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On the constrained and unconstrained controllability
of semilinear Hilfer fractional systems

Beata SIKORA

In the paper finite-dimensional semilinear dynamical control systems described by
fractional-order state equations with the Hilfer fractional derivative are discussed. The formula
for a solution of the considered systems is presented and derived using the Laplace transform.
Bounded nonlinear function 𝑓 depending on a state and controls is used. New sufficient condi-
tions for controllability without constraints are formulated and proved using Rothe’s fixed point
theorem and the generalized Darbo fixed point theorem. Moreover, the stability property is used
to formulate constrained controllability criteria. An illustrative example is presented to give the
reader an idea of the theoretical results obtained. A transient process in an electrical circuit
described by a system of Hilfer type fractional differential equations is proposed as a possible
application of the study.
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1. Introduction

In recent decades, fractional differential calculus has attracted the attention
of many scientists due to its increasingly widespread application. Control sys-
tems modeled by fractional differential equations appear in many problems in
physics, mechanics, biology, and chemistry. Discussions of fractional differential
equations and their practical applications can be found, among others, in the
monographs: [5, 22, 27, 30, 34, 36, 37, 46].
It turns out that although fractional order systems do not have a semigroup

property, it is still possible to establish relations between a fractional-order dif-
ferential equation and a fractional flow of the corresponding dynamical system.
One of the most important issues in control theory is controllability, i.e., the
possibility of steering a control system from an initial state to a final state by
means of admissible controls.
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In recent years, numerous papers and monographs have appeared on the con-
trollability of fractional order control systems. Various fractional operators have
been used. The controllability of semilinear and nonlinear control systems with
the Caputo derivative is studied in [3, 9, 28, 35, 39], among others, while the
Riemann-Liouville derivative is considered in [7, 11, 12]. Fractional differential
equations with the Hilfer derivative have been studied by many authors, see for
example [8, 10, 13, 15, 24, 45, 47]. However, only a few papers have been pub-
lished on the controllability of differential systems involving the Hilfer fractional
derivative [21, 25, 31, 41].
The Hilfer fractional differential operator is increasingly used in modelling

diffusion processes, financial crises, viscoelastic problems, and other problems.
Some of the models are supported by experiments proving agreement with the
behaviour of real processes, for example, in the search for relaxation spectra in
glass-forming materials [14]. The aim of this work is to formulate and prove new
criteria for the controllability of semilinear systems using the Hilfer derivative.
For this purpose, Rothe’s fixed point theoremwas used. Fixed point theorems give
as answer to the question whether a solution exists, i.e., a system can be steered to
a final state 𝑥(𝑡1) (the state 𝑥(𝑡1) can be reached). Rothe’s fixed point theorem has
already been used in [48] for integer order nonlinear differential equation with
integral boundary conditions, in [26] for semilinear system of ordinary differential
equations, and in [39] for the Caputo fractional-order semilinear systems with
delays in the control. The Darbo fixed point theorem has been used for studying
controllability of the integer-order nonlinear differential systems in [6] and for
the Caputo fractional-order nonlinear implicit systems with delays in [29].
The paper is organized as follows. Section 2 gives some introductory defi-

nitions, formulas, lemmas, and notations. Section 3 presents the mathematical
model of the Hilfer fractional systems considered and the formula for a solution
of the systems. The formula is derived using the Laplace transform. Some def-
initions of the constrained and unconstrained controllability of the systems are
formulated. Constraints are established for the control values. The main results
of the paper, contained in Section 4, are the criteria for unconstrained controlla-
bility of the Hilfer fractional system and constrained controllability when the set
of admissible control values 𝑈 is a convex and compact set containing 0 in its
interior. All the theorems are proved. The theoretical results are illustrated with
numerical and practical examples in Section 5. Finally, concluding remarks are
made in Section 6.

2. Preliminaries

In this section we give some definitions, formulas, lemmas, and notations
used throughout the paper. Let 𝑓 : R+ → R be a function of the variable 𝑡 ∈ R+
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integrable over the closed interval 〈0, 𝑡〉, 𝑡 > 0. Moreover, let 𝐷 =
d
d𝑡
be a first

order differential operator and let Γ denote the gamma function.
Definition 1 [30] The Riemann-Liouville fractional integral (left sided) of order
𝛼 ∈ R+ for the function 𝑓 is called the integral operator 𝐼𝛼 defined by the formula

𝐼𝛼 𝑓 (𝑡) = 1
Γ(𝛼)

𝑡∫
0

(𝑡 − 𝜏)𝛼−1 𝑓 (𝜏)d𝜏.

Definition 2 [13] The Hilfer fractional derivative (left sided) of order 𝛼 and
type 𝛽 for the function 𝑓 is called the integro-differential operator 𝐷𝛼,𝛽 defined
by the formula

𝐷𝛼,𝛽 𝑓 (𝑡) = 𝐼 (1−𝛼)𝛽𝐷𝐼 (1−𝛼) (1−𝛽) 𝑓 (𝑡),
where 𝑛 < 𝛼 < 𝑛 + 1, 0 ¬ 𝛽 ¬ 1, 𝑛 ∈ N, provided that the right side expression
exists.

The two-parameter family of the Hilfer fractional derivatives is a general-
ization of both the Caputo derivative and the Riemann-Liouvile derivative (def-
initions of both the derivatives can be found in [30]; applications to control
theory can be found in [18, 20, 33, 38, 40, 44], among others). The Hilfer deriva-
tive allows us to interpolate between the fractional derivatives mentione above.
It is worth noting that for 0 < 𝛼 < 1 and 𝛽 = 0 the Hilfer fractional deriva-
tive is identical to the classical Riemann-Liouville fractional derivative 𝐷𝛼, i.e.
𝐷𝛼,0 𝑓 (𝑡) = 𝐷𝛼 𝑓 (𝑡) = 𝐷𝐼1−𝛼 𝑓 (𝑡). For 0 < 𝛼 < 1 and 𝛽 = 1, on the other
hand, the Hilfer fractional derivative reduces to the Caputo fractional derivative,
i.e., 𝐷𝛼,1 𝑓 (𝑡) = 𝐶𝐷𝛼 𝑓 (𝑡) = 𝐼1−𝛼𝐷 𝑓 (𝑡). Since the Hilfer fractional derivative
is defined on the basis of the definite integral, it is a nonlocal operator. It has a
“memory property”, which means that the current state depends not only on time,
but also on previous states.
The Laplace transform of Hilfer’s derivative is of the form [13,43]

L[𝐷𝛼,𝛽 𝑓 (𝑡)] = 𝑠𝛼L[ 𝑓 (𝑡)] − 𝑠(1−𝛼)𝛽𝐼 (1−𝛼) (1−𝛽) 𝑓 (0+),
where the initial-value condition 𝐼 (1−𝛼) (1−𝛽) 𝑓 (0+) is the Riemann-Liouville in-
tegral of order (1 − 𝛼) (1 − 𝛽) evaluated for 𝑡 → 0+. The fractional integral
𝐼 (1−𝛼) (1−𝛽) 𝑓 (0+) remains constant for all 𝑡, although the function 𝑓 varies.
Definition 3 [30], [19] The two-parameter Mittag-Leffler function is defined by
the formula

𝐸𝛼,𝛽 (𝑧) =
∞∑︁
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
for 𝛼, 𝛽 ∈ R+, 𝑧 ∈ C.
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Let 𝐴 be a bounded linear operator from 𝑋 into 𝑋 . Definition 3 can be extended
to linear operators, hence

𝐸𝛼,𝛽 (𝐴) =
∞∑︁
𝑘=0

𝐴𝑘

Γ(𝛼𝑘 + 𝛽) .

