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Abstract. In the formulation, the existence, uniqueness and stability of solutions and parameter perturbation analysis to Riemann-Liouville
fractional differential equations with integro-differential boundary conditions are discussed by the properties of Green’s function and cone
theory. First, some theorems have been established from standard fixed point theorems in a proper Banach space to guarantee the existence
and uniqueness of positive solution. Moreover, we discuss the Hyers-Ulam stability and parameter perturbation analysis, which examines the
stability of solutions in the presence of small changes in the equation main parameters, that is, the derivative order η , the integral order β of the
boundary condition, the boundary parameter ξ , and the boundary value τ . As an application, we present a concrete example to demonstrate the
accuracy and usefulness of the proposed work. By using numerical simulation, we obtain the figure of unique solution and change trend figure
of the unique solution with small disturbances to occur in different kinds of parameters.
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1. INTRODUCTION
It is shown through experimentation that the fractional differen-
tial equations (FDEs) do share memory and genetic characteris-
tics exhibited by the process of complex system modeling. Due
to the modeling capabilities of FDEs in engineering and sci-
ence field, more and more scholars pay attention to the study of
FDEs [1–9]. In recent years, research on the initial and bound-
ary value problems of FDEs has made rapid progress, especially
in the study of the existence, uniqueness or multiplicity of pos-
itive solutions to fractional boundary value problems. By using
various analytical tools of nonlinear functional analysis, such
as Schauder fixed point theorem [10–12], contraction mapping
principle [13–16], topological degree theory [17, 18], mono-
tonic iteration technique [19–21] among others, a large num-
ber of novel and meaningful conclusions have emerged. Tak-
ing the famous Schauder fixed point theorem and contraction
mapping principle as examples, the literature [10–16] and their
corresponding references have studied several different types
of boundary value problems for FDEs based on these two theo-
rems. For instance, [10] considered the following problems{cDα

0+x(t) = f (t,x(t))+ cDα−1
0+ g(t,x(t)),

x(0) = θ1 > 0, x′(0) = θ2 > 0,
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where cDα

0+ is Caputo fractional derivative, 1 < α ≤ 2. The ex-
istence of positive solution was proved using Schauder’s fixed
point theorem, and the existence of a unique positive solution
was shown using the contraction mapping principle. In [12],
the authors obtained the existence and uniqueness of solutions
using the above two theorems,

cDq
0+,ψ x(t) = f (t,x(t)), t ∈ [0,T ], 1 < q≤ 2,

x(0)−δψ x(0) = Iα

0+,ψ g(σ ,x(σ)),

x(T )+δψ x(T ) = Iβ

0+,ψ h(η ,x(η)).

In fact, from the aforementioned literature, the Banach space
E = {x|x ∈C[0,1]} and cone P = {x ∈ E|x(t)≥ 0, t ∈ [0,1]} re-
quired for Schauder’s fixed point theorem and contraction map-
ping principle are the most classical, and the proof process is
relatively simple.

The ability to maintain a control system stability in the pres-
ence of parameter perturbations is crucial for system design,
and as a result, extensive study has been done in this field
to study the necessary conditions for stability. We discovered
numerous methods in the literature for examining stability of
the problem, including exponential, Lyapunov, asymptotic, and
Hyers-Ulam stability, among others [22–25]. In recent years,
the works in [22–28] conducted in-depth research on Hyers-
Ulam stability of solutions to FDEs because Hyers-Ulam stabil-
ity is a chain among exact and numerical solutions. In addition,
we found that the perturbation analysis of the solution is not ex-
tensive, and the study findings are not particularly substantial.
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Oriented by the above discussion, we study the following
integro-differential boundary value problem of FDEs:

Dη

0+x(t)+ f (t,x(t),Dα

0+x(t)) = 0, t ∈ [0,1],

x(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+x(1) = τIβ

0+x(ξ ) = τ

ξ∫
0

(ξ − s)β−1

Γ(β )
x(s)ds,

(1)

where Dη

0+ , Dα

0+ are Riemann-Liouville (R-L) fractional deriva-

tive, Iβ

0+ is R-L fractional integral, 0 < α < n−1 < η ≤ n (n >
1), η −α − 1 > 0, β , τ > 0, 0 < ξ ≤ 1, f : [0,1]× [0,+∞)×
[0,+∞)→ [0,+∞) is continuous. As the nonlinear term con-
tains derivative term, the classic and common Banach space
and cone in Schauder fixed point theorem and contraction map-
ping principle are no longer applicable. In this article, we con-
structed a suitable Banach space and cone with a new norm to
gain the existence and uniqueness of positive solution. In addi-
tion, Hyers-Ulam stability and parameter perturbation analysis
are discussed.

It is worth noting the following points. (i) A proper choice
of Banach space allows the nonlinear term of the equation to
contain derivative term. (ii) We explore how the solution de-
pends on parameters under some small perturbations of main
parameters in the equation based on the finding that the solu-
tions for a class of fractional integro-differential equations ex-
ist, are unique, and exhibit Hyers-Ulam stability. In fact, our
research demonstrates that the solution is continuously depen-
dent on these key variables. (iii) Through numerical simulation,
we obtain graphical presentation of approximate unique solu-
tion as the main parameters in equation are slightly disturbed
which verify the effectiveness of our theoretical conclusions.

