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 This paper presents a probabilistic machine learning approach to approximate wavelength 

values for unmeasured positions on an opto-semiconductor wafer after epitaxy. Insufficient 

information about optical and opto-electronic properties may lead to undetected 

specification violations and, consequently, to yield loss or may cause product quality issues. 

Collection of information is restricted because physical measuring points are expensive and 

in practice samples are only drawn from 120 specific positions. The purpose of the study is 

to reduce the risk of uncertainties caused by sampling and measuring inaccuracy and provide 

reliable approximations. Therefore, a Gaussian process regression is proposed which can 

determine a point estimation considering measuring inaccuracy and further quantify 

estimation uncertainty. For evaluation, the proposed method is compared with radial basis 

function interpolation using wavelength measurement data of 6-inch InGaN wafers. 

Approximations of these models are evaluated with the root mean square error. Gaussian 

process regression with radial basis function kernel reaches a root mean square error of 

0.814 nm averaged over all wafers. A slight improvement to 0.798 nm could be achieved by 

using a more complex kernel combination. However, this also leads to a seven times higher 

computational time. The method further provides probabilistic intervals based on means and 

dispersions for approximated positions.  

 

  

  

 

  

  

 

 

1. Introduction 

Nowadays, the Bayesian analysis is already being 

successfully applied in many research areas, like social 

sciences, ecology, genetics, medicine and more [1]. The 

particular characteristics of this probabilistic approach is 

that both observed and unobserved parameters receive a 

joint probability distribution. The Bayesian approach, 

which is based on the Bayes’ theorem, is thus not only a 

model based on input data but also extends this with 

available knowledge about known model parameters [1]. 

After epitaxy of an opto-semiconductor wafer (wafer), 

important properties, like brightness or forward voltage, are 

measured by a destructive method, whereas other properties, 

for example the wavelength, can be measured non-

destructively. The sampled measurements of the destructive 

process usually cannot completely and accurately reflect 

the properties of the entire wafer. To reduce the risk due to 

non-measured wafer positions, an approximation method is 

proposed. In the context of production, the given data fulfil 

the properties of spatial data. Many forms of approxi-

mations of spatial data have been used in the past. These 

algorithms are divided into deterministic methods, such as 

kernel approximation or spline interpolation, and stochastic 

methods, like spatial structure functions or radial basis 

functions (RBFs) [2]. Other frequently used algorithms are 
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the local neighbourhood approach and the variational 

approach [3]. Although these established methods usually 

provide decent results, all methods are only able to provide 

approximations for certain wafer positions. However, 

production is affected by uncertainties due to measurement 

inaccuracy. A pointwise interpolation method does not 

consider variability in measuring. Thus, only measurement 

points are used instead of intervals considering input data 

uncertainty. Gaussian process regression (GPR) as a 

Bayesian approach can include uncertainties within the 

observed data and within the model itself through the joint 

probability distribution and, thus, constitute an approxi-

mation considering aleatoric and epistemic uncertainties.  

1.1. Application-based GPR for approximation of a wafer 

The basis of GPR is the selection of a prior mean and a 

covariance matrix or a covariance kernel function. This 

allows subjective knowledge about the wafer measurement 

to be used as prior information. At this point, it is also 

possible to consider input uncertainties as normally 

distributed errors within the prior. Based on the prior 

probability distribution and the likelihood, the algorithm 

results in a posterior probability distribution. This posterior 

follows a multivariate normal distribution which can be 

used to approximate values for unknown positions on the 

wafer. The prediction is made by weighting all possible 

predictions with the posterior distribution. The results are 

conditionally normally distributed predictions defined by 

their means and covariances [4]. 

1.2. Related research 

In 2020, Barnes and Henn [5] compared machine 

learning (ML) algorithms such as RBF interpolation and 

GPR with a straightforward library lookup method for 

optical critical dimension (OCD) metrology. In this work, 

it is described that already 32 training points are sufficient 

for the ML method to be better than a library search. 

Schneider et al. [6] considered a Bayesian optimisation 

approach based on a GPR. Numerical simulation is used to 

reproduce measurement results of periodic micro- or 

nanostructures. These simulated structures are then 

described by optimised geometry parameters (geometry 

reconstruction). An earlier approach from 2015 by 

Henn et al. [7] attempts to obtain reliable estimates for 

quantitative characteristics of three-dimensional structures 

and associated realistic uncertainties by optimisable hybrid 

measurement techniques. A measurement method with a 

probabilistic prior and an approach with measurement 

methods combined through regressions are compared. 

Chen et al. [8] use an approach to increase the measurement 

accuracy of an optical scatterometry by using a fitting error 

interpolation-based library search method. A fitting error 

value is used to describe the wafer for a library search. 