The following lemmas are also needed to formulate some controllability
results. The symbol ∃ stands for the existential quantifier, dim(𝑍) denotes the
dimension of the space 𝑍 , and ker(𝑅∗) is the kernel of (𝑅∗), where 𝑅∗ is the
adjoint operator of 𝑅.

Lemma 1 [17] Let𝑊 and 𝑍 be Hilbert spaces,𝐺 ∈ 𝐿 (𝑊, 𝑍) and 𝑅∗ ∈ 𝐿 (𝑍,𝑊),
and dim(𝑍) < +∞. The following conditions are equivalent:

(1) Rang(𝑅) = 𝑍 ,

(2) ker(𝑅∗) = {0},

(3) ∃𝛾>0 〈𝑅𝑅∗𝑥, 𝑥〉 > 𝛾‖𝑥‖2, 𝑥 ≠ 0,

(4) ∃ (𝑅𝑅∗)−1 ∈ 𝐿 (𝑍).

Lemma 2 [26] Let (𝑋,Σ, 𝜇1) be a measure space with 𝜇1(𝑋) < +∞ and
1 ¬ 𝑞 < 𝑝 < +∞. Then 𝐿𝑝 (𝜇1) ⊂ 𝐿𝑞 (𝜇1) and

∀ 𝑓 ∈𝐿𝑝 (𝜇1) ‖ 𝑓 ‖𝐿𝑞 ¬ 𝜇1(𝑋)
𝑝−𝑞
𝑝𝑞 ‖ 𝑓 ‖𝐿𝑝 .

Definition 4 [2] Let (𝐸, ‖ · ‖) be a Banach space, M𝐸 be a family of all
nonempty bounded subset of 𝐸 , and N𝐸 its subfamily of all relatively compact
sets. A mapping 𝜇 : M𝐸 → [0, +∞) is called a measure of noncompactness in 𝐸
if it satisfies the following conditions:

(1) ker(𝜇) = {𝑋 ∈ M𝐸 : 𝜇(𝑋) = 0} is nonempty and ker(𝜇) ⊂ N𝐸 ,

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ¬ 𝜇(𝑌 ),

(3) 𝜇(𝑋) = 𝜇(𝑋),

(4) 𝜇(𝐶𝑜𝑛𝑣𝑋) = 𝜇(𝑋),

(5) 𝜇(𝜆𝑋 + (1 − 𝜆)𝑌 ) ¬ 𝜆𝜇(𝑋) + (1 − 𝜆)𝜇(𝑌 ) for 𝜆 ∈ [0, 1],

(6) If {𝑋𝑛} is a nested sequence of closed sets fromM𝐸 such that lim
𝑛→+∞

𝜇(𝑋𝑛) = 0,

then the intersection set 𝑋∞ =

+∞⋂
𝑛=𝑎

𝑋𝑛 is nonempty.
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The family ker(𝜇) is called the kernel of the measure of noncompactness 𝜇 and
𝑋,𝐶𝑜𝑛𝑣𝑋 stand for the closure and the close convex hull of 𝑋 , respectively.
Let 𝐶𝑛 [0, 𝑡1] be the space of continuous R𝑛 valued functions on [0, 𝑡1] with

the norm
‖𝑥‖ = max

1¬𝑖¬𝑛
|𝑥𝑖 (𝑡) |, 𝑡 ∈ [0, 𝑡1] .

The function [6]
𝜔(𝑥, ℎ) = max

1¬𝑖¬𝑛
𝜔(𝑥𝑖, ℎ),

where
𝜔(𝑥𝑖, ℎ) = sup{|𝑥𝑖 (𝑡) − 𝑥𝑖 (𝑠) | : |𝑡 − 𝑠 | ¬ ℎ, 𝑡, 𝑠 ∈ [0, 𝑡1]}

is called the modulus of continuity of a function 𝑥 ∈ 𝐶𝑛 [0, 𝑡1]. Analogously, the
function

𝜔(𝑆, ℎ) = sup{𝜔(𝑥, ℎ) : 𝑥 ∈ 𝑆},
is called the modulus of continuity of a bounded set 𝑆 ⊂ 𝐶𝑛 [0, 𝑡1]. Moreover, all
the functions 𝑥 ∈ 𝑆 are equicontinuos if and only if

𝜔0(𝑠) = lim
ℎ→0+

𝜔(𝑆, ℎ) = 0.

If the space (𝐸, ‖ · ‖) is the Cartesian product of two spaces (𝐸1, ‖ · ‖𝐸1) and
(𝐸2, ‖ · ‖𝐸2), and ‖ · ‖ = max{‖ · ‖𝐸1 , ‖ · ‖𝐸2}, then for any 𝑆 ⊂ 𝐸 the measure of
noncompactness 𝜇 is defined as

𝜇(𝑆) = max{𝜇(𝑆1), 𝜇(𝑆2)},

where 𝑆1, 𝑆2 means the natural projections of 𝑆 into 𝐸1, 𝐸2, respectively.
Other notations used in this paper are: 𝐿2( [0,∞), R𝑚) is the Hilbert space

of square integrable functions with values in R𝑚, 𝐿2
𝑙𝑜𝑐

( [0,∞), R𝑚) is the linear
space of locally square integrable functions with values in R𝑚.

