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SDAE Cleaning Model of wind Speed Monitoring Data  
in the Mine Monitoring System

The effective utilisation of monitoring data of the coal mine is the core of realising intelligent mine. 
The complex and challenging underground environment, coupled with unstable sensors, can result in 
“dirty” data in monitoring information. A reliable data cleaning method is necessary to figure out how 
to extract high-quality information from large monitoring data sets while minimising data redundancy. 
Based on this, a cleaning method for sensor monitoring data based on stacked denoising autoencoders 
(SDAE) is proposed. The sample data of the ventilation system under normal conditions are trained by 
the SDAE algorithm and the upper limit of reconstruction errors is obtained by Kernel density estima-
tion (KDE). The Apriori algorithm is used to study the correlation between monitoring data time series. 
By comparing reconstruction errors and error duration of test data with the upper limit of reconstruction 
error and tolerance time, cooperating with the correlation rule, the “dirty” data is resolved. The method 
is tested in the Dongshan coal mine. The experimental results show that the proposed method can not 
only identify the dirty data but retain the faulty information. The research provides effective basic data 
for fault diagnosis and disaster warning.

Keywords:	 intelligent ventilation; monitoring data; data cleaning; association rules; stacked denoising 
autoencoder

1.	I ntroduction

With the development of intelligent construction of coal mines, the monitoring data of mine 
sensors show a trend of considerable growth [1,2]. The sensor monitoring data provides basic 
information for the ventilation system fault diagnosis and disaster warning. However, the under-
ground environment is complex and harsh, and the sensor signal transmission process is easily 
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affected by various underground interference sources to generate false signals [3,4]. In addition, 
abnormal or missing instantaneous values are caused by instrument failure, specific operation, dust, 
sensor failure, power failure, network transmission failure, manual adjustment, and other factors 
[5]. These outliers and missing values are collectively referred to as “dirty” data. Furthermore, 
ventilation parameters will change due to roadway blockage, accumulation of debris, improper 
support, fire, water inrush, large-scale roof fall, etc., which lead to abnormal horizontal migration 
or abnormal trend change in sensor monitoring data [6]. This part of the data does not belong to 
the cleaning category because they reflect the conditions of the ventilation system. Therefore, 
it is essential to eliminate and repair the “dirty” data while retaining the effective data when the 
ventilation system fails. Improving the quality of the basic data is the key to the research.

The research on data cleaning is mainly concentrated in the field of power. Gao et al. [7] 
proposed a multi-level cleaning and identification method of measured data based on the tem-
poral and spatial correlation characteristics of the data. Yan et al. [8] applied time series analysis 
to establish transformer monitoring data cleaning. An effective data-cleaning model can both 
extract effective features from the data and repair outliers [9,10]. In 2008, Vincent and Bengio 
et al. [11,12] proposed a denoising autoencoder (DAE) deep neural network model. A stacked 
denoising autoencoder (SDAE) is composed of multiple DAEs, which have powerful feature 
extraction and data reconstruction capabilities. With the development of a deep neural network, 
the SDAE model has been widely used in industry and academia. Xu et al. [13] applied the 
SDAE model to predict the life of lithium-ion batteries, and the prediction results were better 
than SVM, BP, and RF. Dai et al. [14,15] constructed the SDAE cleaning model for the status 
data of power transmission and transformation equipment. This method can effectively identify 
the “dirty” data in the status data of power transmission and transformation equipment and realise 
data reconstruction.

At present, there are many studies on gas data processing in coal mines. Kozielski et al. [16] 
collected data from 28 different sensors placed at various locations around the coal mine and 
processed the data using LSTM. This data set can be used in a variety of analytical tasks, and the 
results are satisfactory. Ślęzak et al. [17] focused on feature extraction and feature selection, in 
the case of underground coal mine sensors, derivation of multivariate series of simple window-
based statistics to deal with noisy and incomplete data sources, better reflect temporal drifts and 
correlations, and reliably describe real situations using higher-level data characteristics. However, 
there are few studies on cleaning methods of mine speed monitoring data in coal mines. Huang 
et al. [18] used the Laser Doppler Velocimetry system to obtain wind speed data and applied 
the adaptive Kalman Filter model to clean outliers of wind speed data. However, when the data 
is missing for a long time, the data after cleaning by this method has a large deviation from the 
original. Zhang et al. [19] proposed three cleaning methods for wind speed sensor data, including 
FCM, S-G, and Rloess, however, these three methods have different application scenarios and 
are not universal. Qu [20] applied the improved Laida criterion to determine the abnormal value 
of the wind speed sensor monitoring data, but this method cannot repair outliers. 

