
Introduction

Wastewater treatment is a critical component of smart cities and 
is essential for maintaining the hygiene and health of municipal 
populations. The most practical wastewater treatment method 
currently used in municipal wastewater treatment is biological 
wastewater treatment. Water quality soft-sensing of WWTP is 
a difficult challenge due to its complex nonlinear dynamics 
with significant disturbances and an unpredictable time delay 
(Iratni & Chang, 2019) (Guo et al. 2015). Accurate soft-
-sensing models for wastewater water quality are essential
under tight environmental requirements (Zeinolabedini &
Najafzadeh, 2019). The necessity for extremely effective
treatment techniques, in addition to the growing volume of
wastewater released, is another justification for the use of AI
in WWTP (Borgulat et al. 2022). The quantity of parameters is
another key drawback of using statistical models. It would be
challenging to estimate the model as the number of parameters
rose (Tumer & Edebali, 2015). Artificial neural networks
(ANNs) are among the several statistical techniques that can
be directly used for wastewater treatment plant (WWTP)
modeling (Yuchao Zhao et al. 2015). Particularly ANN-based
models have been applied in a number of fields, including
engineering, dynamic process modeling, pattern recognition,
and process control and prediction. A quick and precise

soft-sensing model provides an alert reference for the next 
course of action in advance if any aberrant operation takes 
place in addition to giving specific descriptions of dynamics. 
Consequently, it is essential to create an effective approach to 
assess the safety of the water environment, which includes an 
efficient and accurate soft-sensing model for WWTP (Wang 
et al. 2019). Artificial neural networks (ANNs) are the most 
widely used methods for forecasting water quality parameters 
among the existing soft-sensing models of WWTP. They 
have been particularly crucial in the simulation of industrial 
WWTPs, which shows the viability of additional practical 
applications (Oliveira-Esquerre et al. 2002).

In the past years, many studies concentrated on the 
creation of ANNs for the prediction of sludge volume using 
the Batna wastewater treatment plant’s operating and influent 
quality parameters. With R = 0.8784 and RMSE = 0.443, the 
best neural network model for forecasting sludge volume 
has an input layer with 15 input variables, a hidden layer 
with 13 nodes, and an output layer with 1 output variable. 
The outcomes show how effective the right neural network 
models are in forecasting sludge volume index (SVI). This 
offers a very helpful tool that WWTP operators may utilize in 
their everyday operations to improve the effectiveness of the 
treatment process and the dependability of the WWTP (Bagheri 
et al. 2015). These tests investigated the connections between 
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COD and trace metals using an AI-based prediction model 
with ANNs integrated into MATLAB. The ANNs were trained 
using a supervised learning technique, which also connected 
input and output data. By minimizing the error function, the 
training was intended to estimate, validate, and predict the 
parameters. It was discovered that ANN models were a reliable 
technique for forecasting WWTP performance. Environmental 
management and other developing technologies can be 
predicted using the predictive methodologies (Matheri et al. 
2021). Moreover, modeling the electrocoagulation removal 
of contaminants from wastewater by pulping processes was 
done using ANNs. Pseudo-first order and second-order models 
were used to simulate the process’ kinetics. With an ideal pH 
of 6.83, a current density of 22.06 mA/m2, and a reaction time 
of 45 minutes, it was discovered that the removability of the 
COD, TDS, and turbidity was 76.4, 57.0, and 97.13%. The R2 
of 0.999 and MSE of 0.00753 indicated that the ANN model 
provided a better fitting (Adeogun et al. 2021). A dynamic 
nonlinear autoregressive network with an exogenous input 
nonlinear autoregressive with exogenous inputs model (NARX) 
was created in a prior study to anticipate effluent quality. To 
enhance performance, several time-delay factors and training 
methods were employed. A PCA-NARX hybrid model was 
then created for high performance and compared with two 
static ANN models. The BR algorithm outperformed the other 
four training approaches for the NARX model. The dynamic 
PCA-NARX model performed significantly better in effluent 
quality simulations than static models. (Yang et al. 2022). 
Another instance given by researchers involved simulating 
an anaerobic fermentation process for biogas production in 
conjunction with wastewater purification in a modern WWTP 
with a designed nominal capacity of 27,000 m3/day using 
(ANNs). Neural models were constructed, validated, and 
tested while taking into account both the technical features 
of the process and the quality of the treated effluent, using 
actual industry data from three years of continuous plant 
operation. The operating process parameters (COD, BOD5, 
TSS, Pg, Ng) were more important for the biogas yield than 
for the wastewater quality, according to a parameter sensitivity 
analysis. The provided ANN model is a prediction tool that 
can be used to improve or steer complex processes such 
as steering/control methods (Sakiewicz et al. 2020). The 
predicted and experimental responses, on the other hand, are 
comparable, and the backpropagation ANN model successfully 
predicted plant performance. ANN can therefore be used to 
define the complete effluent and waste disposal process in 
the detergent business, handled by a number of procedures 
including air flotation, chemical coagulation, sedimentation, 
and biological treatment (Jana et al. 2022). Furthermore, in 
Matlab software, modeling of the Konya wastewater treatment 
plant was investigated using artificial neural networks with 
various designs. By combining output values of TSS with input 
values of pH, temperature, COD, TSS, and BOD, the treatment 
effectiveness of the plant was calculated. After going through 
a number of trial-and-error processes, the ideal neural network 
model design has been found. A correlation coefficient (R) 
between the observed and anticipated output variables that 
reaches up to 0.96 indicates that the ANN can forecast the plant 
performance, according to the modelling study (Paquin et al. 
2015). According to several research studies, ANN was used to 