3. System description

This paper deals with semilinear fractional control systems described by the
following Cauchy problem

𝐷𝛼,𝛽𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) (1)

𝐼 (1−𝛼) (1−𝛽)𝑥(0+) = 𝑥0 (2)
for 𝑡 ­ 0 and 0 < 𝛼 < 1, 0 ¬ 𝛽 ¬ 1, where

• 𝐷𝛼,𝛽 is the Hilfer fractional differential operator,
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• 𝑥(𝑡) ∈ R𝑛 is a pseudo-state vector,

• 𝑥0 ∈ R𝑛 is a vector of initial conditions,

• 𝑢 ∈ 𝐿2loc( [0,∞),R𝑚) is a control,

• 𝐴 is a 𝑛 × 𝑛 matrix with real elements,

• 𝐵(𝑡) is a 𝑛 × 𝑚 matrix with continuous elements, satisfying the conditions
|𝑏𝑖 𝑗 (𝑡) | ¬ 𝑁 , 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝑁 ∈ R+, for any 𝑡 ∈ [0, 𝑡1],

• 𝑓 is a given continuous nonlinear function 𝑓 : [0, 𝑡] × R𝑛 × R𝑚 → R𝑛.

The following norms are considered: ‖𝑥‖ = max
1¬𝑖¬𝑛

|𝑥𝑖 |, ‖𝐵‖ = max
1¬𝑖¬𝑛

𝑚∑︁
𝑗=1

|𝑏𝑖 𝑗 |,

and ‖𝐵‖∞ = sup
0¬𝑡¬𝑡1

‖𝐵‖.

Theorem 1 For the given initial conditions 𝑥0 ∈ R𝑛 and a control 𝑢 ∈
𝐿2loc( [0,∞),R𝑚), there is a unique solution 𝑥(𝑡) ∈ R𝑛 of the semilinear Hil-
fer fractional-order system (1)–(2), for any 𝑡 ­ 0, which has the following form

𝑥(𝑡) = 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)

+
𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐸𝛼,𝛼 (𝐴(𝑡 − 𝜏)𝛼) [𝐵(𝑡)𝑢(𝜏) + 𝑓 (𝜏, 𝑥(𝜏), 𝑢(𝜏))]d𝜏. (3)

Proof.To prove the theorem,we apply the Laplace transformation to the fractional
equation (1), taking into account the initial condition (2). We have

𝑠𝛼L[𝑥(𝑡)]−𝑠(1−𝛼)𝛽𝐼 (1−𝛼) (1−𝛽) 𝑓 (0+) = 𝐴L[𝑥(𝑡)]+L[𝐵(𝑡)𝑢(𝑡)+ 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))],

for any fixed 𝑡 ­ 0. Thus

𝑠𝛼L[𝑥(𝑡)] − 𝐴L[𝑥(𝑡)] = 𝑠(1−𝛼)𝛽𝑥0 + L[𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))],

L[𝑥(𝑡)] = (𝑠𝛼 𝐼 − 𝐴)−1𝑠(1−𝛼)𝛽𝑥0 + (𝑠𝛼 𝐼 − 𝐴)−1L[𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))]
= 𝑥0L[𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)]
+ L

[
𝑡𝛼−1𝐸𝛼,𝛼 (𝐴𝑡𝛼)

]
L[𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))] .

According to the convolution theorem for the Laplace transformation we get

L[𝑥(𝑡)] = 𝑥0L[𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)]
+ L[(𝑡𝛼−1𝐸𝛼,𝛼 (𝐴𝑡𝛼)) ∗ (𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))],
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And finally, with the help of the inverse Laplace transformation and the definition
of the convolution, we obtain the solution of (1)–(2)

𝑥(𝑡) = 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)

+
𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐸𝛼,𝛼 (𝐴(𝑡 − 𝜏)𝛼) [𝐵(𝑡)𝑢(𝜏) + 𝑓 (𝜏, 𝑥(𝜏), 𝑢(𝜏))]d𝜏.

Due to the uniqueness of the Laplace transform, the resulting solution (3) is
unique. 2

A set of solutions for a given differential control system is also called a set
of reachable states or an attainable set. As in the case of integer-order dynamical
systems, we can define the attainable set for the fractional system (1)–(2).

Definition 5 The attainable set from the initial state 𝑥0 on [0, 𝑡] for the Hilfer
fractional system (1)–(2) is the set

𝐾 (𝑡) =
{
𝑥(𝑡) ∈ R𝑛 : 𝑥(𝑡) = 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)

+
𝑡∫
0

(𝑡 − 𝜏)𝛼−1𝐸𝛼,𝛼 (𝐴(𝑡 − 𝜏)𝛼)
[
𝐵(𝑡)𝑢(𝜏)

+ 𝑓 (𝜏, 𝑥(𝜏), 𝑢(𝜏))]d𝜏 : 𝑢(𝑡) ∈ R𝑚 for 𝑡 ∈ [0, 𝑡]
}
. (4)

for any fixed 𝑡 ­ 0.

Next, we formulate several types definitions of controllability for the fractional
system (1)–(2) on [0, 𝑡1]. Let 𝑆 ⊂ R𝑛 and𝑈 ⊂ R𝑚 be arbitrary nonempty sets.
Definition 6 The Hilfer fractional system (1)–(2) is called controllable on [0, 𝑡1]
from the initial state 𝑥0 into 𝑆, if for each vector 𝑥̃ ∈ 𝑆, there exist a control
𝑢̃ ∈ 𝐿2( [0, 𝑡1],R𝑚) such that 𝑥(𝑡1) = 𝑥̃.
For 𝑆 = R𝑛 the fractional system (1)–(2) is called controllable on [0, 𝑡1] from
the initial state 𝑥0. For 𝑆 = {0}, the system (1)–(2) is called null controllable on
[0, 𝑡1] from the initial state 𝑥0.
The following definitions of local and global controllability for the semilinear

system (1)–(2) on [0, 𝑡1] are a consequence of corresponding definitions for
integer-order systems presented in [23], among others.

Definition 7 The semilinear Hilfer fractional system (1)–(2) is called locally
controllable on [0, 𝑡1] if the attainable set 𝐾 (𝑡1) contains a certain neighborhood
of zero in the space R𝑛.
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Definition 8 The semilinear fractional system (1)–(2) is called globally control-
lable on [0, 𝑡1] if it is controllable on [0, 𝑡1] for every initial complete state 𝑥0.

Remark 1 The system (1)–(2) is globally controllable on [0, 𝑡1] if 𝐾 (𝑡1) = R𝑛.

The above definitions concern the controllability of semilinear systems without
constraints. If we consider control values from the set𝑈 ⊂ R𝑚, we speak of null,
local or global𝑈-controllability, respectively.
In the further course of the work we will write controllable instead of globally

controllable for short.

4. Controllability criteria – main results

In this section we discuss controllability issues of system (1)–(2). We prove
that under the assumed conditions, if the corresponding linear Hilfer fractional
system

𝐷𝛼,𝛽𝑥(𝑡) = 𝐴 𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡), (5)

𝐼 (1−𝛼) (1−𝛽)𝑥(0+) = 𝑥0 (6)
is controllable on [0, 𝑡1], then the semilinear system (1)–(2) is also controllable
on [0, 𝑡1]. Moreover we give a control 𝑢̃ that steers the semilinear system (1)–(2)
from an initial state 𝑥0 to a final state 𝑥1(𝑡1) = 𝑥(𝑡1, 𝑥0, 𝑢̃).
To formulate and prove a sufficient condition for the controllability of the

system (6)–(7) without constraints on control values, Rothe’s fixed point theorem
is used.