2. PRELIMINARIES
To better serve later contents, we revisit some definitions and
lemmas.

Definition 1 [1]. The R-L fractional derivative of h : (0,+∞)→R
is

Dα

0+h(t) =
1

Γ(n−α)

dn

dtn

t∫
0

(t− s)n−α−1h(s)ds.

The R-L fractional integral of h is

Iα

0+h(t) =
1

Γ(α)

t∫
0

(t− s)α−1h(s)ds,

where n = [α] + 1, [α] means the integer part of number α ,
provided the right-hand side is pointwise defined on (0,+∞).

Lemma 1 [2]. If h ∈ C(0,1) ∪ L1(0,1), Dα

0+h ∈ C(0,1) ∪
L1(0,1), α > 0, then

Iα

0+Dα

0+h(t) = h(t)+ c1tα−1 + c2tα−2 + · · ·+ cntα−n, α > 0,

where ci ∈ R, i = 1,2, · · · ,n (n = [α]+1).

Lemma 2. If σ ∈C[0,1], Γ(η +β ) > τΓ(η −α)ξ η+β−1, the
following equation

Dη

0+x(t)+σ(t) = 0,

x(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+x(1) = τIβ

0+x(ξ ) = τ

ξ∫
0

(ξ − s)β−1

Γ(β )
x(s)ds,

(2)

has a unique solution x(t) =
1∫

0

G(t,s)σ(s)ds, where

G(t,s) =



Γ(η)Γ(η +β )tη−1(1− s)η−α−1−M(t− s)η−1

MΓ(η)

− τΓ(η−α)tη−1(ξ − s)η+β−1

M
,

0≤ s≤ t ≤ 1, s≤ ξ ,

Γ(η)Γ(η +β )tη−1(1− s)η−α−1−M(t− s)η−1

MΓ(η)
,

0≤ ξ ≤ s≤ t ≤ 1,

Γ(η)Γ(η +β )tη−1(1− s)η−α−1

MΓ(η)
,

− τΓ(ξ )Γ(η−α)tη−1(ξ − s)η+β−1

MΓ(η)
,

0≤ t ≤ s≤ ξ ≤ 1,

Γ(η)Γ(η +β )tη−1(1− s)η−α−1

MΓ(η)
,

0≤ t ≤ s≤ 1, ξ ≤ s.

and M = Γ(η)Γ(η +β )− τΓ(η)Γ(η−α)ξ η+β−1.

Proof. Integrating η times to the first formula of equation (2),
then by Lemma 1, we can obtain

x(t) =−Iη

0+σ(t)+ c1tη−1 + c2tη−2 + · · ·+ cntη−n.

From x(i)(0) = 0 (i = 0,1, · · · ,n− 2), we see that cn = cn−1 =
· · ·= c2 = 0. Thus, the solution of equation (2) is

x(t) =−
t∫

0

(t− s)η−1

Γ(η)
σ(s)ds+ c1tη−1. (3)

According to Dα

0+x(1) = τIβ

0+x(ξ ), we conclude

c1 =
Γ(η +β )

M

1∫
0

(1− s)η−α−1
σ(s)ds

− Γ(η−α)

M

ξ∫
0

τ(ξ − s)η+β−1
σ(s)ds. (4)

2 Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 4, p. e145938, 2023



Existence, uniqueness and parameter perturbation analysis results. . .

Substituting (4) in (3), there is

x(t) =−
t∫

0

(t− s)η−1

Γ(η)
σ(s)ds+ c1tη−1

=−
t∫

0

(t− s)η−1

Γ(η)
σ(s)ds+

Γ(η +β )tη−1

M

1∫
0

· (1− s)η−α−1
σ(s)ds− Γ(η−α)tη−1

M

·
ξ∫

0

τ(ξ − s)η+β−1
σ(s)ds =

1∫
0

G(t,s)σ(s)ds.

Lemma 3. The following properties are established:
(i) For any t,s ∈ [0,1], G(t,s),Dα

0+G(t,s) are continuous.
(ii) For any t,s ∈ [0,1], it gives

0≤ l1(s)≤ G(t,s)≤ Γ(η +β )

M
:= M1 ,

0≤ l2(s)≤ Dα

0+G(t,s)≤ Γ(η)Γ(η +β )

MΓ(η−α)
:= M2 .

Proof. From the definition of G(t,s) and M, when 0≤ s≤ t ≤
1,s≤ ξ , we observe that

MΓ(η)G(t,s) = Γ(η)Γ(η+β )tη−1(1−s)η−α−1−M(t−s)η−1

− τΓ(η)Γ(η−α)tη−1(ξ − s)η+β−1

≤ Γ(η)Γ(η +β ),

and

MΓ(η)G(t,s) = Γ(η)Γ(η +β )tη−1(1− s)η−α−1

−Γ(η)Γ(η +β )(t− s)η−1

+ τΓ(η)Γ(η−α)ξ η+β−1(t− s)η−1

− τΓ(η)Γ(η−α)tη−1(ξ − s)η+β−1

≥ τΓ(η)Γ(η−α)tη−1[ξ η+β−1(1− s)η−α−1

− (ξ − s)η+β−1]

≥ τΓ(η)Γ(η−α)ξ η+β−1tη−1(1− s)η−α−1

·
[
1− (1− s)α+β

]
:=

l1(s)
MΓ(η)

≥ 0.

