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An observer design for Takagi-Sugeno fuzzy
bilinear control systems

François DELMOTTE, Nizar HADJ TAIEB, Mohamed Ali HAMMAMI and Houria MEGHNAFI

In this paper, the observer design problem for a T-S fuzzy bilinear control system is
investigated. First, an observer of Kalman type is designed to estimate the system states for
the linear case. Then, some new sufficient conditions are derived to show the exponential
convergence of the solutions of the error equation for fuzzy bilinear systems. Furthermore, we
consider some uncertainties of the system that are bounded and satisfy a certain condition where
an observer is designed. Moreover, an application to Van de Vusse system is given.
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1. Introduction

For the linear control system, the conception of an observer has been solved
completely. In the nonlinear case, this problem remains still a difficult task.
Therefore, nonlinear state observer design has been an area of constant research
for the last three decades and, despite important progress, many outstanding
problems still remain unsolved. The observer design problem naturally arises in a
system approach. In general, one cannot use as many sensors as signals of interest
characterizing the system behavior in presence of parameters or unmeasured
external disturbances [14]. In the engineering practice, the real plants often run
in a complex and mutative environment with kinds of uncertain factors which
inevitably bring certain engineering complexities such as time delays, parameter
uncertainties, nonlinearities and sensor/actuator faults ( [1,4,5,8,12–25,30–32]).
These complex phenomena would directly influence the system state evolution in
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different ways, and largely affect the system performance. Considering the distinct
merits of nonlinear T-S fuzzy control schemes, it is a natural idea to use theTakagi-
Sugeno fuzzy theory (Takagi and Sugeno [26, 27]) to handle control problems
for nonlinear plants subject to engineering-oriented complexities. However, the
real physical systems are often nonlinear. The design of state observers for non-
linear systems using Takagi-Sugeno (TS) models has been actively considered
during the last decades (see [2, 3]). T-S models are currently being used for a
large class of physical and industrial processes, such as electrical machines and
robot manipulators. As it is delicate to synthesize an observer for an unspecified
nonlinear system, it is preferable to represent this system with the Takagi-Sugeno
(T-S) fuzzy model. With a fuzzy observer, the estimated states error system is
described as two parts: unknown premise variable caused terms and observer
error terms (see [28]). A state observer is a dynamical system which provides
the estimation of the internal states of the model. In most practical cases, the
physical state of the system cannot be determined by direct observation. The
problem of state observation for nonlinear systems is of main importance in
automatic control. In recent years many contributions have been presented in
literature that solve the control design problem for classes of nonlinear systems
(see [7,9,21]). Unlike the linear case, the conception of observer is still a difficult
task for nonlinear systems.
The disturbance observer for sliding model control has been studied in many

papers (see [31] and references therein). Saturation is another important issue in
practical applications that needs to be paid attention [29] where in the literature,
several methods have been proposed to handle the effects of saturation.
In this paper, we show that the lyapunov approach can be used for the stability

analysis concept to solve the observer design problem using the Kalam like
configuration. We give some sufficient conditions to ensure that the error fuzzy
equation is globally exponentially stable. Under the the condition of observability
for any input of a class of bilinear system (see [6]), one can design an observer of
Kalman type which converge for any bounded and small input in Takagi-Sugeno
fuzzymodel sense. Thus, ourmain contribution is the observer analysis and design
methods that can effectively deal with model/plant mismatches. Moreover, as an
application we construct an observer for the Van de Vusse system.

2. Preliminarily results

In control theory, a state observer is a system that provides an estimate of the
internal state of a given real system, from measurements of the input and output
of the real system. It is typically computer-implemented, and provides the basis of
many practical applications. Knowing the system state is necessary to solve many
control theory problems; for example, stabilizing a system using state feedback.
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In most practical cases, the physical state of the system cannot be determined by
direct observation. Instead, indirect effects of the internal state are observed by
way of the system outputs.
A class of nonlinear systems that has seen much attention in the literature is

the class of linear systems:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢, 𝑥(0) = 𝑥0 , 𝑦(𝑡) = 𝐶𝑥(𝑡), (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑢(𝑡) ∈ R𝑚 is the control input vector, 𝐴(𝑛, 𝑛)
constant matrix, 𝐵(𝑛, 𝑚) matrix control input and 𝐶 (𝑝, 𝑛) is the output matrix.
Given a system (1), one can estimate the states by using an observer, whose
structure is as follows:

¤̂𝑥(𝑡) = 𝑂 (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)) ,

where 𝑥(𝑡) is the state of the observer. It is needed that the estimation error,
𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) has to converge as fast as possible to zero. Most current
methods lead to the design of an exponential observer, exponential stability is the
most wanted. With the model given in (1), the problem is to design a continuous
observer with input 𝑦(𝑡) such that the estimates denoted by 𝑥(𝑡) converge to 𝑥(𝑡)
exponentially fast. We shall assume that the pair (𝐴,𝐶) is observable. Suppose
the observability matrix for the time invariant associated linear system. Then,
there exists a gain matrix 𝐿 (𝑛 × 𝑝) such that the matrix (𝐴 − 𝐿𝐶) is hurwitz. In
this condition, one can design an exponential observer for system (1) as:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 − 𝐿 (𝐶𝑥(𝑡) − 𝑦(𝑡)). (2)