Theorem 2 (Rothe’s fixed point theorem) [16, 42] Let 𝐸 be a Banach space and
𝑉 ⊂ 𝐸 be a closed convex subset such that zero of 𝐸 is contained in the interior of
𝑉 . Let 𝑔 : 𝑉 → 𝐸 be a continuous mapping with 𝑔(𝑉) relatively compact (closure
is compact) in 𝐸 and 𝑔(𝜕𝑉) ⊂ 𝑉 , where 𝜕𝑉 denotes the boundary of 𝑉 . Then
there is a point 𝑥∗ ∈ 𝑉 such that 𝑔(𝑥∗) = 𝑥∗.

Let us denote, after [27],

Φ(𝑡) = 𝑡𝛼−1𝐸𝛼,𝛼 (𝐴𝑡𝛼). (7)

The Mittag-Leffler function is of exponential order. Moreover, for 0 < 𝛼 < 1,
lim
𝑡→+∞

𝑡𝛼−1 = 0. Therefore, the inequality

∃𝑀>0 ∃𝜚­0 ‖Φ(𝑡)‖ ¬ 𝑀𝑒𝜚𝑡 (8)

is valid for 𝑡 > 0.
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Let us define the operators 𝐺,𝐺 𝑓 : 𝐿2( [0, 𝑡1],R𝑚) → R𝑛 for the semilinear
Hilfer fractional system (1)–(2) as

𝐺 (𝑢) =
𝑡1∫
0

Φ(𝑡1 − 𝜏)𝐵(𝜏)𝑢(𝜏)d𝜏, (9)

𝐺 𝑓 (𝑢) =
𝑡1∫
0

Φ(𝑡1 − 𝜏)𝐵(𝜏)𝑢(𝜏)d𝜏 +
𝑡1∫
0

Φ(𝑡1 − 𝜏) 𝑓 (𝜏, 𝑥̃(𝜏), 𝑢(𝜏))d𝜏 (10)

for 𝑡1 > 0, where 𝑥̃ is the unique solution of the fractional differential equation
(1)–(2).
The controllability operator 𝐺 𝑓 (𝑢) can be expressed as a sum

𝐺 𝑓 (𝑢) = 𝐺 (𝑢) + 𝐻 (𝑢),

where 𝐻 : 𝐿2( [0, 𝑡1],R𝑚) → R𝑛 is the nonlinear operator given by the formula

𝐻 (𝑢) =
𝑡1∫
0

Φ(𝑡1 − 𝜏) 𝑓 (𝜏, 𝑥̃(𝜏), 𝑢(𝜏))d𝜏. (11)

The adjoint operator 𝐺∗ : R𝑛 → 𝐿2( [0, 𝑡1],R𝑚) of the operator 𝐺 is

𝐺∗(𝑥) = 𝐵∗(𝜏)Φ∗(𝑡1 − 𝜏)𝑥.

Remark 2 Starting from the classical Gramian matrix, the linear system (6)–(7)
is controllable on [0, 𝑡1] if the controllability matrix

𝑊 (𝑡1) =
𝑡1∫
0

Φ(𝑡 − 𝜏)𝐵(𝜏)𝐵∗(𝜏)Φ∗(𝑡 − 𝜏)d𝜏 (12)

is nonsingular. This is equivalent to Rang(𝐺) = R𝑛. Moreover, by Remark 1, the
semilinear system (1)–(2) is controllable on [0, 𝑡1] if and only if Rang(𝐺) = R𝑛
and Rang(𝐺 𝑓 ) = R𝑛.

Theorem 3 Let the nonlinear function 𝑓 satisfy the following condition

‖ 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡))‖ ¬ 𝑎‖𝑥(𝑡)‖ + 𝑏‖𝑢(𝑡)‖𝜉 + 𝑐, (13)
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where 𝑎, 𝑏, 𝑐, 𝜉 are real constants and
1
2
¬ 𝜉 < 1. If the linear Hilfer fractional

system (6)–(7) is controllable on [0, 𝑡1] and the inequality

1
𝛾
√
2
𝑛2𝑁2𝑀3𝑎

√
𝑡1𝑒

𝑎𝑀𝑡1

(
𝑒2𝜚𝑡1 − 1
2𝜚

) 3
2

< 1, (14)

holds for 𝛾 > 0, 𝑁 > 0, 𝑀 > 0, 𝜚 ­ 0, the the semilinear Hilfer fractional system
(1)–(2) is also controllable on [0, 𝑡1]. A control steering the system (1)–(2) from
the initial state 𝑥0 to a final state 𝑥̃ = 𝑥(𝑡1) at time 𝑡1 > 0 is given by the following
formula

𝑢(𝑡) = 𝐵∗(𝜏)Φ∗(𝑡1 − 𝑡) (𝐺𝐺∗)−1
(
𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)

− 𝐻 (𝑢)
)
, 𝑡 ∈ [0, 𝑡1] . (15)

Proof. Without loss of generality, let us assume the initial condition 𝑥0 = 0
and 𝑐 = 0. For each 𝑥 ∈ R𝑛 fixed we define an operator Ψ : 𝐿2( [0, 𝑡1],R𝑚) →
𝐿2( [0, 𝑡1],R𝑚) by the formula

Ψ(𝑢) = 𝐺∗(𝐺𝐺∗)−1(𝑥 − 𝐻 (𝑢)).

It follows from Lemma 1(4) that (𝐺𝐺∗)−1 exists, so Ψ is properly defined.
Moreover, it follows from (3)

‖(𝐺𝐺∗)−1𝑥‖ ¬ 𝛾−1‖𝑥‖.