Current data cleaning methods only delete or reduce “dirty” data, which destroys the con-
tinuity and integrity of data. In addition, they ignore the correlation between monitoring data, 
which is not conducive to data mining in fault diagnosis. As such, we propose to use association 
rules to mine state parameters with a strong correlation with ventilation monitoring data, and then 
build the SDAE model. The correlation between data series is used to further distinguish whether 
ventilation monitoring data belongs to the cleanable category. The cleanable data is reconstructed 
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through the SDAE model to correct the outliers and fill in the missing values. Compared with 
the traditional method of removing outliers, the proposed method can automatically repair the 
“dirty” data and retain the effective status information of the ventilation system, which provides 
a new concept for processing intelligent ventilation data on a large scale.

2.	T he proposed method

2.1.	 Association analysis

Association rules are mainly used to mine the association relation between data attributes. 
Taking the monitoring state parameter sequences X and Y as an example, the Apriori algorithm 
is used for correlation analysis. The specific process is as follows:

(1)	 The selected state parameter sequence is symbolised. The Apriori algorithm requires that 
the input data type be Boolean symbols, and the monitoring data needs to be converted. 
X and Y of length Ldata are truncated into N subsequences using a sliding window of 
length L. Subsequences are represented by x and y. The least-square method is used 
to fit each subsequence, and the slope of the fitted equation is normalised so that it is 
distributed in the interval [-1,1]. Finally, the symbolic transformation is completed ac-
cording to Table 1.

(2)	 The Apriori algorithm is used to find the frequent itemsets in the two sequences, and 
the itemsets greater than the minimum confidence are used as the association rule.

(3)	I f there are m rules that meet the association rules. Equation (1) is used to calculate the 
correlation and confidence between X and Y.
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	 Where Psup is the support of a single rule; Pcof is the confidence of a single rule; Pcr is 
the correlation between sequences; Pcf is the confidence between sequences.

Table 1

The rule for symbol conversion

Interval x y
[–1,–0.6] a1 a2

[–0.6,–0.2] b1 b2

[–0.2,0.2] c1 c2

[0.2,0.6] d1 d2

[0.6,1] e1 e2

For ventilation system monitoring data, the higher correlation and confidence of the two se-
quences are considered to have a strong correlation. According to previous experience and the data 
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characteristics, when considering the integrity and accuracy of association rules, the minimum 
correlation and confidence are set as 0.5 in this paper. When the calculated correlation and con-
fidence of the two monitoring data series exceed the minimum threshold, it is considered that 
there is a strong correlation between the two data sequences. Analysing the relationship between 
the two data sequences should be done during the subsequent data processing step. Otherwise, 
it is considered that the two sequences are irrelevant.

2.2.	 Case of association analysis

Taking the Dongshan coal mine as an example, correlation analysis is made on the monitor-
ing data of the wind speed sensor and gas sensor installed at the same monitoring point in the 
western mining area. Data collected from 00:00 to 24:00 on April 1 are selected as sample data. 
Where, Ldata = 1000, sliding window L = 25. The wind speed data and gas data are respectively 
truncated into 40 subsequences. The original data is shown in Fig. 1(a), and the symbolised is 
shown in Fig. 1(b).

(a)	 (b)

Fig. 1. Monitoring original data and symbolised image 

The results of association analysis using the Apriori algorithm are shown in Table 2.