forecast the effluent chemicals performance of the Touggourt 
WWTP over the next 10 months. The outcomes demonstrated 
that, during the learning, validation, and testing phases, the 
ANN model could accurately predict the experimental findings 
with high correlation coefficients of 0.89, 0.96, and 0.87, 
respectively. Overall findings showed that the method to ANN 
modeling can offer a useful tool for simulating, regulating, and 
forecasting the performance of WWTP (Bekkari & Zeddouri, 
2019). Another study that underlines the advantages of the 
self-organizing map technique in choosing key input variables 
for ANN modeling of WWTP efficiency performance made 
use of an ideal ANN design. The increased performance of 
the model in relation to several indicators is also highlighted 
in this study (Sharghi et al. 2019). Also, the seasonal ANN 
models were created to boost the capacity of WWTP in Harbin, 
northeast China, to purify wastewater. The ANN models found 
a connection between the quality of raw water, the amount of 
energy used, and the effluent water quality. The effluent water 
quality may be predicted by the models. As a result, it might 
give managers more precise data to monitor and plan WWTP 
processes, enhancing wastewater purification (Ying Zhao et al. 
2016). In a previous study, the forecasting of three important 
water quality indices in the Gaza wastewater treatment plant 
was done using an ANN model. The treatment effectiveness 
of the plant was determined by comparing influent input data 
for pH, temperature, BOD, COD, and TSS with effluent output 
values for these parameters. The performance of the model was 
compared using the root mean squared error (RMSE), mean 
absolute percentage error (MAPE), and correlation coefficient 
(R). It was found that BOD, COD, and TSS at the outflow 
of the Gaza wastewater treatment facility could be precisely 
estimated using the ANN model (Hamada et al. 2018).

One of the most well-known machine learning methods, 
which is a subset of AI, is ANN. Neural networks fall under 
the category of „black box” models since knowledge of the 
process’s physical characteristics is not necessary. It establishes 
a connection between the variables affecting the output. the 
quantity of studies employing the ANN approach to model 
the aforementioned membrane processes According to the 
growing body of research over the years, the tendency appears 
to be moving more in the direction of ANN models (Jawad 
et al. 2021). ANN models have projected the complete and 
fecal coliform eradication for an intermittent cycle extended 
aeration-sequential batch reactor. Some of the metrics used to 
build the network were pH, BOD, COD, TSS, oil & grease, 
total kjeldahl nitrogen (TKN), ammonical nitrogen (AN), 
total phosphorus (TP), fecal coliform, and total coliform. The 
most effective ANN models for total and fecal coliform were 
selected using the trial-and-error method. The output of the 
simulation was within 5% of MAPE for both total and fecal 
coliform. ANN models can regulate the amounts of fecal 
coliform and total coliform in the treated wastewater effluent, 
lowering the dangers to the public’s health (Khatri et al. 2020).

In order to choose the best method for the prediction of 
the wastewater quality data, the major objective of the current 
paper is to determine the optimum topology of the ANN and 
compare the resulting prediction results with real data. In order 
to generate models with different ANN topologies, the neurons 
in the hidden layer were modified. The effectiveness of the 
created ANN was evaluated using the correlation coefficient, 
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MAD, RMSE, and MAPE for training and independent 
validation. This is because there are many problems with how 
wastewater quality is measured and recorded, including BOD, 
TN, TP, and TSS. It is believed that the findings of this study 
will aid in the creation of strategies and policies to lessen the 
pollution the WWTP produces and enhance its effectiveness as 
a case study for predicting the performance of the WWTP. The 
error was reduced to provide the optimal operating points by 
comparing the output data to the real training data and ANN 
data. The results would have been more precise and thorough 
if data that were measured on a daily or weekly basis had been 
collected, even though the data obtained on a monthly basis 
was somewhat adequate.