Reference wafers are then those with the minimum 

difference in fitting error. 

1.3. Aim of the paper 

Destructive measurement methods can determine the 

opto-electronic properties of a wafer very well, but they are  

correspondingly cost-intensive and, therefore, increasing 

the number is not feasible. In practice, as well as in theory, 

methods for approximating or improving measurements in 

the field of opto-semiconductors are already being 

considered and applied. These approaches are mostly based 

on point estimators. The complex production of these 

wafers through the epitaxial process is difficult to control 

and measurement inaccuracies can also bias these values. 

A point estimator can deliver decent results compared to 

the test data but is not able to consider variability in 

measuring or systematic uncertainty. The aim of this work 

is, therefore, to get reliable approximations for the wafer 

measurements based on a probabilistic ML approach. The 

ML method focused on is the GPR, which is expected to 

provide robust point estimators and further quantifies 

uncertainty in the input data, as well as in the model. 

Comparisons are made with a state-of-the-art baseline 

method. 

1.4. Paper organization 

First, the necessity of new approaches in the context of 

production is shown in section 2. Second, the GPR and the 

baseline method are described in section 3. The experi-

mental set-up is presented theoretically and practically in 

section 4. In section 5, results are presented and discussed, 

before a summary and an outlook for the future steps are 

given in section 6. 

2. Front-end production optimisation with a Bayesian 

approach 

Production at ams-OSRAM aims to manufacture high-

quality opto-electronic semiconductors. Therefore, the 

front end of the production uses an epitaxy process to 

produce an epitaxial wafer from a substrate wafer as base 

carrier material. In the following sections, the paper 

focuses exclusively on a nitride-based process. This 

production process uses silicon carbide (SiC) as a base 

substrate or carrier material, respectively and grows gallium 

nitride (GaN)-based devices on it using metalorganic 

vapour phase epitaxy (MOVPE) [9]. According to  

Härle et al. [9], it is important for industrial production that, 

in addition to a stable epitaxy process, also a cost-effective 

chip technology is developed. 

2.1. General idea and description 

In the context of the opto-semiconductor process in a 

front-end production, different measurements are used to 

monitor the production step and achieve the best possible 

yield in subsequent further production steps. Measurement 

procedures are not part of the value chain. Hence, the goal 

of manufacturers is a maximum information gain with a 

minimum effort. The fundamental idea is to solve the 

problem of increasing the amount of information that is 

making predictions on unmeasured wafer positions, at the 

lowest possible additional cost using a state-of-the-art ML 

method and at the same time providing information about 

the reliability of the predictions based on a Bayesian 

approach.  
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2.2. Measuring systems 

This paper considers the process steps after epitaxy and 

the subsequent measuring before further processing. In this 

regard, several tests are carried out to gain necessary 

information for further production steps. The main one is 

the so-called quick test (QT). The QT is a time-consuming 

and destructive procedure that provides information about 

the opto-electric properties. Since QT measured points are 

destroyed during the process, only a few points on the 

wafer (approximately 120) are tested. Increasing the 

number is, therefore, often not feasible. A non-destructive 

method is the photoluminescence (PL) measuring, which 

measures optical properties, like the wavelength. Here, 

information is obtained by irradiating the epitaxial surface 

of the wafer by photoexcitation [10]. PL measuring does 

not destroy the measured point but is also less accurate 

compared to the QT measuring. 

3. Machine learning algorithms 

In terms of application, a multivariate regression is 

needed to infer information from a higher dimensional 

space. These dimensions separate in our case into a spatial 

basis and associated measurements of a wafer. GPR is an 

approximation algorithm based on spatial dependencies of 

measurement points [11]. Therefore, the methodology of 

GPR and its probabilistic properties are described below. 

Furthermore, a multivariate approximation method based 

on RBFs is introduced and used as a comparison algorithm 

[12]. In general, the proposed algorithms can be applied to 

destructive and non-destructive measurement methods. To 

evaluate the analysis, the data set with (non-destructive) PL 

wavelength measurements is chosen. 

3.1. Gaussian process regression 

GPR is a non-parametric, probabilistic ML approach. 

The method is determined by Gaussian processes (GP) and 

uses Gaussian probability distributions. Instead of 

pointwise estimators, the probabilistic properties result in a 

distribution for the predictions. This allows to quantify 

uncertainties [13]. GP are stochastic processes with a finite 

set of random variables. Each random variable is a linear 

combination of normally distributed random variables and 

has, therefore, also a multivariate normal distribution. The 

paper applies the module Scikit-learn in Python [14], which 

is based on the presentation of Rasmussen [13]. The goal 

of GPR is to extract the information inherent in the 

observation without noise. For this purpose, the GP as 

multivariate normal distribution is used to model the 

observation without noise 𝜀. The probabilistic GPR is 

defined by a posterior probability distribution. According to 

the Bayes’ theorem, the posterior is determined by a prior 

distribution and the likelihood of actual observations 𝑍.  