Next we prove that the operator Ψ has a fixed point 𝑢 that depends on 𝑥.
The nonlinear function 𝑓 is continuous, therefore the operator𝐻 is continuous

and, by (13), 𝐻 is a compact operator.
Applying theHölder inequality and condition (13), for any 𝑢 ∈ 𝐿2( [0, 𝑡1],R𝑚)

‖𝐻 (𝑢)‖ ¬
𝑡1∫
0

𝑀𝑒𝜚(𝑡1−𝜏) 𝑓 (𝜏, 𝑥̃(𝜏), 𝑢(𝜏))d𝜏

¬
©­«

𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

‖ 𝑓 (𝜏, 𝑥̃(𝜏), 𝑢(𝜏))‖2d𝜏ª®¬
1
2

¬
©­«

𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

(
𝑎2‖𝑥(𝜏)‖2 + 𝑏2‖𝑢(𝜏)‖2𝜉

)
d𝜏ª®¬

1
2
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¬ 𝑎
©­«

𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

‖𝑥(𝜏)‖2d𝜏ª®¬
1
2

+ 𝑏 ©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

‖𝑢(𝜏)‖2𝜉 d𝜏ª®¬
1
2

¬ 𝑎
©­«

𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

©­«
𝑡1∫
0

‖𝐵‖∞𝑀𝑒𝜚(𝑡1−𝑠) ‖𝑢(𝑠)‖d𝑠

+
𝑡1∫
0

𝑏𝑀𝑒𝜚(𝑡1−𝑠) ‖𝑢(𝑠)‖𝜉 d𝑠ª®¬
2

𝑒2𝑎𝑀𝑡1 d𝜏
ª®®¬
1
2

+ 𝑏 ©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 

©­«
𝑡1∫
0

‖𝑢(𝜏)‖2𝜉 d𝜏ª®¬
1
2𝜉 

𝜉

¬ 𝑎
√
𝑡1

©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ©­«

𝑡1∫
0

‖𝐵‖∞𝑀𝑒𝜚(𝑡1−𝜏) ‖𝑢(𝜏)‖d𝜏

+
𝑡1∫
0

𝑏𝑀𝑒𝜚(𝑡1−𝜏) ‖𝑢(𝜏)‖𝜉 d𝜏ª®¬ 𝑒𝑎𝑀𝑡1 + 𝑏 ©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2

‖𝑢‖𝜉
𝐿2𝜉

= 𝑎
√
𝑡1

©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬ ‖𝐵‖∞𝑒𝑎𝑀𝑡1 ‖𝑢‖𝐿2
+ 𝑎𝑏

√
𝑡1𝑒

𝑎𝑀𝑡1
©­­«
©­«

𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬ + 𝑏 ©­«
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏ª®¬
1
2 ª®®¬ ‖𝑢‖

𝜉

𝐿2𝜉
,

where 𝐿2𝜉 = 𝐿2𝜉 ( [0, 𝑡1],R𝑚) and
𝑡1∫
0

𝑀2𝑒2𝜚(𝑡1−𝜏)d𝜏 =
𝑀2

2𝜚
(𝑒2𝜚𝑡1 −1). Moreover,

since
1
2
¬ 𝜉 < 1, we obtain 1 ¬ 2𝜉 < 2.
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Applying Lemma 2 and next taking into account the assumption |𝑏𝑖 𝑗 (𝑡) | ¬ 𝑁 ,
we have

‖𝐻 (𝑢)‖ ¬ 𝑀2𝑎
√
𝑡1‖𝐵‖∞𝑒𝑎𝑀𝑡1

𝑒2𝜚𝑡1 − 1
2𝜚

‖𝑢‖ ¬ 𝑀2𝑎
√
𝑡1𝑛𝑁𝑒

𝑎𝑀𝑡1
𝑒2𝜚𝑡1 − 1
2𝜚

‖𝑢‖.

It follows

lim
‖𝑢‖→+∞

‖𝐻 (𝑢)‖
‖𝑢‖ ¬ 𝑀2𝑎

√
𝑡1𝑛𝑁𝑒

𝑎𝑀𝑡1
𝑒2𝜚𝑡1 − 1
2𝜚

,

where ‖𝑢‖ = ‖𝑢‖𝐿2 .
Therefore,

lim
‖𝑢‖→+∞

‖Ψ(𝑢)‖
‖𝑢‖ ¬ ‖𝐺∗(𝐺𝐺∗)−1‖𝑛𝑁𝑀2𝑎

√
𝑡1𝑒

𝑎𝑀𝑡1
𝑒2𝜚𝑡1 − 1
2𝜚

,

which implies

lim
‖𝑢‖→+∞

‖Ψ(𝑢)‖
‖𝑢‖ ¬

1
𝛾
√
2
𝑛2𝑁2𝑀3𝑎

√
𝑡1𝑒

𝑎𝑀𝑡1

(
𝑒2𝜚𝑡1 − 1
2𝜚

) 3
2

.

Setting 𝑟 = 1
𝛾
√
2
𝑛2𝑁2𝑀3𝑎

√
𝑡1𝑒

𝑎𝑀𝑡1
(
𝑒2𝜚𝑡1−1
2𝜚

) 3
2 and finding that, given the as-

sumptions, 𝑟 < 1, we conclude that for a fixed 𝜀, 𝑟 < 𝜀 < 1, there exists a
sufficiently large 𝑟0 > 0 such that

‖Ψ(𝑢)‖ ¬ 𝜀‖𝑢‖ = 𝜀𝑟0.

Let 𝐵(0, 𝑟0) be the sphere with center zero and radius 𝑟0 > 0, then
Ψ(𝜕𝐵(0, 𝑟0)) ⊂ 𝐵(0, 𝑟0). The operator Ψ is compact and maps the sphere
𝜕𝐵(0, 𝑟0) into the interior of the ball 𝐵(0, 𝑟0). Therefore Rothe’s fixed point
theorem can be applied. It follows that there is a fixed point 𝑢 ∈ 𝐵(0, 𝑟0) ⊂
𝐿2( [0, 𝑡1],R𝑚) such that

𝑢 = 𝐺∗(𝐺𝐺∗)−1(𝑥 − 𝐻 (𝑢)).

From 𝐺 (𝑢) = 𝑥 − 𝐻 (𝑢), taking 𝑥 = 𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼), we
obtain

𝑥̃ = 𝑥0𝑡
(𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼)

+
𝑡1∫
0

Φ(𝑡1 − 𝜏)
[
𝐵(𝜏)𝑢(𝜏)d𝜏 + 𝑓 (𝜏, 𝑥(𝜏), 𝑢(𝜏))

]
d𝜏. (16)

Thus, 𝑥̃ is the solution of the system (1)–(2), and it is easy to verify that
𝑥̃ = 𝑥(𝑡1). Therefore the system is controllable on [0, 𝑡1] .
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From the above, we get the admissible control steering the system (1)–(2)
from the initial state 𝑥0 to a final state 𝑥̃ = 𝑥(𝑡1) at any time 𝑡1 > 0, described as

𝑢(𝑡) = 𝐵∗(𝑡)Φ∗(𝑡1 − 𝑡) (𝐺𝐺∗)−1
(
𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼) − 𝐻 (𝑢)

)
,

𝑡 ∈ [0, 𝑡1] . 2

In order to formulate and prove the next criterion, the generalized Darbo fixed
point theorem is applied.