The system (2) is an exponential observer for system (1), where the matrix 𝐿 is
chosen such that

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) = −𝑄,

with 𝑃 and 𝑄 are (𝑛 × 𝑛) positive definite symmetric matrices. Here, we just
consider the error equation:

¤𝑒(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡),

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡).
Therefore, using a Kalman like observer, we can design a state observer for

(1) as follows (see [10] and [11]):

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 − 𝑆−1𝜃 𝐶𝑇 (𝐶𝑥(𝑡) − 𝑦(𝑡)),

where 𝑆𝜃 satisfies the following stationary equation:

0 = −𝜃𝑆𝜃 − 𝐴𝑇𝑆𝜃 − 𝑆𝜃𝐴 + 𝐶𝑇𝐶, 𝜃 > 0,
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𝑆𝜃 = lim
𝑡→+∞

𝑆𝑡

with 𝑆𝑡 ∈ S+ the cone of symmetric positive definite matrices on R𝑛 which
satisfies

¤𝑆𝑡 = −𝜃𝑆𝑡 − 𝐴𝑇𝑆𝑡 − 𝑆𝑡𝐴 + 𝐶𝑇𝐶.

In the next section, we will consider the case of fuzzy control systems. It is
well known that, Takagi-Sugeno fuzzy models are nonlinear systems described
by a set of if-then rules which gives local linear approximations of an underlying
system. Such models can approximate or describe a wide class of nonlinear
systems.

3. T.S fuzzy dynamic model

The mathematical model of a system can be in different forms, such as alge-
braic equations, differential equations, finite state machines, etc. In the modeling
framework considered on rule based fuzzy models, the relationships between
variables are described by means of if- then rules, such as: If input is high then
output will increase fast. These rules establish logical relations between the sys-
tem’s variables by relating qualitative values of one variable to qualitative values
of another variable. The structure of the fuzzy system is composed of a set of
if-then rules, where qualitative knowledge can be expressed in the form of rules
IF “𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛” THEN “𝑎𝑐𝑡𝑖𝑜𝑛”. The condition part (premise) contains facts in
the form of symptoms as inputs and the conclusion part includes events as a
logical cause of the facts. In the T-S model, the inference is reduced to a simple
algebraic expression, similar to the fuzzy-mean defuzzification formula (Takagi
and Sugeno [26, 27]). The algorithm for the development of T-S fuzzy model
has the following steps: The optimal number of fuzzy rules is determined; The
relevant input variables as antecedents are selected; The membership function
parameters are estimated; The consequent structure is selected; The consequent
parameters are estimated.
Let now consider the following T.S fuzzy dynamic model:

¤𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
, (3)

𝑦 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥, (4)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, and 𝑦 ∈ R𝑞 is the output.
The matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are of appropriate dimension, 𝑟 ­ 2 is the number
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of rules, 𝑧 is the premise vector which may include unmeasurable variables. It is

assumed that 𝜇𝑖 (𝑧) ­ 0, for all 𝑖 = 1, . . . , 𝑟 and
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) = 1, for all 𝑡 ­ 0.

In many practical control problems, the physical state variables of systems are
partially or fully unavailable for measurement, since the state variables are not
accessible by sensing devices and transducers are not available or very expensive.
In such cases, observer based control schemes should be designed to estimate the
state for (3). Taking 𝑦̂ defined by

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥.

In this case, an observer can be designed which has the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
−

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦). (5)

Takagi-Sugeno model has proved its effectiveness in the study of nonlinear sys-
tems. Indeed, it gives a simpler formulation from the mathematical point of view
to represent the behavior of nonlinear systems. Thanks to the convex sum property
of the weighing functions, it is possible to generalize some tools developed in the
linear domain to the nonlinear systems. This representation is very interesting in
the sense that it simplifies the problem of the observer design.

3.1. Fuzzy linear systems

Let consider the following fuzzy model:

¤𝑥(𝑡) =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
(6)

with the output 𝑦 defined as in (4).
Let consider an observer design for (3) of the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
−

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦), (7)

where 𝑦̂ is given by:

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥.
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Taking into account (5) and (7), the system error is given by:

¤𝑒 =

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧) (𝐴𝑖 − 𝐿 𝑗𝐶𝑖)𝑒. (8)

Thus,

¤𝑒 =

𝑟∑︁
𝑖=1

𝜇2𝑖 Υ𝑖 𝑗𝑒 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗 (𝑧)Υ𝑖 𝑗𝑒,

where
Υ𝑖𝑖 = 𝐴𝑖 − 𝐿𝑖𝐶𝑖,

and
Υ𝑖 𝑗 =

1
2

(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖 + 𝐴 𝑗 − 𝐿 𝑗𝐶𝑖

)
.