Let 𝑍 = {𝑍𝑖}𝑖∈𝐼 = {𝑍𝑖 = (𝑥𝑖 , 𝑦𝑖)}𝑖𝜖𝐼 be the observed data 

with 𝑥𝑖 and 𝑦𝑖 as the coordinates for the wafer position,  
𝐼 the associated finite index set and 𝑓 the GP. Assuming 

that the observations without inherent noises can be 

represented by 𝑓(𝑍), it follows: 

∀𝑖∈𝐼: 𝑤𝑖 = 𝑓(𝑍𝑖) + 𝜀𝑖 = 𝑓((𝑥𝑖 , 𝑦𝑖)) + 𝜀𝑖, (1) 

with 𝑤𝑖  as the wavelength measurement. The prior 

distribution for each 𝑖 in the sequence of random variables 

{𝑤𝑖}𝑖∈𝐼 is normal since the error terms 𝜀𝑖 are normal and, 

therefore, defined by a mean and a variance. Thus, for the 

multivariate GP, the prior means are given by the expected 

value function 𝑚𝑖 = 𝐸(𝑤𝑖) = 𝑓(𝑍𝑖) of the observations 

𝑤𝑖 , while the prior variance must be predefined as a 

covariance matrix, also called a kernel. For the application, 

two different kernels are considered with different levels of 

complexity which are introduced in section 4.1. 

3.2. Radial basis function interpolation 

RBF interpolation is a method for smoothing or 

multivariate interpolation of higher-order unstructured data 

[12]. The algorithm is based on RBFs or, equivalently, 

radially symmetric basis functions. According to Buhmann 

[12], a function is radially symmetric if the function value 

depends solely on the Euclidean distance from the origin. 

It follows that every function for which 𝜑(𝑥) = 𝜑(‖𝑥‖) 

occurs is an RBF. Let 𝑍 be again the set of observations 

and 𝑓 the inherent function without error 𝜀𝑖. The aim of the 

RBF interpolation method is a continuous function 𝑠 with 

the property 

𝑠(𝑍𝑖) = 𝑓(𝑍𝑖) ∀𝑖∈𝐼 (2) 

which means that every training point 𝑍𝑖 as support point 

is met by the interpolation function 𝑠 and 𝑠 evaluated at 𝑍𝑖 

equals the true value 𝑤𝑖  without error 𝜀𝑖 for every 𝑍𝑖. The 

algorithm defines the function 𝑠 as a linear combination of 

basis functions. Let every 𝜑𝑖 be a basis function, which 

fulfils the condition of an RBF function, then  

𝑠(𝑧) = ∑ λ𝑖𝜑𝑖(𝑧),

𝑖∈𝐼

 (3) 

with the scalar 𝜆𝑖 for every 𝑧 within the interpolated value 

range. According to Fasshauer [15], this linear system can 

be solved uniquely only if the basis functions used are 

radially symmetrical. For the practical evaluation, the 

implementation of Scikit-learn [14] in Python is applied. 

3.3. Uncertainty quantification 

The key aspect of this paper is the quantification of 

uncertainty. While there are methods like 5-fold cross-

validation that allow point estimation algorithms, such as 

RBF interpolation, to determine prediction uncertainty, 

these are not feasible in practical applications in the context 

of the experiment because of data sparsity. Measuring 

points are expensive and, therefore, only few data points 

per wafer are available. Hence, this paper focuses solely on 

the uncertainty quantification by GPR. Uncertainty 

quantification in a Bayesian approach is divided into two 

categories. The uncertainty within the data is called 

aleatoric uncertainty. In a physical approach, this is directly 

related to the measuring inaccuracy resulting from the 

measuring process. The second is the model uncertainty, 

also called systematic uncertainty. This quantifies the lack 

of knowledge, which is missing from the in theory perfect 

model [16]. 
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3.3.1. Confidence interval 

A confidence interval is defined by two bounds which 

are random variables and depend on a confidence level  
𝛾 = (1 − 𝛼) and a population of random samples. The 

confidence interval states that at a confidence level  
𝛾 ∙ 100% the unknown parameter 𝜃 (e.g., the mean) is 

covered by the confidence interval at 𝛾 ∙ 100% for all 

repeatedly, randomly drawn samples of this distribution. In 

practice, the confidence interval depends only on a given 

population, meaning the training data. It can only quantify 

the aleatoric uncertainty. 