Theorem 4 (The generalized Darbo fixed point theorem) [2] Let 𝑉 be a
nonempty, bounded, closed and convex subset of a Banach space 𝐸 and let
𝐹 : 𝑉 → 𝑉 be a continuous operator. Assume that there exists a constant
𝑘 ∈ [0, 1) such that

𝜇(𝐹𝑋) ¬ 𝑘𝜇(𝑋)
for any nonempty subset 𝑋 of𝑉 , where 𝜇 is a measure of noncompactness defined
in 𝐸 . Then 𝐹 has a fixed point in the set 𝑉 .

Firstly, we define two operators

𝐹1(𝑥,𝑢) (𝑡) = 𝑥0𝑡
(𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼) (17)

and

𝐹2(𝑥,𝑢) (𝑡) = 𝐵
∗(𝜏)Φ∗(𝑡1 − 𝑡)𝑊−1(𝑡1)

(
𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼) − 𝐻 (𝑢)

)
+

𝑡1∫
0

Φ(𝑡1 − 𝜏) [𝐵(𝜏)𝐹1(𝑥,𝑢) (𝜏)d𝜏 + 𝑓 (𝐹1(𝑥,𝑢) (𝜏), 𝑥(𝜏), 𝑢(𝜏))]d𝜏, (18)

where𝑊 (𝑡1) and 𝐻 (𝑢) are given by (12) and (11), respectively.
Next, we define the nonlinear transformation 𝐹(𝑥,𝑢) as

𝐹(𝑥,𝑢) (𝑡) = [𝐹1(𝑥,𝑢) (𝑡), 𝐹
2
(𝑥,𝑢) (𝑡)],

which is continuous in the Banach space 𝐶𝛼,𝛽𝑛 [0, 𝑡1] × 𝐶𝑚 [0, 𝑡1].
Theorem 5 Let the nonlinear function 𝑓 satisfy the conditions:

‖ 𝑓 (𝑡, 𝑥, 𝑢)‖ ¬ 𝑘1, (19)
‖ 𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑥, 𝑢)‖ ¬ 𝑘2‖𝑥 − 𝑥‖ (20)

for 𝑥, 𝑥 ∈ R𝑛, 𝑘1, 𝑘2 ∈ R+, 0 ¬ 𝑘2 < 1. If the linear Hilfer fractional system
(6)–(7) is controllable on [0, 𝑡1], then the semilinear Hilfer fractional system
(1)–(2) is controllable on [0, 𝑡1].
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Proof. By the assumption, |𝑏𝑖 𝑗 (𝑡) | ¬ 𝑁 on [0, 𝑡1]. Consider a set

Θ = {(𝑥, 𝑢) : ‖𝑥‖ ¬ 𝑐1, ‖𝑢‖ ¬ 𝑐2},

where 𝑐1, 𝑐2 ∈ R+ are defined as follows

𝑐1 = [(1 + 𝑁1) |𝑥0 | + 𝑁1 |𝑥1 |‖Φ(𝑡1)‖ + 𝑘1𝑡1(1 + 𝑁1)‖Φ(𝑡1)‖] ‖Φ(𝑡1)‖,
𝑐2 = 𝑁2 [|𝑥0 | + |𝑥1 |‖Φ(𝑡1)‖ + 𝑘1𝑡1‖Φ(𝑡1)‖]

for
𝑁1 = ‖𝑊−1(𝑡1)‖𝑛2𝑁2𝑡1‖Φ(𝑡1)‖,

𝑁2 = ‖𝑊−1(𝑡1)‖𝑛𝑁 ‖Φ(𝑡1)‖,
whereΦ(𝑡1) is given by (7),𝑊 (𝑡1) is defined by (12). The setΘ is bounded, closed,
and convex in 𝐶𝛼,𝛽𝑛 [0, 𝑡1] × 𝐶𝑚 [0, 𝑡1]. Moreover, the nonlinear transformation 𝐹
maps Θ into Θ. It follows that for each pair (𝑥, 𝑦) ∈ Θ the inequality

𝜔(𝐹2(𝑥,𝑢) , ℎ) ¬ 𝜔(𝐵
∗Φ∗, ℎ)𝑞,

holds for

𝑞 = sup{𝑊−1(𝑡1) (𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼) − 𝐻 (𝑢)) : (𝑥, 𝑢) ∈ Θ}.

Functions 𝐹2(𝑥,𝑢) have a uniformly bounded modulus of continuity, because 𝐵 and
Φ do not depend on the choice of the points (𝑥, 𝑢) in Θ, and hence they are
equicontinuous. Moreover, functions 𝐹1(𝑥,𝑢) are also equicontinuous as they have
uniformly bounded Hilfer derivatives. The moduli of continuity of the functions
𝐷𝛼,𝛽𝐹1(𝑥,𝑢) is as follows

|𝐷𝛼,𝛽𝐹1(𝑥,𝑢) (𝑡) − 𝐷
𝛼,𝛽𝐹1(𝑥,𝑢) (𝑠) | ¬ |𝐴𝐹1(𝑥,𝑢) (𝑡) − 𝐴𝐹

1
(𝑥,𝑢) (𝑠) |

+ |𝐵(𝑡)𝐹1(𝑥,𝑢) (𝑡)−𝐵(𝑡)𝐹
1
(𝑥,𝑢) (𝑠) |+ | 𝑓 (𝑡, 𝑥(𝑡), 𝐹

1
(𝑥,𝑢) (𝑡))− 𝑓 (𝑠, 𝑥(𝑠), 𝐹

1
(𝑥,𝑢) (𝑠)) |

¬ |𝐴𝐹1(𝑥,𝑢) (𝑡) − 𝐴𝐹
1
(𝑥,𝑢) (𝑠) | + |𝐵(𝑡)𝐹1(𝑥,𝑢) (𝑡) − 𝐵(𝑡)𝐹

1
(𝑥,𝑢) (𝑠) |

+ | 𝑓 (𝑡, 𝑥(𝑡), 𝐹1(𝑥,𝑢) (𝑡)) − 𝑓 (𝑡, 𝑥(𝑠), 𝐹1(𝑥,𝑢) (𝑡)) |
+ | 𝑓 (𝑡, 𝑥(𝑠), 𝐹1(𝑥,𝑢) (𝑡)) − 𝑓 (𝑠, 𝑥(𝑠), 𝐹1(𝑥,𝑢) (𝑠)) |

¬ 𝜂1( |𝑡 − 𝑠 |) + 𝑘2 |𝑥(𝑡) − 𝑥(𝑠) | + 𝜂2( |𝑡 − 𝑠 |),

because first two modules of the right side of the above inequality have the upper
estimation 𝜂1( |𝑡−𝑠 |), where 𝜂1 is a nonnegative function such that lim

ℎ→0+
𝜂1(ℎ) = 0,

third module has the upper bound 𝑘2 |𝑥(𝑡) − 𝑥(𝑠) | due to the assumption (20), and
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𝜂2( |𝑡−𝑠 |) (nonnegative function such that lim
ℎ→0+

𝜂2(ℎ) = 0) is the upper estimation
of the fourth module. Finally,

|𝐷𝛼,𝛽𝐹1(𝑥,𝑢) (𝑡) − 𝐷
𝛼,𝛽𝐹1(𝑥,𝑢) (𝑠) | ¬ 𝜂( |𝑡 − 𝑠 |) + 𝑘2 |𝑥(𝑡) − 𝑥(𝑠) |,

where 𝜂 = 𝜂1 + 𝜂2. This implies

𝜔(𝐷𝛼,𝛽𝐹1(𝑥,𝑢) , ℎ) ¬ 𝑘2𝜔(𝐷
𝛼,𝛽𝑥, ℎ) + 𝜂(ℎ).