Materials and methods
The Plant Description
The largest wastewater treatment facility in the Black Sea 
region, the Samsun Eastern Advanced Biological Wastewater 
Treatment Plant and Deep-Sea Outfall Project was constructed 
on the coastal portion of the Tekkekoy District’s Industrial 
Zone in Turkey. The location of the Samsun Eastern Advanced 

Biological Wastewater Treatment Plant is shown in Figure 1.
The facility’s project flow rate for the first phase in 2018 was 

105,000 m3/day, and for the second phase, it is 120,000 m3/day. In 
Samsun Province, the Treatment Plant provides services to 44% of 
the populace. The facility also removes nitrogen and phosphorus 
as part of the lengthy aeration-activated sludge treatment process. 
Following the advanced treatment, the wastewater is discharged 
as a deep-sea outfall (23.5 m) at the end of a 250 m diffuser and 
a 2.45 km long, 1600 mm diameter HDPE pipeline. In terms of 
capacity, the facility is the biggest treatment facility in the Black 
Sea area. The Samsun Eastern Advanced Biological WWTP 
features bio-disc and UV disinfection units with a capacity of 
roughly 1,000 m3/day, and it has been discovered that the facility’s 
green spaces are watered with treated wastewater. Figure 2 
includes a picture of the facility.

The Urban Wastewater Treatment Regulation states that in 
facilities with a project flow rate of 20,000 m3/day or more, the 
BOD5 concentration shall be 25 mg/L, the TSS concentration 
35 mg/L, the total nitrogen concentration 10 mg/L, and 
the total phosphorus concentration less than 1 mg/L. is 
required. The dissolved oxygen (DO) was determined using 
INSTRUMENTATION – Membrane Sensor (Model 1056 

Fig. 2. Photograph of Samsun eastern advanced biological wastewater treatment plant

Fig. 1. Location of Samsun eastern advanced biological wastewater treatment plant



 Performance prediction and control for wastewater treatment plants using artifi cial neural network modeling... 19

Dissolved Oxygen Analyzer), and after data analysis, the 
mean, standard deviation, and variance were 1.68, 0.33, and 
0.11, respectively. These values are roughly within the range 
for wastewater treatment.

Samsun eastern advanced biological wastewater treatment 
plant consists of pretreatment units (Coarse screen (2+1), 
screen unit capacity of 4,250 m3/h, screen opening 30 mm and 
chain type screen, Inlet transfer unit (3+1), pump unit capacity 
of 2892 m3/h and submersible pump, fine screen (2+1), screen 
unit capacity of 4,250 m3/h, screen opening 6 mm aperture and 
perforated type screen, ventilated sand and grease removal unit, 
final hydraulic capacity of 10,000 m3/h, 2 units equipped and 
final unit capacity of 5,000 m3/h), advanced biological treatment 
units anoxic–anaerobic–oxic (A2O)(Bio-P tanks (4 units), unit 
tank volume of 2,625 m3 and retention time (HRT) of 0.7 hours 
(anaerobic), activated sludge tanks (4 units), the volume of 
each tank is 39,198 m3, the air flow rate is 38,439 Nm3/h, 
number of blowers is 3+1 and blower pressure is 750 mbar 
(oxic and anoxic), secondary sedimentation tanks (5 units), 
tank diameter 48.5 m, the volume of each tank is 6,848 m3 
and double-sided V-type weir and recirculation and effluent 
pumping station), and sludge units (sludge dewatering) (1%), 
total pool volume 2,250 m3, total air volume 2.96 Nm3/h and 
number of mixers 2, concentration (5%), concentrator drum 
power is 1.1 kW, concentrator drum capacity is 70 m3/h and 
a number of drums is 3+1, centrifugal type decanter (25%), 
decanter power 30 kW, decanter capacity 22 m3/h and number 
of decanters 2+1).

Domestic wastewater is transported to Samsun eastern 
advanced biological wastewater treatment facility by 
a collector line with a 2,000 mm diameter from communities 
in the southern part of the city. The initial stage of treatment for 
incoming wastewater involves the pre-treatment units.   

Creating the neural network
A typical neural network structure used in this study is shown 
in Figure 3. The graphic shows the hidden layer (hidden 

variables), output layer (dependent variables), and input layer 
(independent variables) of the ANN structure. These layers 
are connected via connections with different weights. The 
input and output layers are joined by the hidden layer. One or 
more neurons may be present in the buried layers. Nonlinear 
equations can be obtained from provided data that correspond 
to a hidden layer in a network. The topological structure of 
an artificial neural network depends on the number of layers, 
the number of nodes in each layer, and the type of transfer 
functions (F. Golzar et al. 2020). 

The input (Ii) is multiplied by the weights (W I
i,j), added 

with the hidden layer’s biases (B H
,j), and then collected as the 

neurons in the hidden layer (Nj). The resulting values are then 
multiplied by the weights of the hidden layer and transmitted 
to the output layer by means of a transfer function (FH) (W H

1, j). 
The final value of the ANN model output is given by the sum 
of output layer bias.

