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Research paper

The application of the immanent tensegrity properties
to control the behavior of double-layered grids

Justyna Tomasik1, Paulina Obara2

Abstract: The paper focuses on the static behavior of double-layered tensegrity grids. Due to the
specific characteristics, like the self-stress states and infinitesimal mechanisms, tensegrities can be used
as deployable structures. For such structures, the possibility of the control of the behavior is very
important. The main purpose of the work is to prove that the control of tensegrity structures with
mechanisms is possible. The stiffness of such structures is found to depend not only on the geometry
and material properties, but also on the initial prestress level and external load. In the case, when
mechanisms do not exist, structures are insensitive to the initial prestress. It is possible to control
the occurrence of mechanisms by changing the support conditions of the structure. Grids built with
modified Simplex modules are considered. Two-stage analysis is performed. Firstly, the presence of the
characteristic tensegrity features is examined and then, on that basis, the structures are classified into
one of two classes. Next, the influence of the level of initial prestress on the behavior of structures under
static load is analyzed. To evaluate this behavior, a geometrically non-linear model is used.
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1. Introduction

Tensegrities are the structures composed of compressed elements (struts) and tensed
elements (cables). However, these systems distinguish from conventional systems rod-like
structures due to the existence of some specific mechanical and mathematical properties.
Some tensegrities are characterized by the presence of the self-stress states and the mech-
anisms. The self-stress state can be defined as a system of self-equilibrated normal forces
that satisfy homogeneous equations of equilibrium. The absence of those forces makes
tensegrity structures unstable, i.e. geometrically variable. To ensure the stabilization, ini-
tial prestress must be introduced to the structure. Additionally, the modification of the
prestress level enables the control of the static parameters of the structure.
The above mentioned features are auspicious in the context of the possible use of

the tensegrity systems in adaptive and deployable structures, for example footbridges.
In [1–3], the authors proposed a footbridge built with pentagonal ring tensegrity modules
and presented schemes of folding/unfolding of such structure. Due to the use of continuous
cables, the number of actuators is diminished. In [4,5], the lightweight tensegrity structure
built withV-expandermodule is proposed as a solutionwhich enables the access to the shore
for people with disabilities. Numerical and experimental studies were performed. In [6], a
structure built with an expanded Octahedron module is presented. In order to ensure the
stability, additional cables had to be added and that example is not characterized by the
presence of mechanisms. In turn, in [7] a footbridge built with modified Simplex modules
is considered in terms of the smart structures and different aspects of the “smartness” were
analyzed.
In the paper, deployable footbridges built with modified Simplex modules are consid-

ered. The aim of the work is to prove that the controlling the behaviour of these structures
is possible. For this purpose, the parametric analysis, including the influence of the level
of initial prestress and the change of support conditions, is carried out. A nonlinear static
analysis assuming the hypothesis of large displacements is used. The analysis contains
in two steps. Firstly, the immanent tensegrity properties, that is, self-stress states and in-
finitesimal mechanisms are identified (qualitative analysis). Depending on the presence of
those features, the behavior of double-layered tensegrity grids under external load differs
significantly and this is considered in the second step of the analysis (quantitative analysis).
At this stage, the impact of the level of initial prestress on the displacements and effort of
structures is investigated.

2. Mathematical description

The specificity of tensegrity lies in the fact that the self-stress states stabilize the
existing infinitesimal mechanisms. It should be noted that the self-stress states also occur in
geometrically invariable structures. In the paper, the finite elements method is used [8–12].
In a global coordinate system (𝑥, 𝑦, 𝑧), a finite element 𝑒 is described by a Young’s
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modulus 𝐸𝑒, a cross-sectional area 𝐴𝑒, a length 𝐿𝑒 and by a compatibility matrix B𝑒

(∈ R1×6) [11, 13]:

(2.1) B𝑒 =
[
−c𝑥 −c𝑦 −c𝑧 c𝑥 c𝑦 c𝑧

]
where: c𝑖 – directional cosines: c𝑥 =

𝑥 𝑗 − 𝑥𝑖

𝐿𝑒
, c𝑦 =

𝑦 𝑗 − 𝑦𝑖

𝐿𝑒
, c𝑧 =

𝑧 𝑗 − 𝑧𝑖

𝐿𝑒
.