Hence for any set 𝑆 ⊂ Θ:𝜔0(𝐹2(𝑥,𝑢)𝑆) = 0 and𝜔0(𝐷
𝛼,𝛽𝐹1(𝑥,𝑢)𝑆) ¬ 𝑘2𝜔0(𝐷

𝛼,𝛽𝑆1),
where 𝑆1 is the natural projection of the set 𝑆 on the space 𝐶

𝛼,𝛽
𝑛 [0, 𝑡1] . Defining

the measure of noncompactness as 𝜇(𝑆) = 1
2𝜔0(𝑆), we have

𝜇(𝐹(𝑥,𝑢)𝑆) ¬ 𝑘2𝜇(𝑆).

Applying theDarbo fixed point theorem,we conclude that the function 𝐹(𝑥,𝑢) has a
fixed point. It follows that there exist functions 𝑥̃ ∈ 𝐶𝛼,𝛽𝑛 [0, 𝑡1] and 𝑢̃ ∈ 𝐶𝑚 [0, 𝑡1]
such that 𝑥̃(𝑡) = 𝐹1(𝑥̃,𝑢̃) (𝑡) and 𝑢̃(𝑡) = 𝐹2(𝑥̃,𝑢̃) (𝑡). Hence the control steering the
system (1)–(2) from the initial state 𝑥0 to a final state 𝑥̃(𝑡) = 𝑥(𝑡1) at any time
𝑡1 > 0 is defined as

𝑢̃(𝑡) = 𝐵∗(𝜏)Φ∗(𝑡1 − 𝑡)𝑊−1(𝑡1)
(
𝑥̃ − 𝑥0𝑡 (𝛼−1) (1−𝛽)𝐸𝛼,𝛼+(1−𝛼)𝛽 (𝐴𝑡𝛼) − 𝐻 (𝑢)

)
.

2

Theorem 6 Let𝑈 ⊂ R𝑚 be a convex and compact set containing 0 in its interior,
and let every 𝑢(𝑡) ∈ 𝑈 be an admissible control. If the linear Hilfer fractional
system (6)–(7) is controllable on [0, 𝑡1], the inequality (13) holds and |arg(𝜆𝑖) | >
𝛼𝜋

2
, 1 ¬ 𝑖 ¬ 𝑛, where 𝜆𝑖 are the eigenvalues of the matrix 𝐴, then the semilinear

Hilfer fractional system (1)–(2) is null𝑈-controllable on [0, 𝑡1].

Proof.We assume that inequality (13) is satisfied and the linear Hilfer fractional
system (6)–(7) with unconstrained control is controllable on [0, 𝑡1]. Applying
Theorem 3, we conclude that the semilinear Hilfer fractional system (1)–(2) is
controllable on [0, 𝑡1], while the control is unconstrained. Suppose further that
𝑈 ⊂ R𝑚 is a convex and compact set containing 0 in its interior and 𝑢(𝑡) ∈ 𝑈. If the
eigenvalues of the matrix 𝐴 satisfy the condition |𝑎𝑟𝑔(𝜆𝑖) | >

𝛼𝜋

2
, 1 ¬ 𝑖 ¬ 𝑛, then

the Hilfer fractional system (1)–(2) is asymptotically stable (see: [32]). Because
of the asymptotic stability assumption, 𝑥 = 0 is the solution of the system (1)–(2)
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for the admissible control 𝑢(𝑡) = 0. Using the null control 𝑢(𝑡) = 0, the solution
𝑥(𝑡) of (1)–(2) satisfies the conditions

lim
𝑡→+∞

𝑥(𝑡) = 0 and 𝑥(𝑡1) ∈ 𝑁 (0),

for some 0 < 𝑡1 < +∞, where 𝑁 (0) is a sufficiently small neighborhood of
0 ∈ R𝑛. From the assumption of convexity and compactness of the set 𝑈 ⊂ R𝑚,
we conclude that any state 𝑥(𝑡1) can be steered to 0 ∈ R𝑛 in finite time. Therefore
the semilinear Hilfer fractional system (1)–(2) is null𝑈-controllable on [0, 𝑡1].2

Theorem 7 Let 𝑈 ⊂ R𝑚 be a convex and compact set containing 0 in its in-
terior, and let every 𝑢(𝑡) ∈ 𝑈 be an admissible control. If the linear Hilfer
fractional system (6)–(7) is controllable on [0, 𝑡1], inequalities (19)–(20) hold
and |arg(𝜆𝑖) | >

𝛼𝜋

2
, 1 ¬ 𝑖 ¬ 𝑛, where 𝜆𝑖 are the eigenvalues of the matrix 𝐴, then

the semilinear Hilfer fractional system (1)–(2) is null𝑈-controllable on [0, 𝑡1].

Proof. Assuming that inequalities (19)–(20) are satisfied and the linear Hilfer
fractional system (6)–(7) with unconstrained control is controllable on [0, 𝑡1], we
apply Theorem 5 and conclude that the semilinear Hilfer fractional system (1)–(2)
is controllable on [0, 𝑡1] with unconstrained controls. If, additionally, 𝑢(𝑡) ∈ 𝑈,
𝑈 ⊂ R𝑚 which is a convex and compact set containing 0 in its interior and the
eigenvalues of the matrix 𝐴 satisfy the condition |arg(𝜆𝑖) | >

𝛼𝜋

2
, 1 ¬ 𝑖 ¬ 𝑛, then

the Hilfer fractional system (1)–(2) is asymptotically stable. The justification is
just the same as in the proof of Theorem 6. 2

5. Illustrative examples

In this section, a numerical example is presented to illustrate the theoretical
results obtained. Moreover, an example of a practical problem related to electric
circuits is given, modeled by a semilinear Hilfer fractional differential equation,
which is considered in this paper.