Table 2

Results of association analysis

Frequent ItemSets Support Confidence
c1 → c2 0.3400 0.7100
d1 → d2 0.4100 0.8000

According to Table 2, it can be calculated from Equation (1) that the correlation between 
the wind speed and gas concentration is 0.75, and the confidence is 0.5694. The correlation and 
confidence both meet the minimum threshold rule, so it is considered that there is a strong cor-
relation between the two monitoring data sequences at this monitoring point.
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2.3.	R ealisation for data cleaning 

2.3.1.	SDAE algorithm

The SDAE model is a deep neural network structure, by adding noise to the sample data, 
enhances the robustness of the model by learning damaged data, and finally, the input data are 
restored through data reconstruction. The SDAE structure includes the input layer, hidden layer, 
and output layer. The hidden layer is made up of multiple DAEs. Each DAE unit consists of 
an encoder and a decoder. The SDAE structure is shown in Fig. 2. Where fθ means encoding, 
gθ means decoding, and qD means randomly mapping part of the value of the input data x to 0 
(stochastic mapping).

Fig. 2. Structure of SDAE

Taking the wind speed sensor monitoring data set x as input samples, x~ is obtained by add-
ing random noise to x. After encoding, the hidden layer feature y of x~ can be expressed as Equa-
tion (2).

	 ( ) ( )y f x s Wx b    	 (2)

Where, W and b are the weight matrix and bias vector of the encoding model, respectively; 
(W, b) updated by stochastic gradient descent algorithm (SGD); s is the active function, and the 
sigmoid function is selected in this paper. The expression of the s function is as Equation (3).

	 s(u) = 1/(1 + exp(–u)	 (3)

After decoding, the reconstruction characteristic of y is expressed as Equation (4).

	 ( ) ( )z g y s W y b      	 (4)

Where z is the reconstruction value; W' and b' are the weight matrix and bias vector of the de-
coding model.

The reconstruction value z is not completely consistent with the input data x. The recon-
struction error is used to characterise the training effect, which is calculated as Equation (5). 
The smaller the reconstruction error is, the higher the approximation degree between z and x is.
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The SDAE network can not only reproduce the input results but also achieve noise reduction. 
This paper uses its characteristics to realise the cleaning and reconstruction of senior monitor-
ing data of the mine ventilation system. In the training stage, the monitoring data of the mine 
ventilation system is taken as input, and the minimum reconstruction error is taken as the tuning 
criterion. In the testing phase, for the cleanable data, the SDAE reconstructed data is taken as 
the modified data. The SDAE cleaning algorithm of mine ventilation system monitoring data is 
described as follows (Algorithm 1). 

Algorithm 1: The SDAE training of mine ventilation system monitoring data
Input: monitor data set x, xi ∈ R
Output: Parameters θ, θ' and reconstructed data set z
Data preprocessing: x → x–
Initialisation: number of network structure layers L, number of iterations K, denoising 
rate α, learning rate β, weight matrix W and W', bias vector b and b', number of neurons in 
visible layer and hidden layer, weight-decay λ
Stochastic mapping: αx– → x~

for j = 1 to K
for i = 1 to L
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end

2.3.2.	Cleaning process

When the mine ventilation system runs normally, the monitoring data is usually distributed 
near the one-dimensional manifold (blue dot in Fig. 3). When abnormal or environmental distur-
bances cause considerable measurement errors or data loss, isolated singularities deviate from 
expected values in monitoring data, and these noise points or missing values will deviate from the 
manifold distribution of normal data (red dots in Fig. 3). When the normal monitoring data of the 
ventilation system is used for SDAE model training, part of the data will be randomly damaged to 
form noise staining data, which is similar to the red dot in Fig. 3. For randomly added noise data 
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subsets, the SDAE model extracts distribution features of undamaged data through continuous 
learning and then restores noise data through the prediction of undamaged data so that it has the 
ability to meet the probability distribution of training samples. The SDAE model can map devia-
tions from data distribution to manifolds that meet expectations. Compared with the reconstruc-
tion errors of normally distributed monitoring data, the SDAE model can satisfy the equation.

Fig. 3. Geometric description of data cleaning principle

The fault of the mine ventilation system is usually the change of trend in the monitoring 
status parameters, such as the abnormal opening and closing of the damper and wind window, 
and the monitoring data of the wind speed sensor will show a continuous upward or downward 
trend. The SDAE model is trained by using the monitoring data during the normal operation of the 
ventilation system. When the ventilation system fails and the trend of state parameters changes, 
the parameters and values of the trained SDAE model cannot meet the mapping relationship of 
the ventilation system fault state data. Therefore, when the fault samples are tested, there will 
be large data reconstruction errors with a long error duration. The steps of data cleaning are as 
follows. The flowchart is shown in Fig. 4.