The analysis is provided for 𝑛-element space truss (𝑒 = 1, 2, . . . , 𝑛) described by

the elasticity matrix E (∈ R𝑛×𝑛) = diag
[
𝐸1𝐴1

𝐿1
𝐸2𝐴2

𝐿2
. . .

𝐸𝑛𝐴𝑛

𝐿𝑛

]
with 𝑚 – degrees

of freedom q
(
∈ R𝑚×1) = [𝑞1 𝑞2 . . . 𝑞𝑚]𝑇 . The compatibility matrix B (∈ R𝑛×𝑚) for

tensegrity structures is determined using the finite element formalism [8–10, 14–20]: B =[
B1C1 B2C2 . . . B𝑛C𝑛

]𝑇 , where: C𝑒
(
∈ R6×𝑚

)
– a Boolean matrix.

The complete analysis of tensegrity structures is a two-stage process. The first stage is a
qualitative analysis, which includes the identification of self-stress states and infinitesimal
mechanisms. The second stage, so-called quantitative analysis, focuses on the behavior of
tensegrities under external loads.

2.1. Qualitative analysis

The qualitative analysis can be done through the singular value decomposition of the
compatibilitymatrixB – Eq. (2.1):B = Y N X𝑇 , where:Y (∈ R𝑛×𝑛) =

[
y1 y2 . . . y𝑛

]
,

X (∈ R𝑚×𝑚) =
[
x1 x2 . . . x𝑚

]
– orthogonal matrices, N (∈ R𝑛×𝑚) – a rectangular

diagonal matrix [11, 21–28]. The orthogonal matrices Y and X as well as matrix N are
related to the eigenvectors and eigenvalues of the following problems:

(2.2)
(
BB𝑇 − 𝜇I

)
y = 0,

(
B𝑇 B − 𝜆I

)
x = 0

where: 𝜇, 𝜆 – eigenvalues of the respective matrix.
The existence of self-stress states and infinitesimal mechanisms depends on the exis-

tence of zero eigenvalues 𝜇𝑖 = and 𝜆𝑖 = 0, respectively. The self-stress state is considered as
an eigenvector y𝑖 = S(𝜇𝑖 = 0) related to zero eigenvalue of the matrix Eq. (2.2)1, whereas
the mechanism is understood as an eigenvector x𝑖 = q(𝜆𝑖 = 0) related to zero eigenvalue of
the matrix Eq. (2.2)2. The identification of the self-stress state S enables the formation of
the geometric stiffness matrix K𝐺 (S) (∈ R𝑚×𝑚). In order to identify whether the mecha-
nism is infinitesimal or finite, the spectral analysis of the stiffness matrix with the regard of
the effect of self-equilibrated forces should be provided: (K𝐿 + K𝐺 (S) − 𝜎I) z = 0, where:
K𝐿 = B𝑇 EB – the linear stiffness matrix. If all eigenvalues 𝜎 are positive, the identified
mechanism is infinitesimal and the structure is stable. Zero eigenvalues are related to finite
mechanisms, whereas a negative eigenvalue represents instability of the structure.
The qualitative analysis leads to the classification of the structures to the one of four

classes [11,28]. The classification is based on the identification of six tensegrity features, i.e.
the structures are trusses (𝑇) with at least one existing self-stress state (𝑆) and infinitesimal
mechanism (𝑀), their elements form a discontinuous set of compressed elements (𝐷)
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which is contained within a continuous net of tensile elements (𝐼), tensile elements are
cables with zero compression rigidity (𝐶).
Generally, double-layer tensegrity grids are built from basic tensegrity modules con-