For all different kinds of networks, the ANN’s essential 
operating concept remains the same. The basic processing 
unit, the neuron, accepts signals as input, processes them 
using an activation function, and then outputs a signal. The 
weight of each neuron and the transfer functions are additional 
factors that help signals move from one layer to the next layer. 
The underlying mathematical idea of the neural network is 
expressed in Equation (1).

 
  (1)

where Yi represents the projected output’s value i. Wij is 
the weight given to each input j, M is the total number of inputs, 
and bi is the bias for each output. f is the activation function.

The sigmoid function is the most prevalent kind of 
activation function(Haykin, 2009). The tan-sigmoid function 
and the log-sigmoid function, which are represented by 
Equations (2) and (3), respectively, are examples of the sigmoid 
function(Gangi Setti & Rao, 2014).

Fig. 3. The structure of an artifi cial neural network (ANN) is depicted schematically
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  (2)

  (3)

where x is the activation function’s input.
The dataset must be split into three sets: training (70% of 

the available data), validation (15% of the available data), and 
testing (15% of the available data) in order to create the ANN 
model (K. Golzar et al. 2016).

Neural network training (learning)
In other words, realization occurs when input/output data are 
processed, with the training algorithm adjusting the synapses’ 
weights based on the data until convergence is attained. 
Learning occurs by training using examples. Similar to a real 
neural network, learning in artificial neural networks involves 
altering the weight values between neurons to achieve a certain 
goal. Values for the initial weight are selected at random. 
Examples are shown in artificial neural networks as their weight 
values vary. The goal is to identify the weight values that will 
result in the appropriate outputs for the network’s examples 
(Agatonovic-Kustrin & Beresford, 2000). It is clear that the 
network can generalize about the events that the samples reflect 
when the weight values of the network are accurate. Network 
learning is the process of enabling artificial neural networks 
to generalize about unknowable situations by extracting 
specialized information from prior experiences. Attempts to 
determine whether the network learns (performs) after the 
training are referred to as „testing” the network. Examples 
that the network has never seen before are utilized for testing. 
The connection weights calculated during training are used by 
the network to produce outputs for these occurrences that it is 
not aware of. The generated outputs’ accuracy metrics provide 
details about the network’s learning. The more successful the 
training, the better the results. The „test set” is a sample set 
used for testing, while the „training set” is a sample set used 
in education (NEGNEVITSKY, 2005). The objective of model 
training is to iteratively modify the network through numerous 
data presentations. The two primary methods of model training 
are unsupervised and supervised. Unsupervised training occurs 
when the model is solely provided with input data and uses 
these to change the connection weights. While working with 
supervised data, values from both the input and the target data 
are given to the model. It was used in this experiment because 
supervised training takes less time than unsupervised training.

Evaluation of predicting performance
ANN learning of the relationship in the data structure can be 
characterized as the process of selecting the most acceptable 
values for the network weights using problem cases. For any 
weight(W); 

  (4)

The equation illustrates the mathematical process of 
learning. The amount of change in the present weight values 
is indicated by the W in Equation (4), which is calculated in 

accordance with a predetermined rule. The phrase „learning 
algorithms” refers to the principles used for determining W. 
To assist in locating the ideal weight set, numerous learning 
techniques have been proposed (Chang et al. 2001).

The ability of various ANN models to predict outcomes 
was evaluated using the correlation coefficient (R) for the 
training set and all datasets, mean absolute error (MAE), root 
mean square error (RMSE), and mean absolute percentage 
error (MAPE).

  (5)

  (6)

  (7)

  (8)

Where: xp,i: correlated value; xo,i: observed value; n: number of 
observations; and  x–o,i: average of observed values.