3.3.2. Prediction interval 

The prediction interval, like the confidence interval, is 

in this case a symmetric interval around the mean, defined 

by an upper and lower bound. Unlike the confidence 

interval, the limits of the prediction interval are determined 

based on the prediction error. The prediction interval uses 

the given information to describe which future observations 

of the same population are covered by the interval with a 

certain probability 𝛾 = (1 − 𝛼) [13]. In the case of this 

paper, the prediction interval will be generated by sampling 

functions from the optimised GP. After fitting the posterior 

conditional distribution on the training data, it results in a 

family of not necessarily identical normal distributions 

equivalent to GP. From this family, an appropriate number 

of distribution functions are drawn as samples to describe 

which value ranges are covered by the interval to a fixed 

probability with the help of percentiles. The interval 

boundaries are defined by continuous functions, which also 

provide information about new observations of the same 

total population beyond the training data. This enables the 

quantification of uncertainties in both measurement and 

model accuracy.  

4. Experimental setup 

In the following, the ML-model setup and the practical 

application setup are presented before they are applied in 

section 5. 

4.1. ML model setup 

This section describes the structure of the application in 

a practical case and which fundamentals must be 

established for a reasonable implementation. For the 

practical part, there is a tuple of independent variables, the 

position data 𝑍 = (𝑥, 𝑦) on the wafer, and the dependent 

variable 𝑤 as the measurement value. In practice, the only 

task necessary for the application of the GPR is the 

selection of a prior kernel. The prior represents the 

subjective view on the dependent variable and, therefore, 

cannot be unambiguously determined or at least not 

without very high additional effort. Consequently, two 

promising kernels were selected for this evaluation. The 

RBF kernel (squared exponential kernel) 𝑘𝑅𝐵𝐹  as a 

standard kernel with an optimizable scalar 𝜆 and the length 

scale 𝑙 

𝑘𝑅𝐵𝐹(𝑍𝑖 , 𝑍𝑗) = 𝜆 ∗ exp (−
𝑑(𝑍𝑖 , 𝑍𝑗)

2

2𝑙2
) (4) 

is considered at first for the simple model. A linear 

combination of squared exponential kernel, rational 

quadratic kernel, and maternal kernel with likewise 

optimizable scalars  

𝑘𝑐(𝑍𝑖 , 𝑍𝑗) = 𝑎 ∙ exp (−
𝑑2

2𝑙2
) + 𝑏 ∙ (1 +

𝑑2

2𝛼𝑙2
)

−𝛼

 

+ 𝑐 ∙
1

Γ(𝜈)2𝜈−1
(

√2𝜈

𝑙
𝑑)

𝜈

𝐾𝜈 (
√2𝜈

𝑙
𝑑) 

(5) 

is considered next for the complex model. Thereby, the 

hyperparameters to be optimised are the length scale 𝑙, the 

smoothness 𝜈, the scale mixture 𝛼 and 𝑎, 𝑏, 𝑐 as associated 

scalars. Further applies 𝑑 ≔ 𝑑(𝑍𝑖 , 𝑍𝑗) as a short form for 

the Euclidean distance, Γ as the gamma function, and 𝐾𝜈 as 

the modified Bessel function. The kernel combination can 

be generated by matrix addition and multiplication since 

each kernel satisfies the conditions as a covariance matrix 

[17]. Figure 1 shows the potential sample functions from 

GP for the respective prior distribution (kernel function). 

Comparing the GP sample function with a simple and 

complex kernel, a different degree of the GP functions 

variability can be seen. For more details regarding the 

kernels, it is recommended to compare with Rasmussen [13]. 

4.2. Practical application setup  

For the practical application, measurement data for a 

chip type in the blue colour range with nitride-based 

production processes were selected as an arbitrary 

prototype for the evaluation. The analysed wafer property 

in this paper is the wavelength. The QT measurement used 

in practice cannot be evaluated directly, as all up to 120 

measurement points are necessary for training. For this 

reason, the PL measurement data set is used in the 

following showcase, as this is larger and thus test data are 

also given. To recreate the actual use case as realistically as 

possible, the PL data set is divided into test and training data. 

The wavelength values are measured for all given wafers of 

this chip type and used as the statistical population 

 

Fig. 1. Sampling y-values from GP with a given prior 

distribution (kernel). The GP is not yet trained and 

depends on mean and covariance function (kernel). 