nected in a contiguous configuration (struts are connected to each other) or a non-contiguous
configuration (maintaining a discontinuous arrangement of compressed elements).Modules
can be connected edge-to-edge, node–node or strut–cable. The double-layered tensegrity
grids considered in this work do not satisfy the requirements of the feature (𝐷) because
of the method of connecting modules (node–node). The analyzed grids are classified as
structures with tensegrity features of class 1 or structures with tensegrity features of class
2. In the first case, grids are featured by five characteristics T, S, I, C and 𝑀 , whereas in the
second – the mechanisms (𝑀) are not identified. This classification is very important due
to the occurrence of immanent tensegrity features what affects the behavior of structures
under external actions.

2.2. Quantitative analysis

In the case of classical lattice structures, quantitative analysis can be carried out as-
suming small displacements, i.e. a linear geometric model. However, this approach is
inappropriate for tensegrity systems. The nonlinear analysis (third order theory) assuming
the hypothesis of large displacements is used:

(2.3)
[
K𝐿 + K𝐺 (S) + K𝑁 ,𝑁 𝐿 (q)

]
= P

where: P – the load vector, K𝑁 ,𝑁 𝐿 (q) – the non-linear displacement stiffness matrix.
Additionally, in order to illustrate the influence of external loads on the stiffening of

considered structures, the quasi-linear approach (second order theory) is used as well:

(2.4) [K𝐿 + K𝐺 (S)] = P

The explicit forms of stiffness matrices K𝐿 , K𝐺 (S), K𝑁 ,𝑁 𝐿 (q) can be found for
example in [12]. The qualitative analysis is parametric because the normal forces N are
determined as a function of the initial prestress forces 𝑆:N = y𝑖𝑆, where: y𝑖 – the normalised
vector of the self-stress state determined in the qualitative analysis.
The quantitative analysis leads to the determination of the impact of initial prestress

level 𝑆 on the behavior of structures under static load. The consideration contains the deter-
mination of the minimum (𝑆min) andmaximum (𝑆max) initial prestress level, the assessment
of the influence of initial prestress level on the displacements q and the assessment of the
influence of the initial prestress level on the effort of the structure 𝑊max = 𝑁max/𝑁𝑅𝑑

(where: 𝑁max is the maximum normal force and 𝑁𝑅𝑑 is the load-bearing capacity).

3. Results
In this paper, the qualitative and quantitative analyses of double-layered tensegrity grids

are performed. The structures built with modified Simplex modules are considered. The
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modified Simplex module (Fig. 1a) consists of twelve elements (𝑛 = 12), i.e, three struts
and nine cables, six nodes (𝑤 = 6) and, in contrast to the normal module (Fig. 1b), the top
surface of the module is inscribed into the bottom one. This modification allows the easy
connection of single units into multi-module structures. Because of the above mentioned
reasons, the modified module is chosen to build the considered structures, which can be
used as deployable footbridges. Four grids consisting of six – MS6 (Fig. 2a), ten – MS10
(Fig. 2b), fourteen – MS14 (Fig. 2c) and eighteen – MS18 (Fig. 2d) modules are taken into
account. The conducted considerations help to understand the behavior of the structure
built with 𝑛 modules (Fig. 2e). In all figures, the cables are marked in red (bottom), green
(top) and blue (diagonal), whereas the struts – in black. The different colors of cables
correspond to the different values of the self-stress state.

Fig. 1. Single Simplex module: a) modified, b) normal

Fig. 2. Top view of double-layered tensegrity grids models: a) MS6, b) MS10, c) MS14,
d) MS18, e) MS𝑛
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The parametric analysis, including the influence of the level of initial prestress and the
change of support conditions on maximum displacement of nodes in the 𝑧 direction and
the effort of the structure𝑊max is investigated. Three support conditions are considered:
– model MS𝑛–1 – grid simply supported in three bottom nodes (Fig. 3a),
– model MS𝑛–2 – grid simply supported in four bottom nodes (Fig. 3b),
– model MS𝑛–3 – grid simply supported in all bottom boundary nodes (Fig. 3b).