Applying of ANN model on WWTP 
The historical data used in this study came from investigations 
made in the WWTP laboratory. BOD, TN, TP, TSS, T, DO, 
pH, HRT, Q, and conductivity for both raw influent wastewater 
and treated effluent were recorded in the plant laboratory for 
a period of about 4 years (from September 2014 to December 
2018). Wastewater entering the treatment plant was tested on 
a monthly basis for a period of four years. The information 
gathered was carefully reviewed. After assessing the numerous 
modeling options for treatment plant performance, it was 
decided to relate the quality of the raw influent wastewater to 
the quality of the final treated effluent. The treated effluent and 
influent operational data are included in Table 1 together with 
the descriptive statistical analysis. The MATLAB® (R2022b) 
(MATLAB, 2022) software neural network toolbox, a high-
performance interactive software program for scientific and 
engineering computation, was used to design, build, train, and 
test the neural networks. Data pre-processing and organization 
operations have also been carried out using Microsoft® 
Excel® for Microsoft 365 MSO. The effluent water quality of 
the WWTP is the output of the ANN models, while the inputs 
are raw water quality parameters. The outputs were identified 
as Biochemical Oxygen Demand (BOD), Total Nitrogen 
(TN), Total Phosphorus (TP), pH and Total Suspended Solids 
(TSS) effluent water based on a thorough review of the data 
that was available. Twelve raw wastewater parameters made 
up the input variables. BOD, TN, TP, TSS, T, DO, pH, HRT 
(Bio-phosphorus pons, aeration pond and final settling tanks), 
Q, and conductivity were the raw wastewater’s parameters as 
shown in Figure 4. The data were separated into a training set, 
a validation set, and a test set using an early stopping strategy 
to increase the network’s generalization capacity. 
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An ANN model’s fundamental components are the input 
layer, where data are fed into the model and the weighted sum 
of the input is computed, the hidden layer or layers, where 
data are processed, and the output layer, where ANN outputs 
are produced. The effectiveness of a complex neural network 
forecast model is susceptible to insufficient training. It has 
been demonstrated that a Feed-Forward Back-Propagation 
(BP) neural network model with a single hidden layer 
may approximate nonlinear functions with a small number 
of discontinuities accurately if the hidden layer contains 
a sufficient number of neurons (Hong et al. 2003). Therefore, 
in this investigation, the BP model with a hidden layer was 
used. The number of neurons in a hidden layer can be counted 
in a variety of ways, according to the literature, however 
these approaches are all completely empirical and cannot be 
used generally. As a result, 40 neurons in the buried layer 
were selected from a large body of literature (Pai, 2008) and 
the neuron transfer function in the hidden layer was decided 
to be either hyperbolic tansig or logsig sigmoid functions. 
The optimum model structure has been discovered using the 
trial-and-error method. The output characteristic of the entire 
neural network can be significantly influenced by the transfer 
function in the last layer. The output layer’s sigmoid function 
must be used to convert the estimated output back to the real 
world. A linear function, on the other hand, avoids remapping 
the outputs by estimating the output in the range from zero 
to infinity (Hanbay et al. 2008). As a result, a linear function 
was selected as the transfer function for the output layer’s 
neurons. The neural network was trained using the training set. 
The training set’s error was monitored using the validation set. 
The validation error of the validation set typically decreased 
along with the increase in training error at the start of training. 
However, if the network was overtrained, even when the 
training error was declining, the validation error would steadily 
rise. The network with the lowest validation error would be the 
best model at this point, and network training would be ended. 

Fig. 4. Structure of ANN for WWTP

The model was lastly validated using the test set. In this study, 
the target value of iterations was 1000, but the ANN model 
stopped at 7 iterations (minimum error) as shown in Figure 5.

Results and discussion
To identify the best network architecture for BOD, TN, TP, 
TSS, and pH prediction for the treated effluent, a network with 
12 inputs and 5 outputs was established. Table 2 compares 
the ANN and RSM’s prediction responses to experimentally 
collected data. The model’s statistical performance results are 
shown in Table 2. All configurations are calculated to get the 
values in the table (training, testing and validation) The error 
levels are reasonable and within the predicted range based 
on the statistical performance for the output prediction. As 
a result, it can be inferred that the ANN model generalizes 
the data effectively and is probably capable of making precise 
predictions when new data are presented.

The linear regression plot for the best-performing model 
from each configuration is shown in Figure 6. The comparison 
plot between the predicted and actual data is shown in Figure 
7 based on the MSE values, and the ANN model shows an 
acceptable fit. As a consequence, it was agreed that the best 
design for output prediction would consist of an input layer 
with 12 neurons, a hidden layer with 40 neurons, and five output 
layer neurons. This study addresses the issue of how to apply 
an ANN model to diagnose the dynamic behavior of Samsun 
WWTP and capture the intricate interactions that exist between 
process variables. By creating an ANN model for projecting 
plant performance based on previous observations of some 
important product quality characteristics, the plant may be 
operated and controlled safely. The network’s training window’s 
regression button in MATLAB carries out a linear regression 
between the outputs of the network and their respective goals. 
The best model regression results are displayed in Figure 6. For 
testing (R-value= 0.88712), validation (R-value= 0.90496), 
and training (R-value= 0.98645), it is shown that the output 
closely follows the targets. These numbers can be translated 
into a five-output total response with an R-value of 0.95294. 
The ANN model’s prediction results for the validation and 
testing data set were determined to be good (refer to Figure 7).

