝐵𝑢 + 𝐹11Σ−1

𝑞1
𝑦1

)
. (18)

4. Example

In this section, we apply our theory on a mathematical model of a physical
system.

Example 1 Systems from constrainedmechanics are generallymodeled as [1,21]

¤x1(𝑡) = x2(𝑡), (19a)
¤x2(𝑡) = ℱx1(𝑡) +𝒟x2(𝑡) +ℋ

𝑇x3(𝑡) +𝒢v1(𝑡), (19b)
0 = ℋx1(𝑡) + v2(𝑡). (19c)

State variables x1(𝑡) and x2(𝑡) represent the position vector and the velocity
vector, respectively. Equation (19c) is a physical constraint that produces the force
ℋ

𝑇x3(𝑡). The input is being applied through a force 𝒢v1(𝑡) in equation (19b)
and affects the algebraic constraint (19c) through v2(𝑡). Moreover, matrixℋ is
assumed to have full row rank. The physical system (19) can be formulated in the
form (1), if we take

𝐸̄ =

[
𝐼 0 0
0 𝐼 0
0 0 0

]
, 𝐴̄ =


0 𝐼 0
ℱ 𝒟 ℋ

𝑇

ℋ 0 0

 , 𝐹̄ =

[0 0
𝒢 0
0 𝐼

]
, 𝐵̄ = 0. (20)

𝑥(𝑡) =
[x1(𝑡)
x2(𝑡)
x3(𝑡)

]
, and 𝑣(𝑡) =

[
v1(𝑡)
v2(𝑡)

]
. For computational purpose, we consider the

matricesℱ,𝒟,ℋ,𝒢, and 𝑣(𝑡) as given below

ℱ=

[
−2 1
1 −2

]
, 𝒟=

[
0.25 0
0 0.25

]
, ℋ=

[
1 −1

]
, 𝒢=

[
1
1

]
and 𝑣(𝑡)=

[
sin(𝑡)
sin(𝑡)

]
.

If we take 𝐶̄ =

[−1 0 1 3 0
4 1 0 1 0
1 0 1 0 0

]
, 𝐺̄ =

[0 0
0 0
0 0

]
, the system matrices (20) do not

satisfy (H1). Thus, it is clear that the designing of Luenberger or PI observer is
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not possible for this system by the techniques available in [9,17,18]. However, as
the system matrices fulfill the assumption (H0), the approaches explained in the
previous section can be applied. Here we execute only Algorithm 2 as it provides
a lesser order observer compared to Algorithm 1. Applying Algorithm 2, observer
(15) matrices are obtained as follows

𝐶11 =
[
1 −1 0 0 0

]
, 𝐶12 =


−1 0 1 3 0
4 1 0 1 0
1 0 1 0 0

 , 𝐹11 =

0
0
0
0

 , 𝐹12 =

0
0
−1
−1

 ,

Φ =


0 0 1 0 0
0 0 0 1 0
−2 1 0.2500 0 1
1 −2 0 0.25 −1

 , 𝐸1 =

−0.9649 0.1506 −0.0705 −0.2032
−0.2214 −0.0337 0.2253 0.9482
−0.0244 −0.3160 −0.9264 0.2032
−0.1390 −0.9361 0.2932 −0.1355

 ,

Φ1 =


−0.0244 −0.3160 −0.9264 0.2032
−0.1390 −0.9361 0.2932 −0.1355
1.7023 −0.4140 0.1347 1.4054
−0.5569 −0.0159 −0.4478 −2.1334

 , Φ2 =

0
0
1
−1

 ,

𝐶12𝑎 =


0.5235 −3.2750 0.0238 0
−4.2201 −0.3675 0.2367 0
−0.9894 −0.1654 −0.9969 0

 , 𝑇0 =
[
0.7071 −0.7071 0 0
−0.7071 −0.7071 0 0

]
,

𝑅 =


0 0
0 0

0.5301 −0.8192
−0.8658 −0.5602

 , 𝑀 =


0.0275 −0.2214 −0.0519
−0.3008 −0.0337 −0.0152
0.0908 0.0209 −1.0172
−0.0251 −0.0601 0.2283

 ,
Σ1 =

[
0 0 0.5 −0.5

]
, 𝑁̄ =

[
−0.2682 −0.0400
0.3379 −0.4313

]
, and

𝐿̄ =

[
−0.1630 −0.2180 0.8702
−0.2137 −0.0660 −0.4934

]
.

The simulation results are displayed in Figure 1. All the computations have
been executed inMATLAB2021a. System (15a) is solved using ode45 solver. The
vector 𝑥1 is differentiated by grad command using the same time discretization
as used in ode45 solver.
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Figure 1: Original states and estimated states by Approach II

5. Conclusion

This paper presents novel sufficient conditions for the designing of generalized
observers of index one for rectangular descriptor systems with the presence of un-
known inputs. These conditions are presented in the form of algebraic constraints
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on the rank of coefficient matrices of the given descriptor system. Special cases
are discussed where generalized observers coincide with Luenberger observers.
Two different algorithms are proposed to summarize the design procedure, and
the order of the observers is given in terms of system matrices. Simulation re-
sults are presented to validate our findings. Work on sufficient conditions for 𝑘-th
indexed generalized observer is under progress.
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