Fig. 3. Support conditions: a) MS𝑛–1, b) MS𝑛–2, c) MS𝑛–3

The considerations are of cognitive nature; therefore all models are loaded with the
concentrated vertical forces 𝑃𝑧 = −1 kN applied to all top nodes (Fig. 4). The design
solution of the Halfen DETAN Rod System is used and, for the adopted case of load, the
following characteristics are assumed:
– Young modulus: 𝐸 = 210 GPa and density: 𝜌 = 7860 kg/m3,
– cables: made of rods, steel S460N, diameter 𝜙 = 20 mm, load-bearing capacity:

𝑁𝑅𝑑 = 110.2 kN,
– struts: made of hot-finished circular hollow section, steel: S355J2, diameter: 𝜙 =

76.1 mm, thickness: 𝑡 = 2.9 mm, load-bearing capacity: 𝑁𝑅𝑑 = 203.5 kN.

(a) (b)
Fig. 4. The model of the load for MS𝑛: a) front view, b) top view

The quasi-linear (II order theory) and non-linear analyses (III order theory) are carried
out. For calculation, a procedure in the Mathematica environment was created.
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3.1. Qualitative analysis

Firstly, the qualitative analysiswas performed for the simplemodulewith twelve degrees
of freedom (𝑚 = 12) (the blocked displacements are 𝑞1, 𝑞3, 𝑞5, 𝑞6, 𝑞7, 𝑞9) thus the
number of elements and the number of degrees of freedom are equal (𝑛 = 𝑚 = 12). The
compatibility matrix B

(
∈ R12×12

)
is square; therefore the matrices BB𝑇 and B𝑇 B are

equal. There is one zero eigenvalue in both matrices, thus one self-stress state (Fig. 5) and
one mechanism is identified. All eigenvalues of the matrix [K𝐿 + K𝐺 (S)] are positive so
the identified mechanism is infinitesimal and the stability of the structure is ensured. The
single modified Simplex module is characterized by all tensegrity features, i.e.𝑇 , 𝑆, 𝑀 , 𝐼,
𝐶 and 𝐷, it means that it can be classified as the ideal tensegrity.

Fig. 5. Normalized self-stress state of the single modified Simplex module

The summarized results of the qualitative analysis of the double-layered tensegrity
grids are presented in Table 1. All models are characterized by the following features: 𝑇 ,
𝑆, 𝐼 and 𝐶, however, due to the connection of the modules in the node-node system, in all
multi module structures the discontinuity of struts is not preserved (𝐷).

In case of six-module double-layered grids (MS6), allmodels (MS6–1,MS6–2,MS6–3)
are characterized by the presence of the mechanism (𝑀) and they are classified as structures
with tensegrity features of class 1. Interestingly, for structures built with ten (𝑛 = 10),
fourteen (𝑛 = 14) and eighteen (𝑛 = 18) modules, the mechanism is present only in models
MS𝑛–1 andMS𝑛–2 and they are included into structures with tensegrity features of class 1.
The modelsMS𝑛–3 lack mechanisms and are classified as structure with tensegrity features
of class 2.