To predict BOD, TN,TP, TSS, and pH, a conventional ANN 
model with backpropagation integrated with the LM method is 
created. The best model for predicting the performance of the 
WWTP among the candidate models described above is the 
MLP one hidden layer-based outputs prediction model with 40 
neurons in the hidden layer because, in contrast, the reason the 
R values are closer to each other for the training, validation, 
and test sets is minimal. The analysis of performance statistics 
is supported by the depiction of the measured output values in 
comparison to the predicted values of the MLP network. Figures 
8 and 9 show the performance of MLP and RBF neural networks, 
respectively. The plot of MSE against the number of epochs for 
the training, validation, and test datasets is shown in Figure 8. 
The ANN simulation terminates when either the minimum MSE 
is reached or the maximum number of training epochs have been 
used, whichever comes first. When the training process reached 
epoch 2, the MSE gradually fell with increasing iteration 
numbers. Additionally, the MSE significantly decreased and 
peaked at epoch number 7, when its value was the lowest.
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Fig. 5. Neural network training interface

Table 2. Performance statistics for the output’s prediction models

ERROR
The error between observation and ANN

BOD
(mg/L)

TN
(mg/L)

TP
(mg/L)

TSS
(mg/L) pH

MAD 0.9492 0.4676 0.0904 1.0440 0.0913
MSE 1.8367 0.4432 0.0123 2.5914 0.0198

RMSE 1.3553 0.6657 0.1107 1.6098 0.1408
MAPE 0.1197 0.0800 0.1832 0.1020 0.0126

Fig. 6. The distribution of the measured data and predicted values for the ANN model
(Regression plot for the best performing)
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Fig. 7. A parity plot depicting the distribution of experimental and predicted 
percentage reduction values for BOD, TN, TP, TSS and pH
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How many data points are close to the bin value is 
indicated by the height of the bar in a bar plot, as seen in 
Figure 10. Yet, the output is very close to the target value 
and the NN model performs well because errors are almost 
zero. The bin number supplied in the histogram function (i.e., 
histogram(data,20)) determines the error values; if you use 
a different bin value, the error values may change. You can 
try bin numbers 50 or 100. The bin number that is closest to 
0 becomes the wrong value. Since an error of zero suggests 
that the outputs are close to the target, the model performs 
well if the bin bars at zero are taller than higher error values 
(Alnajjar & Üçüncü, 2023).

This study differs from others in that it simultaneously 
predicted the values of five outputs while building and training 
neural networks using a sizable number of inputs. It can be 
said that the results of the model can be relied upon to predict 
the output values of wastewater treatment plants because the 
error values were low, with the MAD, MSE, RMSE, and 
MAPE being less than 0.6786, 0.7576, 0.8704, and 0.1276 
respectively, and the coefficient of determination is 0.8838, 
0.8080, 0.8099, 0.8876, and 09396 for each of BOD, TN, TP, 
TSS, and pH.

Given that a sufficient number of inputs and variables 
were used in the model’s development, the neural network 
model that was built, trained, and tested using the data from the 
Samsun Eastern Advanced Biological Wastewater Treatment 
Plant was more accurate than that used in earlier studies. It 
could also be used to predict the output of other wastewater 
treatment plants. In contrast to earlier studies, the data acquired 
covered a considerable amount of time.

Conclusions
The built ANN models successfully forecasted the WWTP 
performance based on the effluent BOD, TN, TP, TSS 
concentrations and pH in the treatment plant. The key factor 
contributing to the model’s subpar performance was noise in 
the data used to develop the ANN. The results demonstrated 
the need for prior data preparation and analysis for ANN 
training. The complexity of the network setup (number of 
inputs, hidden layers, and neurons) should be steadily increased 
until no further development is seen. In this study, a design 
with twelve inputs and five outputs was sufficient; any more 
inputs would have caused the system to become overfitted. 

Fig. 8. MLP network training performance

Fig. 9. RBF network training performance
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The neural network’s best models were created using the 
MLP-BP with three layers, the tansig activation function at 
a hidden layer with 40 neurons, the purelin activation function 
at the output layer, and the LM training method with seven 
iterations. According to the ANN forecast, the outputs from the 
experiment and the simulation were nearly identical. Having 
greater R and lower MSE values during ANN training with low 
experimental values of input data shows that the MLPANN 
produces accurate findings. The results demonstrate that this 
soft sensor model can be successfully applied to online control 
and management systems for WWTPs.

Reference
Adeogun, A.I., Bhagawati, P.B. & Shivayogimath, C.B. (2021). 

Pollutants removals and energy consumption in electrochemical 
cell for pulping processes wastewater treatment: Artificial neural 
network, response surface methodology and kinetic studies. 
Journal of Environmental Management, 281 (December 2020), 
111897. DOI: 10.1016/j.jenvman.2020.111897

Agatonovic-Kustrin, S. & Beresford, R. (2000). Basic concepts of 
artificial neural network (ANN) modeling and its application 
in pharmaceutical research. Journal of Pharmaceutical and 
Biomedical Analysis, 22,5, pp. 717–727. DOI: 10.1016/S0731-
7085(99)00272-1