From the definition of Dα

0+G(t,s), and M, when 0 ≤ s ≤ t ≤
1,s≤ ξ , we observe that

MΓ(η−α)Dα

0+G(t,s) = Γ(η)Γ(η +β )tη−α−1(1− s)η−α−1

−M(t− s)η−α−1− τΓ(η)Γ(η−α)tη−α−1(ξ − s)η+β−1

≤ Γ(η)Γ(η +β ),

and

MΓ(η−α)Dα

0+G(t,s)≥ τΓ(η)Γ(η−α)ξ η+β−1

· [tη−α−1(1− s)η−α−1− (t− s)η−α−1]

+ τΓ(η)Γ(η−α)ξ η+β−1(t− s)η−α−1

− τΓ(η)Γ(η−α)tη−α−1(ξ − s)η+β−1

≥ τΓ(η)Γ(η−α)tη−α−1
ξ

η+β−1(1− s)η−α−1

· [1− (1− s)α+β ] :=
l2(s)

MΓ(η)
≥ 0,

In the same way, we discuss the case of MΓ(η)G(t,s) and
MΓ(η −α)Dα

0+G(t,s) when 0 ≤ ξ ≤ s ≤ t ≤ 1, 0 ≤ t ≤ s ≤
ξ ≤ 1, and 0≤ t ≤ s≤ 1, ξ ≤ s, respectively, we can obtain that
(ii) holds.

3. EXISTENCE, UNIQUENESS AND HYERS-ULAM
STABILITY OF THE SOLUTION

In this section, we use lemmas to obtain existence, uniqueness
and Hyers-Ulam stability of solutions for equation (1).

Firstly, set E = {x|x ∈C[0,1],Dα

0+x(t) ∈C[0,1]} with norm
‖x‖=max

{
max

0≤t≤1
|x(t)|, max

0≤t≤1
|Dα

0+x(t)|
}

, P=
{

x∈E| x(t)≥ 0,

Dα

0+x(t) ≥ 0
}

. Then, E is a Banach space, P ⊂ E is a cone.
Define a partial order x ≤ y if x(t) ≤ y(t), Dα

0+x(t) ≤ Dα

0+y(t),
t ∈ [0,1].

Lemma 4. Let f : [0,1]× [0,+∞)× [0,+∞)→ [0,+∞) be con-
tinuous. Define an operator A : P→ P by

Ax(t) =
1∫

0

G(t,s) f (s,x(s),Dα

0+x(s))ds,

then the operator A is completely continuous.

Proof. Step 1: A : P→ P is continuous. Basing on the defini-
tion of A, f and G(t,s), we can easily get that A(P)⊂ P. Let un,
u ∈ P, there is un → u as n→ ∞. By the Lebesgue dominated
convergence theorem, we have A : P→ P is continuous.

Step 2: For any u ∈U (U is a bounded subset of P), by the
Lemma 2, there is

|Au(t)|=max
t∈[0,1]

∣∣∣∣∣∣
1∫

0

G(t,s) f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣≤ NM1,

|Dα

0+Au(t)|=max
t∈[0,1]

∣∣∣∣∣∣
1∫

0

Dα

0+G(t,s) f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣≤ NM2,

which implies that ‖Au‖ = NM1 + NM2 := L, where N =
max

(t,u)∈[0,1]×U
f (s,u(s),Dα

0+u(s)).

Step 3: Due to G(t,s), Dα

0+G(t,s) is uniformly continuous on
[0,1]× [0,1], for any ε > 0, ∃δ > 0, 0≤ t2−t1≤ δ , t1, t2 ∈ [0,1],
such that∣∣∣G(t2,s)−G(t1,s)

∣∣∣< ε

N
,
∣∣∣Dα

0+G(t2,s)−Dα

0+G(t1,s)
∣∣∣< ε

N
.
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For any u ∈U , t1, t2 ∈ [0,1], 0≤ t2− t1 ≤ δ , we get that

∣∣∣Au(t2)−Au(t1)
∣∣∣≤ 1∫

0

∣∣∣G(t2,s)−G(t1,s)
∣∣∣ f (s,u(s),Dα

0+u(s))ds

≤ ε

N
·N = ε,

∣∣∣Dα

0+Au(t2)−Dα

0+Au(t1)
∣∣∣≤ 1∫

0

∣∣∣Dα

0+G(t2,s)−Dα

0+G(t1,s)
∣∣∣

· f (s,u(s),Dα

0+u(s))ds≤ ε

N
·N = ε.

i.e., {A(u)} is equicontinuous. Hence, by Arzela-Ascoli theo-
rem, A : P→ P is completely continuous.