Figure shows a two-dimensional prior distribution with 

one independent variable as an example, but more 

independent variables are also feasible.  

https://doi.org/10.24425/opelre.2023.145863
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respectively as training and test data. For each wafer, an 

equidistant grid is used to declare approximately 120 

measurement points of the data set per wafer as training 

data. This grid is identical to the pattern used for QT 

measuring. The remaining approximately 3000 measure-

ment points are the test data. Due to the lack of several 

measured values for the same position, a measurement 

inaccuracy cannot be estimated directly. However, experts 

assume a certain uncertainty in the measurement of the 

wavelength with QT, which is confidential and may not be 

specified precisely. For transparency, an inaccuracy of 

0.5 nm is used throughout the paper. This measurement 

error is constant and not wafer position-dependent, as the 

measurement of the edge point is carried out identically to 

the point within the inner area of the wafer. The used GPR 

implementation allows to define a specific measuring 

uncertainty as prior. Hereby, 0.5 nm will be added to the 

diagonal of the covariance matrix of the GPR. In the 

process of method application, each GPR is optimised 

individually for each wafer, resulting in a point estimate 

(mean vector) and a prediction interval (variance vector as 

the diagonal of a covariance matrix). The evaluation of the 

GPR with two different kernels is carried out in comparison 

to the described interpolation method as the baseline. 

5. Results and discussion 

Firstly, the results are evaluated based on a single, 

randomly selected wafer and uncertainties are quantified. 

Secondly, the evaluation is carried out empirically by 

considering the data of all wafers.  

5.1. Results for an arbitrary wafer 

Due to instability of the epitaxial growth, higher 

fluctuations occur in the edge region. In Table 1, a 

distinction is made between evaluation on the inner wafer 

area and evaluation on the complete wafer to represent the 

performance of the GPR more accurately. The inner wafer 

area is covered by the equidistant grid consisting of training 

data. Each measurement point in the complete test data set 

is part of the inner test data set if it lies within or on the 

perimeter line passing through the outer points of the 

equidistant grid. An insight into the results for one arbitrary 

wafer is given in Table 1.  

Table 1. 

Results of model fitting and prediction for an arbitrary wafer.  

Method LMLHa 
RMSE (nm) 

CTb (s) 
inner area wafer 

RBF (baseline) – 0.478 2.001 2.07 

GPR  

(simple kernel) 
−159.99 0.844 2.156 7.11 

GPR  

(complex kernel) 
−158.15 0.807 2.038 21.07 

a log marginal likelihood 

b computational time 

Table 1 shows that based on the root mean square error 

(RMSE); the RBF interpolation model is performing best 

on both test data sets. The second-best model here is the 

GPR with a complex kernel. Comparing the two GPRs with 

different complexity, the high deviation in computational 

time (CT) is remarkable. Even though the GPR with the 

complex kernel performs better than the GPR with the 

simple kernel based on the RMSE and the optimised log 

marginal likelihood (LMLH) for both data sets, the CT 

almost triples. Comparing the ratio determined from RMSE 

divided by the wavelength median of the training data, it 

becomes clear that the proportional deviation and differences 

between them are small. The highest difference between 

proportional deviations is between the baseline and the 

GPR with simple kernel on the inner area test data set with 

0.08%. It is noteworthy that exactly this difference in 

proportional deviation decreases when evaluating the 

complete test data set. The difference here is 0.034%. Thus, 

the GPR seems more stable than the baseline on the more 

difficult outer wafer area. Regarding the hypothesis, the 

RBF interpolation as the fastest method with the lowest 

RMSE can, therefore, dominate the comparison evaluations 

of point estimators. The disadvantage is obvious when 

considering uncertainty quantification, as the baseline 

interpolation method does not consider uncertainties. The 

lack of uncertainty quantification allows the method to 

compute the point estimator much faster than the GPR. 

Generally, GPR should still be preferred for practical 

purposes, since firstly, the deterioration in RMSE for point-

wise regression is relatively small and secondly, a higher 

computational effort can be justified by a description of the 

model reliability. The following cross-sections from the 

wafer surface are used to obtain an insight into the 

regression and uncertainty quantification. These chosen 

sections are marked with red (vertical cross-section) and 

blue (horizontal cross-section) coloured lines within 

Fig. 2(b) and illustrated within Fig. 3. A cross-section 

considers the model and its results reduced by one 

dimension by setting one of the two independent variables 

𝑥, 𝑦 to zero. For the following graphical evaluation, the 

GPR model of the simple kernel is used for demonstration 

purposes. However, the same evaluation can be done with 

the complex kernel. Figure 2 shows all given historical data 

of this selected wafer in Fig. 2(a) and the uncertainty 

quantification with GPR for the same wafer in Fig. 2(b). 