(1)	 The sensor monitoring data during the normal operation of the mine ventilation system 
are obtained as the training sample is set and normalised. According to Algorithm 1, the 
SDAE model is trained with the training sample set as input, and the model parameter 
θ and θ' are determined.

(2)	 The reconstruction errors of the training sample set are calculated according to Equa-
tion (5), and the upper limit Thd of reconstruction errors is determined by kernel density 
estimation (KDE) [21]. The error tolerance time TW is determined by analysing the 
historical fault data.

(3)	 The test samples are input into the SDAE model to obtain the reconstruction errors Re 
and error duration Et. Combining the SDAE reconstruction errors corresponding to the 
strong correlation monitoring series in the same period, the data types are determined 
as follows:
A.	 Re ≤ Thd: The test data does not contain “dirty” data, which are generated during the 

normal operation of the ventilation system, so there is no need to clean. 
B.	 Re > Thd, Et ≤ Tw and Re ≤ Thd of the strong correlation data series in the same period: 

The “dirty” data in the test set are outliers, which are generated during the normal 
operation of the ventilation system, so there is a need to clean. 

C.	 Re > Thd, Et ≤ Tw and Re > Thd of the strong correlation data series in the same period: 
The test data is generated when the ventilation system fails, which can provide ef-
fective information for roadway fault diagnosis, so there is no need to clean. 
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D.	 Re > Thd, Et > Tw, and this part of the data is 0 or a certain value: The “dirty” data in 
the test set are missing values. 

E.	 Re > Thd, Et > Tw and Re > Thd, Et > Tw of the strong correlation data series in the 
same period: The test data is generated when the ventilation system fails, which 
can provide effective information for roadway fault diagnosis, so there is no need 
to clean.

(4)	 The SDAE model repairs the outliers and missing values through data reconstruction, 
and the non-destructive data and the repaired data constitute the effective information 
of the ventilation system monitoring data.

2.4.	P erformance evaluation

In this paper, mean absolute error(MAE) and root mean square error(RMSE) are used to 
evaluate the performance of the SDAE model and are calculated as Equation (6) and Equation (7).
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Fig. 4. The flowchart of data cleaning
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Where n is the total number of input data.

3.	 Experimental analysis

In this paper, an SDAE model is constructed by taking the monitoring data of the wind 
speed sensor installed in the Dongshan Coal Mine to verify the effectiveness of the proposed 
method. All wind speed sensor data collected from April 1st to April 7th are used as training 
samples Xtrain. The monitoring data of the wind speed sensor 84G09F12A in the #1 wind road-
way in the west mining area was collected on April 8th is taken as the test sample Xtest, which is 
generated from the normal running state of the ventilation system. On April 9th, on the premise 
of ensuring product safety, the damper of the 1# return airway was opened, and the data generated 
by the 84G09F12A wind speed sensor are used as the ventilation system fault test sample Xfault. 
The SDAE model parameters are set as follows: There are 15 wind speed sensors installed in 
the whole mine, and the input data is 15-dimensional. Therefore, the number of neurons in the 
input layer is 15, and the number of neurons in the output layer is 1. There are 3 hidden layers, 
and the structure is {20, 10, 20}. The connection weight is set to a random number obeying the 
normal distribution N(0, 0.01), and the bias term is initialised to 0. The weight-decay is 0.001. 
The experimental environment is Windows 10 operating system, the processor is Intel Core i7, 
16 GB RAM, and the software is MatlabR2017b.

3.1.	 Determination of key hyperparameters

The selection of iteration numbers, de-noising rate, and learning rate directly affect the 
performance of the SDAE model. Therefore, the above three key hyperparameters are studied 
and the optimal combination parameters are selected. Xtrain is randomly divided into a train-
ing set and a validation set in a ratio of 8:2. The experiment is repeated twice, using different 
training sets and validation sets, denoted as {Training1,Validation1}, {Training2,Validation2}, 
respectively.