Theorem 1. Let f : [0,1]× [0,+∞)× [0,+∞) → [0,+∞) be
continuous. Assume that
(H1) there exist nonnegative constants Li(t) ∈ L1[0,1]

⋂
C[0,1] (i = 0,1,2) such that

| f (t,x,y)| ≤ L0(t)+L1(t)|x|+L2(t)|y|;

(H2) M1

1∫
0

(L1(s)+L2(s))ds <
1
2

,

M2

1∫
0

(L1(s)+L2(s))ds <
1
2

;

Then equation (1) has at least one solution on P.

Proof. Take r11 = max

2M1

1∫
0

L0(s)ds,2M2

1∫
0

L0(s)ds

, let

r1 > r11, and Ω = {u|u ∈ E,‖u‖ ≤ r1}. Then, Ω is a nonempty
bounded closed convex sets of E. From (H1), for any u∈Ω, we
have

|Au(t)|=

∣∣∣∣∣∣
1∫

0

G(t,s) f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣
≤ Γ(η +β )

M

∣∣∣∣∣∣
1∫

0

f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣
≤M1

1∫
0

(
L0(s)+L1(s)|u(s)|+L2(s)|Dα

0+u(s)|
)

ds

≤M1

1∫
0

L0(s)ds+M1

1∫
0

(L1(s)+L2(s))ds · ‖u‖,

|Dα Au(t)|=

∣∣∣∣∣∣
1∫

0

G(t− s) f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣
≤ Γ(η)Γ(η +β )

MΓ(η−α)

∣∣∣∣∣∣
1∫

0

f (s,u(s),Dα

0+u(s))ds

∣∣∣∣∣∣
≤M2

1∫
0

(
L0(s)+L1(s)|u(s)|+L2(s)|Dα

0+u(s)|
)

ds

≤M2

1∫
0

L0(s)ds+M2

1∫
0

(L1(s)+L2(s))ds · ‖u‖.

From (H2), there is

|Au(t)| ≤ r11

2
+

1
2
‖u‖ ≤ r1, |(Dα Au)(t)| ≤ r11

2
+

1
2
‖u‖ ≤ r1,

i.e., ‖Au‖ ≤ r1. Hence, A(Ω)⊂Ω. Due to the completely conti-
nuity of A, and by Schauder fixed point theorem, A has at least
one fixed point on Ω. Then, we get that equation (1) has at least
one solution on P.

Corollary 1. As the condition (H1) turn into
(H ′1) there exist nonnegative constants Li(t) ∈ L1[0,1]

⋂
C[0,1]

(i = 0,1,2) such that

| f (t,x,y)| ≤ L0(t)+L1(t)|x|k +L2(t)|y|k,

then equation (1) has at least one solution on P.

Remark 1. If Li(t) (i= 0,1,2) are some constants, or L0(t) = 0
in (H ′1), (H1), then equation (1) has at least one solution on E.

Theorem 2. Let f : [0,1]× [0,+∞)× [0,+∞) → [0,+∞) be
continuous. Assume that
(H3) there exist nonnegative constants Li(t) ∈ L1[0,1]

⋂
C[0,1] (i = 3,4) such that

| f (t,x,y)− f (t, x̄, ȳ)| ≤ L3(t)|x− x̄|+L4(t)|y− ȳ|;

(H4) max{M1,M2} ·
1∫

0

(
L3(s)+L4(s)

)
ds < 1.

Then equation (1) has a unique solution u ∈ P.

Proof. For any u2,u1 ∈ E, by (H3), we observe that

|Au2(t)−Au1(t)| ≤
1∫

0

G(t,s)
∣∣∣ f (s,u2(s),Dα

0+u2(s))

− f (s,u1(s),Dα

0+u1(s))
∣∣∣ds

≤M1

1∫
0

(
L3(s)+L4(s)

)
ds · ‖u2−u1‖,
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|Dα

0+Au2(t)−Dα

0+Au1(t)| ≤
1∫

0

Dα

0+G(t,s)

·
∣∣∣ f (s,u2(s),Dα

0+u2(s))− f (s,u1(s),Dα

0+u1(s))
∣∣∣ds

≤M2

1∫
0

(
L3(s)+L4(s)

)
ds · ‖u2−u1‖.

By the condition (H4), we obtain

‖Au2−Au1‖ ≤max{M1,M2} ·
1∫

0

(L3(s)+L4(s)
)

ds

· ‖u2−u1‖ ≤ ‖u2−u1‖,

which show that A is a contraction mapping. By contraction
mapping principle, equation (1) has a unique solution u ∈ P.

Definition 2. Assume that there exist positive constant k1, sat-
isfying ∀p1 > 0, if∣∣∣∣∣∣ψ(t)−

1∫
0

G(t,s) f (s,ψ(s),Dα

0+ψ(s))ds

∣∣∣∣∣∣≤ p1 ,∣∣∣∣∣∣Dα

0+ψ(t)−
1∫

0

Dα

0+G(t,s) f (s,ψ(s),Dα

0+ψ(s))ds

∣∣∣∣∣∣≤ p1 ,

there exists δ , meeting

δ (t) =
1∫

0

G(t,s) f (s,δ (s),Dα

0+δ (s))ds,

Dα

0+δ (t) =
1∫

0

Dα

0+G(t,s) f (s,δ (s),Dα

0+δ (s))ds,

(5)

such that
‖ψ−δ‖ ≤ k1 p1 ,

then, equation (1) is Hyers-Ulam stable.