The uncertainty is evaluated by using the standard deviation 

of the respective covariance matrix. A small standard 

deviation indicates a rather high certainty of the GPR 

model. Furthermore, those two certain cross-sections of the 

GPR will now be focused on. In addition to a point 

estimate, the GPR provides an uncertainty quantification in 

the form of a covariance matrix related to the wavelength 

as dependent variable, conditional on the position data. 

Figure 2(b), therefore, shows the top view of the model 

uncertainties of the GPR resulting from the regression on a 

selected wafer. This illustrates that the position dependence, 

respectively the direct distance to the closest training data 

point, is decisive for the reliability of the model. The 

position (𝑥, 𝑦) = (0, 1.1), in the outer area in Fig. 2 for 

example, shows that less training data in the area around 

the position results in a prediction with much higher 

prediction uncertainty. This can be seen in Fig. 2 by 

comparing the standard deviation value between the 

position (𝑥1, 𝑦1) = (−1, 0.59) for which measured values 

are available and the position (𝑥2, 𝑦2) = (1, 0.59), which 

is unknown during model training. In terms of practical 

application, this aspect is crucial, as measurement points 

https://doi.org/10.24425/opelre.2023.145863
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may be missing in the production and the measurement 

process for undefined reasons. Information about the 

reliability of the model at these and surrounding mea-

surement points is therefore essential. Now, the graphical  

observation is reduced to a section, for this purpose the 

longitude 𝑥 = 0 in Fig. 3(a) and the latitude 𝑦 = 0 in 

Fig. 3(b) are set to display the results in a side view. Both 

models are trained with the complete training data set (not 

only with data of each cross-section). Figure 3(a) and 

Fig. 3(b) show the point estimation and the confidence and 

prediction intervals resulting from the GPR. The graphical 

comparison of the RBF interpolation curve and the GPR 

prediction curve for the vertical cross-section in Fig. 3(a) 

shows that both are almost identical for most of the 

definition range. Deviation can only be observed in the 

boundary areas [−1.21, −1.0] and [1.0, 1.21]. These 

deviations become more obvious when comparing these 

point estimators to the test data. Looking at the model 

uncertainties, the right border area [1.0, 1.21] has high 

uncertainties, which results from a missing measurement 

point at 𝑦 = 1.21. The model, therefore, extrapolates at this 

point. The same applies to the horizontal cross-section in 

Fig. 3(b). Both methods are often visually approximately 

congruent, yet both cannot completely reproduce the test 

data without deviation. The right border [0.5, 1.21] is 

noticeable. Here, the RBF interpolation and the GPR 

prediction diverge strongly in some cases, and yet both fail 

to recognise the actual trend. This results from the fact that 

 

Fig. 3. Two different cross-sections of the same wafer. Both figures show the RBF interpolation (green line), the GPR (orange 

line), and the real observation, respectively the test data (left: darkblue/right: red dotted line). The results of the green 

and red line methods are similar for a large part of the range of values where the lines overlap. Each model is trained 

with the identical training data set. Squared points indicate the PL train data on the cross-section (left: darkblue/right: 

red squares). Horizontal lines through the training data indicate the fixed measuring inaccuracy (0.5 nm). The narrow 

interval across the value range (orange) shows the confidence interval for 97.5% probability, whereas the broader 

intervals (different shades of blue) mark the prediction interval for different probabilities (from the inside out: 90%, 

95%, and 97.5%). 

 

Fig. 2. Train and test data as ground truth (for this arbitrary wafer) (a) and position-based uncertainty quantified by GPR (b) in 

top view. Figure 2(a) displays the heterogenity of the wavelength for the given observations. GPR provides a standard 

deviation for every prediction, which indicates the certainty of the model for exactly this predicted position in Fig. 2(b). 

GPR is based on the PL train data (darkgreen dots). 
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both models aim to consider the relatively low wavelength 

value at 𝑥 = 1.21 from the training data. It is also 

noteworthy that in Fig. 3(b) in comparison to Fig. 3(a), 

there is another training point at the right-hand border, from 

which it follows that the model uncertainty in this area is 

significantly lower. The relevance of the prediction intervals 

for the application should be pointed out once again. By 

method application, there is no longer only one measured 

value in production that is close to reality only in the 

optimal case, but an interval range that covers reality with 

a fixed probability compared to the GPR model. Further-

more, it also becomes graphically clear that the difference 

between the baseline and the GPR is only small in relative 

terms and can be neglected regarding the added value due 

to the prediction interval. 

5.2. Limitation of the ML methods regarding the 

practical application 

In section 5.1, it is assumed, that approximately 120 

measuring points of a wafer are used as model training 

points. In practice, measurement points can get destroyed 

during production or measuring. Figure 4 shows that each 

method needs a certain minimum number of training points 

to achieve good results. 