Alnajjar, H.Y.H. & Üçüncü, O. (2023). Removal efficiency prediction 
model based on the artificial neural network for pollution 
prevention in wastewater treatment plants. Arab Gulf Journal of 
Scientific Research, ahead-of-p(ahead-of-print), DOI: 10.1108/
AGJSR-07-2022-0129

Bagheri, M., Mirbagheri, S. A., Bagheri, Z. & Kamarkhani, A.M. (2015). 
Modeling and optimization of activated sludge bulking for a real 
wastewater treatment plant using hybrid artificial neural networks-
-genetic algorithm approach. Process Safety and Environmental 
Protection, 95, pp. 12–25. DOI: 10.1016/j.psep.2015.02.008

Bekkari, N. & Zeddouri, A. (2019). Using artificial neural network for 
predicting and controlling the effluent chemical oxygen demand 
in wastewater treatment plant. Management of Environmental 
Quality: An International Journal, 30, 3, pp. 593–608, 
DOI: 10.1108/MEQ-04-2018-0084

Borgulat, A., Zgórska, A. & Głodniok, M. (2022). Comparison 
of different municipal sewage sludge products for potential 
ecotoxicity. Archives of Environmental Protection, 48, 1, 
pp. 92–99. DOI: 10.24425/aep.2022.140548

Chang, N. Bin, Chen, W.C. & Shieh, W.K. (2001). Optimal control 
of wastewater treatment plants via integrated neural network 
and genetic algorithms. Civil Engineering and Environmental 
Systems, 18, 1, pp. 1–17. DOI: 10.1080/02630250108970290

Gangi Setti, S. & Rao, R.N. (2014). Artificial neural network approach 
for prediction of stress-strain curve of near β titanium alloy. Rare 
Metals, 33, 3, pp. 249–257. DOI: 10.1007/s12598-013-0182-2

Golzar, F., Nilsson, D. & Martin, V. (2020). Forecasting wastewater 
temperature based on artificial neural network (ANN) 
technique and Monte Carlo sensitivity analysis. Sustainability 
(Switzerland), 12, 16. DOI: 10.3390/SU12166386

Golzar, K., Modarress, H. & Amjad-Iranagh, S. (2016). Evaluation 
of density, viscosity, surface tension and CO2 solubility for 
single, binary and ternary aqueous solutions of MDEA, PZ 
and 12 common ILs by using artificial neural network (ANN) 
technique. International Journal of Greenhouse Gas Control, 53, 
pp. 187–197. DOI: 10.1016/j.ijggc.2016.08.008

Guo, H., Jeong, K., Lim, J., Jo, J., Kim, Y. M., Park, J. pyo, Kim, 
J.H. & Cho, K.H. (2015). Prediction of effluent concentration 
in a wastewater treatment plant using machine learning models. 
Journal of Environmental Sciences (China), 32, pp. 90–101. 
DOI: 10.1016/j.jes.2015.01.007

Hamada, M., Zaqoot, H A. & Jreiban, A.A. (2018). Application of 
artificial neural networks for the prediction of Gaza wastewater 
treatment plant performance-Gaza strip. Journal of Applied 
Research in Water and Wastewater, 9, 1, pp. 399–406.

Hanbay, D., Turkoglu, I. & Demir, Y. (2008). Prediction of 
wastewater treatment plant performance based on wavelet 
packet decomposition and neural networks. Expert Systems 
with Applications, 34, 2, pp. 1038–1043. DOI: 10.1016/j.
eswa.2006.10.030

Haykin, S.U. (2009). Neural Networks and Learning Machines. In 
3 (Ed.), Encyclopedia of Bioinformatics and Computational 
Biology: ABC of Bioinformatics (Vols. 1–3). Library of Congress 
Cataloging. DOI: 10.1016/B978-0-12-809633-8.20339-7

Hong, Y.-S. T., Rosen, M.R. & Bhamidimarri, R. (2003). Analysis of 
a municipal wastewater treatment plant using a neural network-
-based pattern analysis. Water Research, 37, 7, pp. 1608–1618. 
DOI: 10.1016/S0043-1354(02)00494-3

Iratni, A. & Chang, N.-B. (2019). Advances in control technologies 
for wastewater treatment processes: status, challenges, and 
perspectives. IEEE/CAA Journal of Automatica Sinica, 6, 2, 
pp. 337–363, DOI: 10.1109/JAS.2019.1911372

Jana, D.K., Bhunia, P., Das Adhikary, S. & Bej, B. (2022). 
Optimization of Effluents Using Artificial Neural Network and 

Fig. 10. Error histogram for ANN model to get zero error



 Performance prediction and control for wastewater treatment plants using artifi cial neural network modeling... 29

Support Vector Regression in Detergent Industrial Wastewater 
Treatment. Cleaner Chemical Engineering, 3(June), pp. 100039. 
DOI: 10.1016/j.clce.2022.100039