Theorem 3. Let δ be the unique solution of equation (1) and
δ satisfies (5). If (H3) hold, then equation (1) is Hyers-Ulam
stable.

Proof. From Lemma 2 and (H3), we obtain∣∣∣ψ(t)−δ (t)
∣∣∣≤
∣∣∣∣∣∣ψ(t)−

1∫
0

G(t,s) f (s,δ (s),Dα

0+δ (s))ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ψ(t)−
1∫

0

G(t,s) f (s,ψ(s),Dα

0+ψ(s))ds

∣∣∣∣∣∣
+

1∫
0

G(t,s)
∣∣∣ f (s,ψ(s),Dα

0+ψ(s))− f (s,δ (s),Dα

0+δ (s))
∣∣∣ds

≤ p1 +M1

1∫
0

(
L3(s)+L4(s)

)
ds · ‖ψ−δ‖,

∣∣∣Dα

0+ψ(t)−Dα

0+δ (t)
∣∣∣≤ ∣∣∣∣∣Dα

0+ψ(t)

−
1∫

0

Dα

0+G(t,s) f (s,δ (s),Dα

0+δ (s))ds

∣∣∣∣∣
≤

1∫
0

Dα

0+G(t,s)
∣∣∣ f (s,ψ(s),Dα

0+ψ(s))− f (s,δ (s),Dα

0+δ (s))
∣∣∣ds

≤ p1 +M2

1∫
0

(
L3(s)+L4(s)

)
ds · ‖ψ−δ‖.

Then, we have ∥∥ψ−δ
∥∥≤ k1 p1 ,

where k1 = max


1

1−M1

1∫
0

(
L3(s)+L4(s)

)
ds

,

1

1−M2

1∫
0

(
L3(s)+L4(s)

)
ds


. Then, from Definition 2, equa-

tion (1) is Hyers-Ulam stable.

4. INFLUENCE OF PARAMETERS

In this section, we discuss the stability of the solution to equa-
tion (1) when there are some small perturbations in the param-
eters of equation.

As the order of the differential derivative η changes slightly,
the stability of the solution is as follows.

Theorem 4. Let x be the solution of equation (1), and let y be
the solution of the following problem:



Dη̃

0+y(t)+ f (t,y(t),Dα

0+y(t)) = 0,

y(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+y(1) = τIβ

0+y(ξ ) = τ

ξ∫
0

(ξ − s)β−1

Γ(β )
y(s)ds,

where |η− η̃ |< ε , ε is an any small constant. Then,

‖x− y‖ ≤ M3 +M4

1− (M1 +M2)(L3 +L4)
ε.
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Proof. For any t ∈ [0,1], there is

|x(t)− y(t)| ≤
t∫

0

∣∣∣ (t− s)η−1

Γ(η)
f (s,x(s),Dα

0+x(s))

− (t− s)η̃−1

Γ(η̃)
f (s,y(s),Dα

0+y(s))
∣∣∣ds

+
1
M

1∫
0

∣∣∣Γ(η +β )tη−1(1− s)η−α−1 f (s,x(s),Dα

0+x(s))

−Γ(η̃ +β )t η̃−1(1− s)η̃−α−1 f (s,y(s),Dα

0+y(s))
∣∣∣ds

+
τ

M

ξ∫
0

∣∣∣Γ(η−α)tη−1(ξ − s)η+β−1 f (s,x(s),Dα

0+x(s))

−Γ(η̃−α)t η̃+β−1(ξ − s)η̃−1 f (s,y(s),Dα

0+y(s))
∣∣∣ds

:= K1 +K2 +K3 .

Using the mean-value theorem we obtain

K1 ≤
t∫

0

∣∣∣∣ (t− s)η−1

Γ(η)
f (s,x(s),Dα

0+x(s))− (t− s)η−1

Γ(η)

· f (s,y(s),Dα

0+y(s))
∣∣∣∣+ ∣∣∣∣ (t− s)η−1

Γ(η)
f (s,y(s),Dα

0+y(s))

− (t− s)η̃−1

Γ(η̃)
f (s,y(s),Dα

0+y(s))
∣∣∣∣ds

≤ L3 +L4

Γ(η +1)
‖x− y‖+C1ε‖ f‖,

where

C1 = max
x∈[η ,η̃ ]

{(
tx−1

Γ(x)

)′
, 0 < t < 1

}
.