For allmodels a lot of the self-stress stateswere identified (from13 to 63).Unfortunately,
none of them identifies correctly the type of elements (that is, what is a strut and what
is a cable). So, in the quantitative analyses the normalized self-stress state for the single
modified Simplex module is taken into account (Fig. 3). The complete analysis of the single
module is contained in [13, 29, 30].
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Table 1. Results of the qualitative analysis of the double layer tensegrity grids

Model
No. of
nodes
(w)

No. of
elements
(n)

No. of
degrees of
freedom
(m)

No. of
mechanisms
(M)

No. of
self-stress
states
(S)

Structure with
tensegrity
features of:

MS6–1 48 1 13

MS6–2 19 60 45 1 16 class 1

MS6–3 39 1 22

MS10–1 78 1 21
class 1

MS10–2 29 98 75 1 24

MS10–3 53 0 35 class 2

MS14–1 108 1 29
class 1

MS14–2 39 136 105 1 32

MS14–3 87 0 49 class 2

MS18–1 138 1 37
class 1

MS18–2 49 174 174 1 40

MS18–3 111 0 63 class 2

3.2. Quantitative analysis

The range of the prestress forces 𝑆 must be determined in the way that the lowest level
of initial prestress 𝑆min must ensure an appropriate identification of the type of element
(cables or struts), whereas maximum 𝑆max cannot cause the exceedance of the load-bearing
capacity of elements. Generally, if the structure is classified as one with tensegrity features
of class 1, the minimum level of self-stress state 𝑆min increases with the number of modules
used in given model (Table 2). If the structure is categorized as one with tensegrity features
of class 2, the minimum level of self-stress stays at low level, i.e. 𝑆min = 0.01 kN. The
maximum level of prestress 𝑆max is the same for all models and is equal to 𝑆max = 60 kN,
so the maximum load-bearing capacity ratio differentiate between 87% (MS6–3) and 95%
(MS18–1).

Table 2. Influence the support conditions MS𝑛−𝑖 (𝑛 = 6, 10, 14, 18; 𝑖 = 1, 2, 3) on the values
of the minimum level of prestress 𝑆min

MS6 MS10 MS14 MS18

𝑖 1 2 3 1 2 3 1 2 3 1 2 3

𝑆min [kN] 1 1 0.01 6.5 6 2 17.5 15.5 2 31.6 29 2

Maximum displacements in 𝑧 direction 𝑞𝑧 are shown in Fig. 6. Table 3 contains the
comparison between displacements calculated using second (II) and third (III) order theory
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for three levels of self-stress: minimum – 𝑆min, intermediate – chosen as 𝑆𝑖𝑛𝑡 = 40 kN and
maximum – 𝑆max. The most significant difference between the quasi-linear and non-linear
approach can be observed for the structure built with six modified Simplex module for the
lowest level of self-stress 𝑆min. However, the results converge quickly and the difference
decreases significantly. Six-module double-layered grid is also the least sensitive for the
change of support conditions. For the rest of the models, static scheme affects the behavior
of the structure relevantly. The lowest displacement is obtained for models MS𝑛–3, while
the highest – for models MS𝑛–1.

Fig. 6. Influence of the initial prestress on the maximum displacement 𝑞𝑧 for models:
a) MS6, b) MS10, c) MS14, d) MS18

The influence of the initial prestress level on the effort of the structures 𝑊max is
presented in Fig. 7. Comparing results attained for various support conditions, there is
no significance difference for models MS6–𝑖 (Fig. 7a) and MS10–𝑖 (Fig. 7b). For these
models, the relation between the level of initial prestress and the effort of the structures is
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Table 3. Comparison of the maximum displacement 𝑞𝑧 [mm] calculated using the second (II) and
third (III) order theory for models MS𝑛 − 𝑖 (𝑛 = 6, 10, 14, 18; 𝑖 = 1, 2, 3)

𝑖 1 2 3

II III error [%] II III error [%] II III error [%]