The evaluated models and kernels are trained with 

different numbers of input data. For this purpose, the 

respective number of training points is randomly drawn 

from the training data used in section 5.1. For each fixed 

number of training points, 20 identical models are trained 

with different samples and then the mean RMSE is 

computed. This is necessary because the random sampling 

of training points for each model has a strong influence on 

the prediction model. Figure 4 thus shows the tendency of 

all three approaches to worsen when the number of input 

data is reduced. In the range above 100 training points, 

there is hardly any decrease in RMSE value resulting from 

fewer points. With less than 100 training points, however, 

a strong deterioration of the RBF interpolation becomes 

apparent. This worsens up to a maximum RMSE of approx. 

14 000 nm, for that reason it cannot be illustrated nicely in 

Fig. 4 and is therefore truncated. In the comparison of the 

two GPRs with different kernels, a slight tendency towards 

deterioration is recognisable in both. It is also noticeable 

that the more complex kernel cannot deliver an improve-

ment compared to the simple kernel below the minimum 

number of points. Even though the RMSEs are averaged, 

the variability of the results increases for smaller numbers 

of training points. Although this is a limitation for the GPR, 

the RBF interpolation becomes significantly worse and 

unreliable at less than 100 training points and below. This 

is one major advantage of the GPR over the baseline, since 

in practical application not every single wafer can be 

checked on its own. GPR provides reliable results even if 

the number of wafer measurements is exceptionally below 

100 points. 

5.3. Empirical results over all wafers 

Table 2 shows the lowest RMSE and subsequently the 

best overall point estimation achieved by the baseline 

model. Comparing the GPR models, the smaller LMLH 

value shows that the model with the complex kernel 

achieved a much better model fit on train data. However, 

this is not reflected by the mean of RMSE values related to 

the test data where both results are similar. When looking 

at the CT, GPR with the simple kernel takes about 53 times 

longer than RBF interpolation. The ratio is even higher for 

the GPR with complex kernel, where it needs about 366 

times as much CT as the baseline. It also follows that using 

the complex kernel instead of the simple kernel takes 

approximately seven times more CT.  

Table 2. 

Results of model fitting and prediction for all wafers from the 

given population.  

Method LMLHa 
RMSE (nm) CTb (s) 

inner area wafer  

RBF (baseline) − 0.224 0.766 0.06 

GPR  

(simple kernel) 
−116.65 0.303 0.814 3.18 

GPR  

(complex kernel) 
−100.82 0.273 0.798 22.01 

a log marginal likelihood 

b computational time 

Figure 5 shows the RMSE between measured values 

and predictions of the models for the inner and the complete 

wafer test data sets. In relation to the evaluation results of 

other wafers in the population, the results for the randomly 

selected wafer from Table 1 are in the upper outlier range. 

The overall best performing algorithm in Fig. 5 is the 

RBF interpolation with the lowest RMSE median for both 

test data sets. The GPR with a simple kernel and the model 

with a complex kernel are worse than the baseline at the 

 

Fig. 4. Evaluation based on averaged RMSE with different 

numbers of input data. Each model is trained with a 

fixed number of random sampled training points 

(x-axis). To obtain robust results, 20 runs are performed 

for each number of random sampled training points. 

Sampling is done to simulate the loss of a training point. 

The evaluation is based on the complete wafer test data 

set with about 3000 points. The figure shows the RBF 

interpolation (green line), the GPR with simple kernel 

(blue line), and the GPR with complex kernel (orange 

line). 

https://doi.org/10.24425/opelre.2023.145863


  S. M. Stroka, Ch. Heumann, F. Suhrke, K. Meindl /Opto-Electronics Review 31 (2023) e145863 8 

 

median by 0.059 nm and 0.041 nm for the inner area test 

data set and 0.032 nm and 0.015 nm for the complete wafer 

test data. This is further confirmed by comparing the mean 

values from Table 2. It is noteworthy that the relative 

difference between the baseline and the GPR models 

regarding the point-wise prediction error decrease from the 

application on the inner area to the application on the 

complete wafer. This indicates a tendency, as in section 5.1, 

where the GPR is more stable on data with higher variability 

than the baseline. In summary, the RBF interpolation 

empirically performs better as a point-wise estimator than 

the GPR. Based on the results in Table 2, it is evident that 

the model fitting with a more complex kernel performs better 

on the training data but hardly represents an improvement 

compared to the actual test data, especially when considering 

the longer CT. This indicates an overfitting of the model and, 

consequently, a possibly unnecessarily high kernel 

complexity. As already stated in section 5.1, the differences 

in the mean and median are small in relative terms. These 

are also significantly lower than the measurement 

inaccuracy (aleatoric uncertainty). In terms of production, 

it can be considered not significant. The apparently very 

high CT compared to the baseline is not particularly 

noticeable in terms of a real-world application, considering 

that the regression of a wafer with a simple kernel only 

takes approximately 3 s. Nevertheless, it must be noted that 

this modelling was not done using powerful computers and 

yet a reasonable time was achieved considering the good 

results for the point estimator and the additional value for 

production through uncertainty quantification.  