Similarly, one can see that

K2 =
1
M

1∫
0

∣∣∣Γ(η +β )tη−1(1− s)η−α−1 f (s,x(s),Dα

0+x(s))

− Γ(η̃ +β )t η̃−1(1− s)η̃−α−1 f (s,y(s),Dα

0+y(s))
∣∣∣ds

≤ Γ(η +β )(L3 +L4)

M
‖x− y‖+ C2‖ f‖

M
ε,

K3 =
τ

M

ξ∫
0

∣∣∣Γ(η−α)tη−1(ξ − s)η+β−1 f (s,x(s),Dα

0+x(s))

− Γ(η̃−α)t η̃−1(ξ − s)η̃+β−1 f (s,y(s),Dα

0+y(s))
∣∣∣ds

≤ τΓ(η−α)(L3 +L4)

M
‖x− y‖+ τC3‖ f‖

M
ε,

where

C2 = max
x∈[η ,η̃ ]

{(
Γ(x+β )tx−1(1− s)x−α−1

)′
, 0 < t, s < 1

}
,

C3 = max
x∈[η ,η̃ ]

{(
Γ(x−α)tx−1(ξ−s)x+β−1

)′
,

0 < t, ξ ,s < 1, s < ξ

}
.

Thus, we shall get

|x(t)− y(t)| ≤
[

1
Γ(η +1)

+
Γ(η +β )

M
+

τΓ(η−α)

M

]
(L3 +L4)

· ‖x− y‖+
[
C1‖ f‖+ C2‖ f‖

M
+

τC3‖ f‖
M

]
ε

:= N1‖x− y‖+M3ε,

In the same way, it gives

|Dα

0+x(t)−Dα

0+y(t)| ≤
t∫

0

∣∣∣∣ (t− s)η−α−1

Γ(η−α)
f (s,x(s),Dα

0+x(s))

− (t− s)η̃−α−1

Γ(η̃−α)
f (s,y(s),Dα

0+y(s))

∣∣∣∣∣ ds

+
1
M

1∫
0

∣∣∣∣Γ(η)Γ(η+β )tη−α−1(1−s)η−α−1

Γ(η−α)
f (s,x(s),Dα

0+x(s))

− Γ(η̃)Γ(η̃+β )t η̃−α−1(1−s)η̃−α−1

Γ(η̃−α)
f (s,y(s),Dα

0+y(s))
∣∣∣∣ds

+
τ

M

ξ∫
0

∣∣∣Γ(η)tη−α−1(ξ − s)η+β−1 f (s,x(s),Dα

0+x(s))

−Γ(η̃)t η̃−α−1(ξ − s)η̃+β−1 f (s,y(s),Dα

0+y(s))
∣∣∣ds

≤
[

1
Γ(η−α+1)

+
Γ(η)Γ(η+β )

MΓ(η−α)
+

τΓ(η)

M

]
(L3 +L4)‖x− y‖

+

[
C4‖ f‖+ C5‖ f‖

M
+

τC6‖ f‖
M

]
ε := N2‖x− y‖+M4ε,

where

C4 = max
x∈[η ,η̃ ]

{
tx−α−1

Γ(x−α)
, 0 < t < 1

}
,

C5 = max
x∈[η ,η̃ ]

{(
Γ(x)Γ(x+β )(t− ts)x−α−1

Γ(x−α)

)′
, 0 < t, s < 1

}
,

C6 = max
x∈[η ,η̃ ]

{(
Γ(x)tx−α−1(ξ − s)x+β−1

)′
,

0 < t, ξ ,s < 1, s < ξ

}
,

M4 =C4‖ f‖+ C5‖ f‖
M

+
τC6‖ f‖

M
.
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Thus
‖x(t)− y(t)‖ ≤ M3 +M4

1− (N1 +N2)
ε.

When the integral order of boundary value condition β changes
slightly, the stability of the solution is as follows.

Theorem 5. Let x be the solution of equation (1), and let y be
the solution of the following problem:

Dη

0+y(t)+ f (t,y(t),Dα

0+y(t)) = 0,

y(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+y(1) = τ̃Iβ

0+y(ξ ) = τ̃

ξ∫
0

(ξ − s)β−1

Γ(β )
y(s)ds,

where |τ− τ̃|< ε , ε is an any small constant. Then,

‖x− y‖ ≤ [Γ(η)+Γ(η−α)]‖ f‖
M[1− (N1 +N2)]

ε.

Proof. For any t ∈ [0,1], we have

|x(t)− y(t)| ≤
[ 1

Γ(η +1)
+

Γ(η +β )

M
+

τΓ(η−α)

M

]
(L1 +L2)

· ‖x− y‖+ Γ(η−α)‖ f‖
M

|τ− τ̃|

:= N1‖x− y‖+ Γ(η−α)‖ f‖
M

|τ− τ̃|,

|Dα

0+x(t)−Dα

0+y(t)| ≤
[ 1

Γ(η−α +1)
+

Γ(η)Γ(η +β )

MΓ(η−α)

+
τΓ(η)

M

]
(L1 +L2)‖x− y‖

+
Γ(η)‖ f‖

M
|τ− τ̃| := N2‖x− y‖+ Γ(η)‖ f‖

M
|τ− τ̃|.

Thus, ‖x(t)− y(t)‖ ≤ [Γ(η)+Γ(η−α)]‖ f‖
M[1− (N1 +N2)]

ε.

When the boundary parameter ξ changes slightly, the stabil-
ity of the solution is as follows.