To investigate the effect of different iteration numbers, we set the de-noising rate to 0.1 and 
the learning rate to 0.01 and 0.05. The results of MAE and RMSE varied as iteration numbers 
are shown in Fig. 5.

It can be seen from Fig. 5 that the general trends of MAE and RMSE varied, with iteration 
numbers being the same. When the learning rate is 0.01, the MAE and RMSE are relatively sta-
ble between the 300th to 1100th iteration. At the 1200th iteration, the MAE and RMSE increase 
significantly. At the 1400th iteration, they decrease to the minimum value and then increase again. 
At the 1200th iteration, the model updates the network parameters and reaches a local optimum. 
When the learning rate is 0.05, the MAE and RMSE also show the same trend. Therefore, con-
sidering the model accuracy and running time comprehensively, the number of iterations is 1400.

The learning rate determines whether the model can converge to the global optimum. We set 
the de-noising rate to 0.1 and the number of iterations to 1400. The results of MAE and RMSE 
varied as the learning rate is shown in Fig. 6.
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When the learning rate is between 0.001 and 0.05, the MAE and RMSE decrease gradu-
ally. When the learning rate exceeds 0.05, the MAE and RMSE results of the training set tend 
to be stable, but the MAE and RMSE results of the validation set show an upward trend. This 
means that when the learning rate exceeds 0.05, the prediction accuracy of the test set will de-
crease. Therefore, considering the model prediction accuracy, the learning rate is determined to  
be 0.05.

It can be seen from Section 1.3.1 that the SDAE model randomly adds noise in the initial 
stage of training. In this paper, the learning rate is set to 0.005, and the number of iterations is 
set to 1400 to study the effect of different de-noising rates on the performance of the model. The 
results of MAE and RMSE varied with the de-noising rate are shown in Fig. 7.

With the change in the de-noising rate, there are only small fluctuations in MAE and RMSE, 
which indicates that the model cleaning results are not affected by the de-noising rate. Therefore, 
the de-noising rate is set to 0.1.

(a)	 (b)

(c)	 (d)

Fig. 5. Results of MAE and RMSE varied with the iteration number
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3.2.	R esults of experimental

The Xtrain is normalised, and the SDAE model is constructed according to algorithm 1. After 
training, the MAE of the sample data is 5.52%. It can be considered that 94.48% of the sample 

(a)

(b)

Fig. 6. Results of MAE and RMSE varied with learning rate

(c)	 (d)

Fig. 7. Results of MAE and RMSE varied as the de-noising rate
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data can be repaired, and 5.52% of the sample data cannot be accurately repaired. According to 
Step 2 in Section 2.3.2, the KDE method is used to obtain the cumulative probability distribution 
of model reconstruction errors, as shown in Fig. 8. Meanwhile, due to the background noise, the 
accuracy of the model is affected. The confidence level is improved to avoid the background 
noise being judged as abnormal. Therefore, the confidence interval is set as 0.96. As shown in 
Fig. 8, when the confidence level is 0.96, the upper limit of reconstruction error Thd is 0.01929. 
The error tolerance time (Tw) is set to 5.

Fig. 8. The distribution of reconstruction errors Fig. 9. Relationship between reconstruction error about 
Xtest and Thd, Tw

3.2.1.	Cleaning data under a normal running state of  
the ventilation system

For the convenience of the display, some sample points are intercepted. The 11th and 
51th-58th sample points are removed, and outliers are added to the 82nd and 136th sample 
points in Xtest. The normalised Xtest is entered into the trained SDAE model. To overcome the 
randomness of the algorithm, we repeated 10 experiments. The average reconstruction errors 
are shown in Fig. 9.

As can be seen from Fig. 9, the reconstruction errors at the 11th, 51st-58th, 82nd, and 136th 
sample points exceed the upper limit of reconstruction errors Thd, and these data points are 
“dirty” data. According to Section 2.2, there is a strong correlation between gas data and wind 
speed data at this monitoring point. Therefore, the reconstruction errors of gas data are analysed 
in collaboration to determine the types of sample data. At data points 11th, 51th-58th, 82nd, and 
136th, the reconstruction errors of gas data do not exceed the error limit by the corresponding 
SDAE model. According to Step 3 of Section 2.3.2, the “dirty” data type is identified and cor-
rected. The results are shown in Table 3. Where the cleaning value is the average of 10 experi-
ments. The MAE and RMSE are the mean values after denormalisation.