6. Conclusions and outlook 

Highly complex industrial manufacturing relies on 

meaningful measurements in the production process to 

achieve the highest possible and most qualitative yield. 

Stable and reliable measurements are highly time-

consuming and costly, which is why production must get 

along with sparse measurements and, therefore, accept 

uncertainties. The proposed probabilistic GPR provides 

point estimates considering uncertainties of measurement 

and model. The normally distributed GPR gives a 

continuous wafer map regarding the measured properties 

with equally continuous uncertainty quantification for the 

whole wafer. Although the analysis is carried out for 

wavelength, any other property can also be investigated in 

further research. The empirical evaluation for the 

wavelength shows that a GPR with an RBF kernel as simple 

kernel is sufficient to achieve an average RMSE of 

0.303 nm on the inner area and 0.814 nm on the complete 

wafer. In relative comparison to the specified measurement 

accuracy of 5 nm, the fitting error is low and not significant 

in terms of production. The RBF interpolation as baseline 

method and the GPR with complex kernel surpass this 

result only barely with an RMSE of 0.224 nm (inner area) 

and 0.766 nm (complete wafer), and 0.273 nm (inner area), 

and 0.798 nm (complete wafer). A point estimator has often 

little significance when used productively, as it cannot 

always provide a reliable prediction. This fact poses a great 

risk to the goals of scrap minimisation, compliance with 

specification limits, and yield maximisation. A high 

variability due to the measuring process after epitaxy of a 

wafer increases this risk significantly. In detail, outliers that 

exceed the accepted variability limits equivalent to the 

prediction interval based on measurement and model 

uncertainties can highlight possible specification failures 

and thus serve as an alarm system. Measurement and model 

uncertainties are, therefore, important selection criteria in 

chip production to estimate dimension of the problem and 

amount of chips that will be out of specification and the 

associated yield loss in later production steps. Wafers are 

selected according to uncertainties for the best possible 

further processing or also for certain specifications. The 

GPR, unlike the baseline, has a probabilistic uncertainty 

quantification. Therefore, GPR directly enables a 

meaningful uncertainty-based classification of the output to 

meet the needs of the production. Against the clear 

advantages stands a higher CT. A GPR with a simple kernel 

takes on average 53 times longer than baseline inter-

polation for a complete wafer. Regression with a complex 

kernel takes even longer, at around 366 times the runtime 

of the baseline. In productive terms, however, GPR with a 

RBF kernel can determine a continuous point estimator 

with uncertainties of a whole wafer in about 3 s, which is 

why the computing times can be accepted in current 

applications. Even a GPR with a low-complexity kernel 

thus offers all the advantages necessary for production, 

both through exact point estimators and through the 

determination of uncertainties in measurement and model. 

Besides the focus on a safety-based categorisation of the 

output, it is equally important to extend the view to the 

overall production. The results from GPR are wavelength 

measurements or intervals of a whole wafer after epitaxy. 

These are only the results of an intermediate process step. 

 

Fig. 5. Evaluation of the empirical results of all models with 

RMSE for the wavelength for 239 wafers. Each model is 

trained and tested using the measurements of a specific 

wafer of the inner area (a) or of the complete wafer (b). 
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From an overall production perspective, the GPR results 

should further be used to optimise the subsequent process 

steps for chip production. Currently, the approximately 120 

measuring points considered in the paper are used to 

conclude the resulting number and quality of the chips with 

the help of a regression approach. Viewed holistically, the 

GPR can thus be seen as a pre-processing step for this 

regression. Building on the probabilistic approach, a 

Bayesian regression model, such as a Bayesian neural 

network can also be used. Possibly, even the prediction 

intervals respectively to the inherent standard deviation of 

the GPR model could find further use as a meaningful prior 

distribution. Furthermore, the significantly higher number 

of input measurement points resulting from the model 

should also offer an improvement for any regression. Thus, 

it can be pointed out that the probabilistic GPR approach 

provides a solid improvement opportunity for the studied 

area and offers a clear potential concerning the further 

process optimisation. 
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