Theorem 6. Let x be the solution of equation (1), and let y be
the solution of the following problem:

Dη

0+y(t)+ f (t,y(t),Dα

0+y(t)) = 0,

y(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+y(1) = τIβ̃

0+y(ξ ) = τ

ξ∫
0

(ξ − s)β̃−1

Γ(β̃ )
y(s)ds,

where |β − β̃ | < ε , ε is an any small constant. Then, it holds
that

‖x−y‖≤ [Γ(η)+Γ(η−α)]C7‖ f‖+ τΓ(η−α)Γ(η)C8‖ f‖
MΓ(η−α)[1− (N1 +N2)]

ε.

Proof. For any t ∈ [0,1], it gives

|x(t)− y(t)| ≤
[

1
Γ(η +1)

+
Γ(η +β )

M
+

τΓ(η−α)

M

]
(L1 +L2)

· ‖x− y‖+ C7‖ f‖
M

ε := N1‖x− y‖+ C7‖ f‖
M

ε,

where C7 = max
x∈[β ,β̃ ]

{
(Γ(η + x))′

}
. What is more, one has that

|Dα

0+x(t)−Dα

0+y(t)| ≤
[

1
Γ(η−α +1)

+
Γ(η)Γ(η +β )

MΓ(η−α)

+
τΓ(η)

M

]
(L1 +L2)‖x− y‖

+
Γ(η)C7‖ f‖
MΓ(η−α)

ε +
τΓ(η)C8‖ f‖

M
ε

:= N2‖x− y‖+ Γ(η)C7‖ f‖
MΓ(η−α)

ε +
τΓ(η)C8‖ f‖

M
ε,

where C8 = max
x∈[β ,β̃ ]

{
ξ η+x−2

η + x−1

}
. Thus, we shall get

‖x(t)− y(t)‖ ≤
( [Γ(η)+Γ(η−α)]C7‖ f‖

MΓ(η−α)

+
τΓ(η−α)Γ(η)C8‖ f‖

MΓ(η−α)

)
[1− (N1 +N2)]ε.

When the boundary value τ changes slightly, the stability of the
solution is as follows.

Theorem 7. Let x be the solution of equation (1), and let y be
the solution of the following problem:

Dη

0+y(t)+ f (t,y(t),Dα

0+y(t)) = 0,

y(i)(0) = 0, i = 0,1, · · · ,n−2,

Dα

0+y(1) = τIβ

0+y(ξ̃ ) = τ

ξ̃∫
0

(ξ̃ − s)β−1

Γ(β )
y(s)ds,

where |ξ − ξ̃ |< ε , ε is an any small constant. Then,

‖x− y‖ ≤ τΓ(η)‖ f‖[C9 +(η +β −1)]
M(η +β −1)[1− (N1 +N2)]

ε.

Proof. For any t ∈ [0,1], one gets

|x(t)− y(t)| ≤
[ 1

Γ(η +1)
+

Γ(η +β )

M
+

τΓ(η−α)

M

]
(L1

+L2)‖x− y‖+ τΓ(η−α)C9‖ f‖
M(η +β −1)

ε +
τΓ(η−α)‖ f‖

M
ε

:= N1‖x− y‖+ τΓ(η−α)‖ f‖[C9 +(η +β −1)]
M(η +β −1)

ε,
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where C9 = max
x∈[ξ ,ξ̃ ]

{
(x− s)η+β−2

}
. Moreover, we conclude

|Dα

0+x(t)−Dα

0+y(t)| ≤
[ 1

Γ(η−α +1)
+

Γ(η)Γ(η +β )

MΓ(η−α)

+
τΓ(η)

M

]
(L1 +L2)‖x− y‖

+
τΓ(η)C9‖ f‖
M(η +β −1)

ε +
τΓ(η)‖ f‖

M
ε

:= N2‖x− y‖+ τΓ(η)‖ f‖[C9 +(η +β −1)]
M(η +β −1)

ε.

Thus, one observes

‖x(t)− y(t)‖ ≤ τΓ(η)‖ f‖[C9 +(η +β −1)]
M(η +β −1)[1− (N1 +N2)]

ε.

According to Theorem 4–Theorem 7, we can see that the
change of the solution when the main parameters of the equa-
tion are slightly perturbed, that is, the solution depends on the
main parameters in a continuous way.

5. APPLICATIONS
Example 1. Consider the following equation:

D
13
4

0+x(t)+ f
(

t,x(t),D
4
3
0+x(t)

)
= 0,

x(0) = 0, x′(0) = 0, x′′(0) = 0,

D
4
3
0+x(1) =

1
6

I
4
5

0+x
(

1
10

)
=

1
6

1
10∫

0

(
1
10
− s
)− 1

5

Γ

(
4
5

) x(s)ds,

(6)

here η =
13
4
∈ (3,4), α =

4
3
∈ (1,2), β =

4
5
∈ (0,1), τ =

1
6
,

ξ =
1
10

, f (t,x,y) =
1
2

t2 +
92t

103π
x+

1
100

y.

Proof
Conclusion 1. Equation (6) has at least one solution.
(a) From the above parameters, we can see that

M = Γ

(
13
4

)
Γ

(
81
20

)
− 1

6
Γ

(
13
4

)
Γ

(
23
12

)(
1
10

)61
20
= 16.2924,

M1 =
Γ(η +β )

M
=

Γ

(
81
20

)
M

≈ 0.3923,

M2 =
Γ(η)Γ(η +β )

MΓ(η−α)
=

Γ

(
13
4

)
Γ

(
81
20

)
MΓ

(
23
12

) ≈ 1.0335.