To verify the superiority of the SDAE cleaning model, the LSTM, SAE and adaptive Kal-
man Filter proposed in Reference [19] are included in the comparative experiment to predict the 
cleaning value. The experiments were repeated 10 times, and performance indexes are shown 
in Fig. 10.
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Fig. 10. Performance indicators of different algorithms

It can be analysed from Table 3 and Fig. 10:
(1)	I n terms of realisation, the SDAE model proposed in this paper is suitable for cleaning 

the wind speed sensor data of the mine ventilation system and can repair outliers and 
missing data. The MAE and RMSE are 5.6% and 1.87%, respectively.

(2)	I n terms of performance indicators, the SDAE model is lower than the three algorithms 
in both MAE and RMSE, with an average decrease of 75.42% and 74.98%, indicat-
ing that the SDAE model has more stable performance. Compared with the recently 
proposed adaptive Kalman Filter algorithm, the SDAE model is more suitable for the 
complex environment of coal mines.

Table 3

Data cleaning result of the SDAE model

Sample 
data

Normalised
Type

Denormalised
True Outlier Cleaned MAE RMSE

11 0.5629 0 0.5581 missing data

5.6% 1.87%

51 0.5154 0 0.5258 missing data
52 0.5612 0 0.5613 missing data
53 0.5138 0 0.5025 missing data
54 0.5412 0 0.5124 missing data
55 0.5961 0 0.5725 missing data
56 0.5742 0 0.5241 missing data
57 0.5741 0 0.5842 missing data
58 0.5325 0 0.5241 missing data
82 0.5856 0.1625 0.5748 outlier
136 0.5458 0.8158 0.5612 outlier
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3.2.2.	Cleaning data under the ventilation system fault

The normalised Xfault is entered into the trained SDAE model. When the damper was opened 
after the 50th sample point, the wind speed showed an upward trend. The reconstruction errors 
of Xfault are shown in Fig. 11. The original data and cleaning results of Xfault are shown in Fig. 12.

From Fig. 11, the reconstruction error increases suddenly from the 50th sample point, 
exceeding the upper. The reconstruction errors of gas data are analysed collaboratively, and it 
is found that the reconstruction errors of gas data have the same trend as Xfault. According to 
Step 3 in Section 2.3.2, it is considered that the sample data at this time are generated when the 
ventilation system is at fault and does not need to be cleaned. It can be seen from Fig. 12 that 
the data cleaning of Xfault only repairs the outliers, while the roadway fault data are effectively 
preserved, which can provide effective information for the subsequent fault diagnosis of the 
ventilation system.

Fig. 12. Data cleaning results of XfaultFig. 11. The reconstruction error of Xfault

4.	 Conclusion

Based on the wind speed data of the mine ventilation system and the ability of the SDAE 
model to extract and restore “dirty” data, this paper proposes a cleaning method for mine ventilation 
system monitoring data based on SDAE. Association rules are used to determine the correlation 
between monitoring data series, and data types are determined in collaboration with the SDAE 
model. The following conclusions are drawn from the experimental analysis.

1.	 The SDAE model proposed is suitable for data cleaning of the mine ventilation system. 
The method can automatically identify outliers and missing values and repair “dirty” 
data. In addition, the proposed method can retain the effective status information of the 
ventilation system, which provides reliable data for subsequent ventilation system fault 
diagnosis and disaster warning.

2.	 The key hyperparameters of the model were determined, including a learning rate 
of 0.05, a denoising rate of 0.1, and an iteration number of 1400 for optimal SDAE 
cleaning. It provides a reference for the application of this model in other engineering 
fields.
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3.	 Compared with LSTM, DAE, and KF, the SDAE model proposed in this paper has lower 
MAE and RMSE indexes, which are more suitable for complex mine environments. Its 
data reconstruction results are closer to the actual data and have a more stable perfor-
mance. 
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