Jawad, J., Hawari, A.H. & Javaid Zaidi, S. (2021). Artificial neural 
network modeling of wastewater treatment and desalination using 
membrane processes: A review. Chemical Engineering Journal, 
419(March), pp. 129540. DOI: 10.1016/j.cej.2021.129540

Khatri, N., Khatri, K.K. & Sharma, A. (2020). Artificial neural 
network modelling of faecal coliform removal in an intermittent 
cycle extended aeration system-sequential batch reactor 
based wastewater treatment plant. Journal of Water Process 
Engineering, 37, pp. 101477. DOI: 10.1016/j.jwpe.2020.101477

Matheri, A.N., Ntuli, F., Ngila, J.C., Seodigeng, T. & Zvinowanda, 
C. (2021). Performance prediction of trace metals and cod in 
wastewater treatment using artificial neural network. Computers 
and Chemical Engineering, 149, pp. 107308. DOI: 10.1016/j.
compchemeng.2021.107308

MATLAB. (2022). The MathWorks Inc version R2022b (version 
R2021b). The MathWorks Inc. https://matlab.mathworks.com.

Negnevitsky, M. (2005). Artificial Intelligence A Guide to Intelligent 
Systems. In British Library Cataloguing (2nd ed., Vol. 123). 
DOI: 10.1016/j.poly.2016.11.012

Oliveira-Esquerre, K.P., Mori, M. & Bruns, R.E. (2002). Simulation 
of an industrial wastewater treatment plant using artificial neural 
networks and principal components analysis. Brazilian Journal 
of Chemical Engineering, 19, 4, pp. 365–370. DOI: 10.1590/
S0104-66322002000400002

Pai, T.-Y. (2008). Gray and Neural Network Prediction of Effluent 
from the Wastewater Treatment Plant of Industrial Park Using 
Influent Quality. Environmental Engineering Science, 25, 5, 
pp. 757–766. DOI: 10.1089/ees.2007.0136

Paquin, F., Rivnay, J., Salleo, A., Stingelin, N. & Silva, C. (2015). 
Multi-phase semicrystalline microstructures drive exciton 
dissociation in neat plastic semiconductors. J. Mater. Chem. C, 
3, 4, pp. 10715–10722. DOI: 10.1039/b000000x

Sakiewicz, P., Piotrowski, K., Ober, J. & Karwot, J. (2020). 
Innovative artificial neural network approach for integrated 

biogas – wastewater treatment system modelling: Effect of plant 
operating parameters on process intensification. Renewable 
and Sustainable Energy Reviews, 124. DOI: 10.1016/j.
rser.2020.109784

Sharghi, E., Nourani, V., Aliashrafi, A. & Gökçekuş, H. (2019). 
Monitoring effluent quality of wastewater treatment plant by 
clustering baseartificial neural network method. Desalination and 
Water Treatment, 164, pp. 86–97. DOI: 10.5004/dwt.2019.24385

Tumer, A.E. & Edebali, S. (2015). Prediction of wastewater treatment 
plant performance using multilinear regression and artificial 
neural networks. INISTA 2015 – 2015 International Symposium 
on Innovations in Intelligent SysTems and Applications, 
Proceedings, DOI: 10.1109/INISTA.2015.7276742

Wang, G., Qiao, J., Bi, J., Li, W. & Zhou, M. (2019). TL-GDBN: 
Growing Deep Belief Network with Transfer Learning. IEEE 
Transactions on Automation Science and Engineering, 16, 2, 
pp. 874–885. DOI: 10.1109/TASE.2018.2865663

Yang, Y., Kim, K.R., Kou, R., Li, Y., Fu, J., Zhao, L. & Liu, H. 
(2022). Prediction of effluent quality in a wastewater treatment 
plant by dynamic neural network modeling. Process Safety and 
Environmental Protection, 158, pp. 515–524. DOI: 10.1016/j.
psep.2021.12.034

Zeinolabedini, M. & Najafzadeh, M. (2019). Comparative study of 
different wavelet-based neural network models to predict sewage 
sludge quantity in wastewater treatment plant. Environmental 
Monitoring and Assessment, 191, 3. DOI: 10.1007/s10661-019-
7196-7

Zhao, Ying, Guo, L., Liang, J. & Zhang, M. (2016). Seasonal 
artificial neural network model for water quality prediction via 
a clustering analysis method in a wastewater treatment plant of 
China. Desalination and Water Treatment, 57, 8, pp. 3452–3465, 
DOI: 10.1080/19443994.2014.986202

Zhao, Yuchao, Xie, Z. & Lou, I. (2015). Using Extreme Learning 
Machine for Filamentous Bulking Prediction in Wastewater 
Treatment Plants. [In] J. Cao, K. Mao, E. Cambria, Z. Man, & 
K.-A. Toh (Eds.), Proceedings of ELM-2014 Volume 2 , pp. 1–9, 
Springer International Publishing.