(b) From the definition of f , we can deduce

| f (t,x,y)| ≤ t
2
+

92t
103π

|x|+ 1
100
|y|= L0(t)+L1(t)|x|+L2(t)|y|,

M1

1∫
0

(L1(t)+L2(t)) dt =
Γ

(
81
20

)
M

(
92

206π
+

1
100

)
<

1
2
,

M2

1∫
0

(L1(t)+L2(t)) dt =
Γ

(
13
4

)
Γ

(
81
20

)
MΓ

(
23
12

) (
92

206π
+

1
100

)

<
1
2
.

According to Theorem 1, equation (6) has at least one solution.
Conclusion 2. Equation (6) is Hyers-Ulam stable.

From the definition of f , we have

| f (t,x,y)− f (t, x̄, ȳ)| ≤ 92t
103π

|x− x̄|+ 1
100
|y− ȳ|

= L3|x− x̄|+L4|y− ȳ|. (7)

According to Theorem 3, equation (6) is Hyers-Ulam stable.
Conclusion 3. Equation (6) has a unique solution.

From (7) and

max{M1,M2} ·
1∫

0

(L3(t)+L4(t))dt =
Γ

(
13
4

)
M

Γ

(
81
20

)
Γ

(
23
12

)
·
(

92
206π

+
1

100

)
< 1,

then by Theorem 2, equation (6) has a unique solution.
Conclusion 4. The figure simulation of unique solution to equa-
tion (6) is given.

From Lemma 2, we can know that the solution of equa-
tion (6) has following form

x(t) =
1∫

0

G(t,s) f (s,x(s),D
4
3
0+x(s))ds.

Let x0 = t
9
4 and an iterative schemes

xn(t) =
1∫

0

G(t,s) f (s,xn−1(s),D
4
3
0+xn−1(s))ds, (8)

be a basis numerical algorithms, where n = 1,2, . . .
Due to the large amount of calculation, we only show the re-

sults of three iterations in this article. Although the number of
iterations is small, it can be seen from the figure that the error
between the second iteration result and the third iteration re-
sult is relatively small. To some extent, the third iteration result
can show the properties of the unique solution for equation (6).
In addition, the result also proves the effectiveness of the itera-
tive scheme from the side. The figure simulation of 1st iteration
result x1, 2nd iteration result x2, and 3rd iteration result x3 is
shown in Fig. 1.
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Fig. 1. Numerical solution of equation (6) by iterative formula 8,
the initial function was set as x0 = t

9
4

Conclusion 5. When there are some small perturbations in the
parameters of equation (6), the variation diagram of unique so-
lution is given.

Using the above method, we get three iterative results, when

η has disturbances, i.e. η− 1
10

, η− 1
50

, η , η+
1

50
, and η+

1
10

,
which are shown in Fig. 2.

Similarly, we give the image of the solution when the re-
maining parameters change. We find that small changes in pa-
rameters β , ξ , τ have little impact on the results of the three
iterations, therefore we only give the trend diagram of the first
iteration, which are shown in Fig. 3. Since the change trend of
the unique solution are not obvious when β , ξ , τ change, we
give the local graph to show more clearly the difference, which
are shown in Fig. 4. Clearly, by Fig. 2, we can see that as η

increases, the value of x1, x2, and xn decrease, i.e. η has a neg-
ative correlation with the unique solution of equation (6). From

(a) (b) (c)

Fig. 2. Numerical iterative solution xn of equation (6) when η− 1
10

, η− 1
50

, η =
13
4

, η +
1

50
, and η +

1
10

.
(a) n = 1, (b) n = 2, and (c) n = 3

(a) (b) (c)

Fig. 3. 1st iteration result x1 when there is a small change in β , ξ , τ .

(a) β − 3
5

, β − 3
10

, β =
4
5

, β +
3

10
, and β +

3
5

, (b) ξ − 1
20

, ξ − 1
30

, ξ =
1
10

, ξ +
1

20
, and ξ +

1
30

, (c) τ− 3
24

, τ− 1
12

, τ =
1
6

, τ +
1
12

, and τ +
3
24
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(a) (b)

Fig. 4. Local graph od 1st iteration result x1 when there is a small change in ξ , τ .

(a) ξ − 1
20

, ξ − 1
30

, ξ =
1

10
, ξ +

1
20

, and ξ +
1

30
, (b) τ− 3

24
, τ− 1

12
, τ =

1
6

, τ +
1
12

, and τ +
3

24

the (a) of Fig. 3, as β increases, the value of x1 decrease, i.e.
β has a negative correlation with the unique solution. From the
(b) of Fig. 3 and (a) of Fig. 4, as ξ increases, the value of x1
decrease, i.e. ξ has a negative correlation with the unique solu-
tion. From the (c) of Fig. 3 and (b) of Fig. 4, as τ increases, the
value of x1 decrease, i.e. τ has a negative correlation with the
unique solution.
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