𝑛 6

𝑆min −6.22 −2.38 161.3 −6.22 −2.38 161.2 −614.8 −2.67 2.3 · 104

𝑆int −0.21 −0.21 1.47 −0.21 −0.21 1.5 −0.17 −0.17 1.8

𝑆max −0.15 −0.16 0.9 −0.15 −0.16 0.9 −0.12 −0.12 1.1

𝑛 10

𝑆min −27.80 −18.54 49.6 −14.43 −11.64 24.0

−0.02 −0.02 0.0𝑆int −4.60 −4.81 4.4 −2.24 −2.33 3.7

𝑆max −3.10 −3.21 3.2 −1.52 −1.56 2.6

𝑛 14

𝑆min −55.09 −42.53 29.5 −37.75 −30.75 22.8

−0.03 −0.03 0.0𝑆int −24.3 −25.1 3.1 −14.80 −15.45 4.2

𝑆max −16.39 −17.27 5.1 −9.96 −10.41 4.4

𝑛 18

𝑆min −93.5 −69.5 34.5 −64.8 −50.6 28.1

−0.03 −0.03 0.0𝑆int −74.2 −63.0 17.6 −47.2 −43.1 9.5

𝑆max −49.8 −49.5 0.6 −31.7 −32.4 1.9

almost linear for all considered static schemes (𝐼 = 1, 2, 3). For other models, i.e. MS14–𝑖
(Fig. 7c) and MS18–𝑖 (Fig. 7d) this relation remains linear only for MS𝑛–3, which is not
characterized by mechanisms. For models MS𝑛–1 and MS𝑛–2, the effort is not linearly
dependent on the initial prestress level. Similarly to the displacements, the effort of the
structures varies when the support conditions change. Models MS𝑛–3 are characterized
by the lowest effort, while models MS𝑛–1 – the highest. Additionally, with the increase of
the level initial prestress, the difference between the efforts obtained for different support
conditions decreases.



THE APPLICATION OF THE IMMANENT TENSEGRITY PROPERTIES TO CONTROL . . . 141

Fig. 7. Influence of the initial prestress on the effort of structure𝑊max for models: a) MS6, b) MS10,
c) MS14, d) MS18

4. Conclusions

In this paper, the static behavior of double-layered tensegrity grids built with the mod-
ified Simplex modules is considered. Structures consisting of various number of modules
with different support conditions are considered. Due to the specific characteristics, these
grids can be used, for example, as deployable footbridges. For such structures, the possi-
bility of the control of the behavior is very important. Additionally, in case of deployable
structures, the influence of the change of support conditions is an important point to con-
sider. The aim of the work is to prove that control of the behavior of tensegrity grids is
possible.
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The first step is the qualitative analysis. It is leads to identification the immanent
tensegrity properties, like the self-stress states and infinitesimal mechanisms, next, to
the classification of structures. Analyzed grids are classified as structures with tensegrity
features of class 1 or class 2. In the first case, structures are featured by mechanisms,
whereas in second they are not.
The second step is the quantitative analysis. It is the parametric analysis, which includes

the influence of the level of initial prestress and the change of support conditions on the
behavior of structures under static load. In particular, the influence on displacements and
effort of structure is analyzed. In the case of structures characterized by the presence
of the mechanism (structures with tensegrity features of class 1), the control of static
parameters is possible. Due to the occurrence of the other immanent tensegrity feature, the
existence of self-stress state, these structures are stable. Their stiffness is found to depend
not only on the geometry and material properties but also on the initial prestress level
and the external load. The load, causing displacements in accordance with the form of the
infinitesimal mechanism, causes additional prestress of the structure – additional tensile
forces are generated in cables and additional compressive forces are generated in struts.
The rise of the initial prestress causes the decrease of the nodal displacements and the
reduction of the impact of the geometrical nonlinearity. Additionally, the impact of the
nonlinearity depends on the minimal level of self-stress. If the minimal level is low, the
influence of the nonlinearity is significant so only non-linear approach (third order theory)
provides appropriate results. If the minimum level of self-stress is higher, the impact of
the nonlinearity declines and quasi-linear approach (second order theory) can be used. The
minimal level of self-stress state decreases when more modules are used to build the grid.
It results in the decline of the impact of the nonlinearity. If the structure lacks mechanisms,
i.e. it is classified as one with tensegrity features of class 2, the control of static parameters
in not possible.
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Zastosowanie immanentnych właściwości tensegrity do kontroli
zachowania dwuwarstwowych kratownic

