
j
ł
I

Computational complexity theory

Keeping Complexity Under Rein
c:::o

i
HENRYK WOŹNIAKOWSKI
Faculty of Mathematics, Informatics, and Mechanics,
University of Warsaw
Department of Computer Science, Columbia University
Corresponding member, PAS
Prof. Henryk Woźniakowski studies computational complexity
theory. For around 20 years he has been working on tractability;
he also studies the properties of the quasi-Monte carto method
for potential applications in financial mathematics

Prof. Henryk Woźniakowski talks to
Academia about the past, present, and
future of computational complexity
theory

Academia: What is computational complexity
theory?

Prof. Henryk Woźniakowski: Complexity theory
is a fairly new branch of mathematics, or;
more precisely, theoretical informatics. It arose
around the time of the advent of computers.
People quickly realized that the difficulty of
certain problems could be so great that they
couldn't be solved even by thefastest computer.

Some problem-solving algorithms are ex
tremely slow. It's not easy to determine straight
away if a problem is simply too difficult to
solve, or if we're just using the wrong algo
rithm. This has given rise to the field of com
putational complexity, which seeks a way to
find the Lowest-cost algorithms and studies the
complexity of the problem.

In the past people were able to wait a Long
time for a solution - what was important
was that the process should require as little
computer memory as possible. Back then, the
cost factor was computer memory. Nowadays
there is generally a Lot of computer memory
available, whereas it is computation time that
we try to reduce. Complexity theory aims to
provide a good estimatefor the Lowest possible
time requiredfor an algorithm.

So the cost factor today really is time?

Yes, the run time of the algorithm operation.
To assess complexity, we can use the worst
case scenario: assessing algorithm quality
in terms of the longest time taken for all the
data that interests us. It's a bit as though a
student's worst grade throughout his studies
was then given as his final overall grade. In
such a system a student who gets straight As
wouldn't mind, but another who has mostly
As and a single F would fail. Such rigorous
criteria classify many tasks as too difficult
An alternative is to use average complexity:
assuming that we can have an occasional slip
up, and just averaging the algorithm timefor
all data. Yet another option is to use a proba
bilistic scenario, and assess the algorithm
after rejecting its behavior for; sar, 1 % of
data. We alsofrequently consider randomized
cases, when the algorithm time is estimated
on the basis of average behaviorfor random
parameters. This gives a higher probability
of finding a fast algorithm. Computational
complexity is usually Lower - sometimes sig
nificantly so - in the average, probabilistic or
randomized cases than in the worst case.

But not always?

There are problems for which the results are
always bad. Certain problems suffer from the
curse of dimensionality. Let's say we have a
problem definedfor a class ofd-variabiefunc
tions. In computational practice, problems
where d is huge are increasingly common. For
example, in financial mathematics integrals
need to be ca.lculated for functions with 360
or more variables! Computational complexity
is frequently an exponential function of d.
For example, if cost is defined as at least 2 to
the power ofd, for d=3 it would equal 8 - not
that much. However; when we have 360 vari
ables, 2 to the power of 360 in practice gives
a number so high as to be close to infinity. So
what do we do then? We can introducefurther
assumptions on those functions to sensibly re
duce the function class and remove the curse
ofdimensionality.

36

In 2010, Prof. Henryk
Woźniakowski (In the
centre of the front row)
co-organized the 9th
International Conference
on Monte Carlo and
Quasi-Monte Carlo
Methods in Scientific
Computing

ó'
(")
C:

"' o ::,

So how can we apply complexity theory to a
practical problem?

That brings us to financial mathematics. To
start with I'll clue you in to why financiers
want to calculate 360-dimensional integrals.
Major loans, for example mortgages to buy a
house, are usually given for 30 years. Because
the markets fluctuate tncredibiy; banks re
serve the right to slightly amend the terms of
such a loan agreement every month. Over 30
years that comes to 360 rates, hence the 360
parameters. Banks want to be fair to their
customers, but even more than that they want
to guarantee a profit for themselves, so they
calculate the expected value of the loan given
to the customer. Mathematically this expected
value is an integral.
Until the 1990s, integrals were calculated

using (randomized) Monte Carlo methods.
Completely different methods also exist, for
example the quasi-Monte Carlo. In the 1990s sci
entists suddenly discovered that those methods
are far better. It turned out that they give results
that are very similar to the Monte Carlo method,
but using significantly fewer steps. The riddle
of this efficiency has not been fully explained
to this dar, although I think that we do now
grasp the main elements. So - we do have 360
variables, but they vary in significance. In such
problems quasi-Monte Carlo algorithms can
in a way eliminate the insignificant variables;
then instead of having 360, we are left with just
two or three. Of course no one wants to have to
precisely calculate those integrals; one percent is
already quite a high degree of accuracy. I know
that in Australia they are successfully calculat
ing integrals for over 9000 variables!
Research is now being done on quantum

computers. Tasks that are difficult for classical
computers are not necessarily so for quantum
computers. Interest in quantum computation

came through Shor's algorithm. It has applica
tions in cryptographY, or; to put it more simply,
in banking security. The task of finding prime
factors is known to be difficult for very large inte
gers. However; once you have those prime factors,
you can easily reconstruct the original number.
This principle is used in encrypting data. Shor
demonstrated that by using quantum computers
the problem of finding prime factors for a given
number N can actually be solved at a cost propor
tional to log N to the power of at most 3, whereas
we don't know any algorithm using standard
computers whose cost is a power of log N.

So it's very low-cost?

Extremely so. I think that's why so many govern
ments are worried that whoever owns the first
quantum computer will be able to "unlock"
everyone's bank passwords. Billions of dollars
have been channeled into research, though un
fortunately there is still little technological prog
ress towards actually building quantum comput
ers. But if such a computer does exist one day,
we will have a new computational model and a
new instance of computational complexity, with
all the consequences that entails.

And do you see a future for complexity theory in
quantum computing?

As a man of advanced age I don't think it
will happen soon. Tomorrow - in the biblical
sense - perhaps we'll have such computers.
Research into new technologies and new
methods of building computers appeals to
me, although I don't know if it will ever
work. The mathematical model of quantum
computing is itself very interesting. But will it
ever become a reality? I don't know. Probably
partially so.

Interview by Agnieszka Pollo

(