Example 1 (Numerical example)
Consider the following semilinear Hilfer fractional control system

𝐷
1
3 ,
1
2 𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑓 (𝑡, 𝑥(𝑡)), (21)

𝐼 (1−𝛼) (1−𝛽)𝑥(0+) = 0, (22)

where 𝐴 =

[
1 0
0 2

]
, 𝐵 =

[
0 𝑡

1 0

]
, and 𝑓 (𝑡, 𝑥(𝑡), 𝑢(𝑡)) =

[
sin 𝑥(𝑡)
cos 𝑢(𝑡)

]
, for 𝑡 ∈ [0, 1].
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For 𝛼 =
1
3
and 𝑛 = 2 the matrix Φ(𝑡) takes the form

Φ(𝑡) =
1∑︁
𝑘=0

𝐴𝑘 𝑡
(𝑘+1)

1
3
−1

Γ((𝑘 + 1)1
3
)
=

[
1 0
0 1

]
𝑡−
2
3

Γ

(
1
3

) +
[
1 0
0 2

]
𝑡−
1
3

Γ

(
2
3

)

=



𝑡−
2
3

Γ

(
1
3

) + 𝑡−
1
3

Γ

(
2
3

) 0

0 𝑡
− 23

Γ

(1
3

) + 2𝑡− 13
Γ

(
2
3

)

.

Hence the Grammian matrix for the system (21)

𝑊 (1) =
1∫
0

Φ(𝑡 − 𝜏)𝐵(𝑡)𝐵(𝑡)∗Φ∗(𝑡 − 𝜏)d𝜏

=



3

5
(
Γ

(
1
3

))2 + 1

Γ

(
1
3

)
Γ

(
2
3

) + 3

7
(
Γ

(
2
3

))2 0

0
−3(

Γ

(
1
3

))2 + 12(
Γ

(
2
3

))2


is nonsingular. Therefore, by Remark 2, the linear system corresponding to (21)-
(22) is controllable on [0, 1].
Moreover, 𝑓 satisfies condition (13). That is

‖ 𝑓 (𝑡, 𝑥(𝑡))‖ = ‖ sin 𝑥(𝑡) + cos 𝑢(𝑡)‖ ¬ ‖ sin 𝑥(𝑡)‖ + ‖ cos 𝑢(𝑡)‖ ¬ |𝑥(𝑡) | + |𝑢(𝑡) | 12 .

Since 𝑎 = 1, 𝑛 = 2 and 𝑁 = 1, for 𝑡 ∈ [0, 1] we have

1
𝛾
√
2
𝑛2𝑁2𝑀3𝑎

√
𝑡1𝑒

𝑎𝑀𝑡1

(
𝑒2𝜚𝑡1 − 1
2𝜚

) 3
2

=
4
𝛾
√
2
𝑀3𝑒𝑀

(
𝑒2𝜚 − 1
2𝜚

) 3
2

=
2
√
2
𝛾
𝑀3𝑒𝑀

(
𝑒2𝜚 − 1
2𝜚

) 3
2

.
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For 𝜚 → 0,
(
𝑒2𝜚 − 1
2𝜚

) 3
2

→ 1, so 𝛾 and 𝑀 can be found such that ‖Φ(𝑡1)‖ ¬ 𝑀

and 2
√
2𝑀3𝑒𝑀 < 𝛾. Then condition (14) holds, and using Theorem 3, we con-

clude that the semilinear Hilfer fractional-order system (21)–(22) is controllable
on [0, 1].

Example 2 (Practical example)
Consider a transient process in the electrical circuit, that is, a process of

transition from one operating mode to another, differing with parameters, shown
in Fig. 1.

 

 

 

( ) 

( ) 

( ) ( ) 
      L 

 

( ) 

( ) 

( ) 

 

( )      C 

Figure 1: Electrical circuit

Applying the Hilfer fractional derivative, the following system of fractional
differential equations describes the process.

𝐷𝛼,𝛽𝑥1(𝑡) = − 1
𝐿
𝑥2(𝑡) −

𝑟

𝐿
𝑥3(𝑡) +

1
𝐿
𝑒(𝑡) − 1

𝐿
𝜚0(𝑥1(𝑡)) −

1
𝐿
𝜚1(𝑥3(𝑡)),

𝐷𝛼,𝛽𝑥2(𝑡) = − 𝑔
𝐶
𝑥2(𝑡) +

1
𝐶
𝑥3(𝑡) −

1
𝐶
𝛾(𝑥2(𝑡)),

0 = −𝑥2(𝑡) − 𝑟𝑥3(𝑡) + 𝜚2(𝑥1(𝑡) − 𝑥3(𝑡)) − 𝑟1(𝑥3(𝑡)),

where 0 < 𝛼 < 1, 0 ¬ 𝛽 ¬ 1, 𝐿 is a given inductance, 𝐶 is a given capacitance, 𝐼
is the current intensity, 𝑈 is the current voltage, 𝑥1(𝑡) = 𝐼𝐿 , 𝑥2(𝑡) = 𝑈𝐶 , 𝑥3(𝑡) =
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𝐼 are coordinates of a state vector, 𝑒(𝑡) ∈ 𝐿2loc( [0,∞),R𝑚) is a continuous
voltage source (control), 𝐿,𝐶, 𝑟, 𝑔 ∈ R+ are given constants. Moreover, nonlinear
resistances 𝜚0, 𝜚1 and 𝜚2, and a nonlinear conductance 𝛾 are given continuous
functions with continuous its Hilfer 𝐷𝛼,𝛽 derivative.

6. Concluding remarks

In the paper, the controllability of semilinear Hilfer fractional control systems
is discussed. It was assumed that the nonlinear function 𝑓 is smooth enough and
satisfies either condition (13) or conditions (19)–(20). Definitions of controlla-
bility from a given initial state, local and global controllability on the interval
[0, 𝑡1], and null controllability with constrained controls for the systems were
formulated. The formula for solution of the Hilfer fractional-order initial value
problem (1)–(2) was given and proved. Themain result of the paper is new criteria
for the controllability of the semilinear Hilfer fractional systems, which have been
established and proved. The first criterion (Theorem 3) is based on Rothe’s fixed
point theorem and concerns the fractional differential system with unconstrained
control. The second criterion (Theorem 5) is the constrained controllability cri-
terion formulated on the basis of the Darbo fixed point theorem. The third and
fourth criteria are the sufficient conditions for null controllability with constrained
controls (Theorem 6 and Theorem 7). The numerical example was presented to
show how the controllability of the systems under consideration can be checked
using the criterion established (Example 1). The practical example was included
to provide a possible application of the study (Example 2).
The Rothe’s and generalized Darbo fixed point theorems are useful tools for

studying the controllability of semilinear and nonlinear fractional order dynamical
systems. The presented results can be generalized to the case of the function 𝑓
dependent on a delayed argument.
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