Słowa kluczowe: dwuwarstwowe kratownice tensegrity, mechanizm infinitezymalny, stan samona-
prężenia, analiza jakościowa, analiza ilościowa

Streszczenie:

W pracy analizowano statyczne zachowanie się dwuwarstwowych kratownic typu tensegrity.
Z uwagi na występowanie charakterystycznych cech, takich jak stany samonaprężenia i mechani-
zmy infinitezymalne, konstrukcje te mogą być stosowane jako rozkładalne. W takim przypadku
bardzo ważna jest możliwość kontrolowania zachowania się konstrukcji. Głównym celem pracy
jest wykazanie, że taka kontrola jest możliwa w przypadku struktur tensegrity, które charaktery-
zują się występowaniem mechanizmów. Sztywność takich struktur zależy nie tylko od geometrii
i właściwości materiału, ale także od poziomu wstępnego sprężenia i od obciążenia zewnętrznego.
W przypadku, gdy mechanizmy nie występują, konstrukcje są niewrażliwe na poziom wstępnego
sprężenia. Występowanie mechanizmów można kontrolować poprzez zmianę warunków podparcia
konstrukcji.
W pracy rozważane były rozkładalne kładki zbudowane ze zmodyfikowanych modułów Simplex.

Rozpatrzono konstrukcje o różnych warunkach podparcia składające się z różnej liczby modułów.
Analiza struktur tensegrity jest dwuetapowa. Pierwszym etapem jest analiza jakościowa, która polega
na identyfikacji immanentnych własności tensegrity, takich jak stany samonaprężenia i mechanizmy
infinitezymalne. Na tej podstawie konstrukcje są klasyfikowane jako struktury o cechach tense-
grity klasy 1 lub klasy 2. W pierwszym przypadku struktury charakteryzują się występowaniem
mechanizmów, natomiast w drugim nie. Drugim etapem jest analiza ilościowa. Jest to analiza para-
metryczna, która obejmuje wpływ poziomu wstępnego sprężenia oraz zmiany warunków podparcia
na zachowanie konstrukcji pod obciążeniem statycznym. W szczególności analizowany jest wpływ
na przemieszczenia i wytężenie konstrukcji.
Wprzypadku konstrukcji charakteryzujących się obecnościąmechanizmu (konstrukcje o cechach

tensegrity klasy 1) możliwa jest kontrola parametrów statycznych. Ze względu na występowanie dru-
giej immanentnej cechy tensegrity, czyli stanu samonaprężenia, struktury te są stabilne. Stwierdzono,
że obciążenie, powodując przemieszczenia zgodnie z postaciąmechanizmu infinitezymalnego, powo-
duje występowanie dodatkowego sprężenia konstrukcji – generowane są dodatkowe siły rozciągające
w cięgnach i dodatkowe siły ściskające w zastrzałach. Wzrost poziomu wstępnego sprężenia po-
woduje zmniejszenie przemieszczeń i zmniejszenie wpływu nieliniowości geometrycznej. Wpływ
nieliniowości zależy również od minimalnego poziomu stanu samonaprężenia. Jeśli minimalny po-
ziom jest niski, wpływ nieliniowości jest znaczny, więc tylko podejście nieliniowe (teoria trzeciego
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rzędu) daje odpowiednie wyniki. Jeśli minimalny poziom samonaprężenia jest wyższy, wpływ nie-
liniowości maleje i można zastosować podejście quasi-liniowe (teoria drugiego rzędu). Minimalny
poziom samonaprężenia zmniejsza się, gdy konstrukcja składa się z większej liczby modułów. Jeżeli
konstrukcja nie charakteryzuje się występowaniem mechanizmów, tj. została sklasyfikowana jako
konstrukcja z cechami tensegrity klasy 2, kontrola parametrów statycznych nie jest możliwa.
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