Now, we can state the following theorem.

Theorem 1 Suppose that there exist positive symmetric definite matrices 𝑃, 𝑄

and some matrices 𝐿𝑖, 𝑖 = 1, . . . , 𝑟, such that the following inequalities hold,

Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖 < −𝑄, 𝑖 = 1, . . . , 𝑟, (9)

and
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 < −𝑄, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟, (10)

then the system error (8) is guaranteed to be globally uniformly exponentially
stable.

Remark 1 (9) and (10) can be written as LMIs by a simple congruence as in
(Tanaka et al. [26]), with the terms 𝑋 = 𝑃−1, 𝐿 𝑗 = 𝑃𝑁 𝑗 and 𝐻 = 𝑋𝑄𝑋.

Proof. Consider the Lyapunov function candidate 𝑉 (𝑒) = 𝑒𝑇𝑃𝑒. It’s derivative
with respect to time is given by:

¤𝑉 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇

(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒.

Let 𝜆0 = 𝜆min(𝑄), 𝜆min denoting the smallest eigenvalue of the matrix. Therefore,
we have

𝑒𝑇
(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 ¬ −𝜆0‖𝑒‖2, 𝑖 = 1, . . . , 𝑟,

and
𝑒𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒 ¬ −𝜆0‖𝑒‖2, 1 < 𝑖 < 𝑗 < 𝑟.
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Then, one gets

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 .

Taking into account the above expressions, it follows that

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2.

Since
𝑉 (𝑒) = 𝑒𝑇𝑃𝑒 ¬ 𝜆max(𝑃)‖𝑒‖2,

one gets

¤𝑉 (𝑒) ¬ − 𝜆0

𝜆max(𝑃)
𝑉 (𝑒).

Thus, we obtain the following estimation:

‖𝑒(𝑡)‖ ¬
(
𝜆max(𝑃)
𝜆min(𝑃)

)1/2
‖𝑒(0)‖𝑒− 12𝜆0𝑡 .

Then, we deduce that (7) is an exponential observer for (5). 2

4. Fuzzy bilinear systems

An interesting class on nonlinear systems is the class of bilinear systems:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑢𝐵𝑥(𝑡), 𝑥(0) = 𝑥0, 𝑦(𝑡) = 𝐶𝑥(𝑡),

where 𝑥 is the state, 𝑢 is the control and 𝑦 is the output of the system, one can
estimate the states by using an observer, whose structure is as follows:

¤̂𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑢𝐵𝑥(𝑡) − 𝐿 (𝐶𝑥(𝑡) − 𝑦(𝑡)),

where 𝑥(𝑡) is the state of the observer. It is needed that the estimation error,
𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) has to converge as fast as possible to zero for a suitable choice
of the gain matrix 𝐿. Most current methods lead to the design of an exponential
observer, exponential stability is the most wanted. With the model given below,
the problem is to design a continuous observer with input 𝑦(𝑡) such that the
estimates denoted by 𝑥(𝑡) converge to 𝑥(𝑡) exponentially fast. We shall assume
that the pair (𝐴,𝐶) is observable. Suppose the observability matrix for the time
invariant associated linear system. Then, there exists a gain matrix 𝐿 (𝑛× 𝑝) such
that the error equation

¤𝑒(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡)
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is exponentially stable. In this condition, one can design an exponential observer
for the bilinear system as:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑢𝐵𝑥(𝑡) − 𝐿 (𝐶𝑥(𝑡) − 𝑦(𝑡)).

provided the control 𝑢 is small enough, where the matrix 𝐿 is chosen such that

(𝐴 − 𝐿𝐶)𝑇𝑃 + 𝑃(𝐴 − 𝐿𝐶) = −𝑄,

with 𝑃 and 𝑄 are (𝑛 × 𝑛) positive definite symmetric matrices. Therefore, using
a Kalman like observer with the gain matrix is chosen as 𝐿 = 𝑆−1

𝜃
𝐶𝑇 , we can

design a state observer as follows (see [6, 7, 12]):

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑢𝐵𝑥(𝑡) − 𝑆−1𝜃 𝐶𝑇 (𝐶𝑥(𝑡) − 𝑦(𝑡)),

where 𝑆𝜃 satisfies the following stationary equation:

0 = −𝜃𝑆𝜃 − 𝐴𝑇𝑆𝜃 − 𝑆𝜃𝐴 + 𝐶𝑇𝐶, 𝜃 > 0,

𝑆𝜃 = lim𝑡→+∞ 𝑆𝑡 with 𝑆𝑡 ∈ S+ the cone of symmetric positive definite matrices
on R𝑛 which satisfies

¤𝑆𝑡 = −𝜃𝑆𝑡 − 𝐴𝑇𝑆𝑡 − 𝑆𝑡𝐴 + 𝐶𝑇𝐶.

It is known from [6] that, under the the condition of observability for any input
of the bilinear system, this observer converges for any bounded and small input u
which is distant from bad inputs or just 𝑢(𝑡) is a regularly persistent input. Indeed,
since the pair (𝐴,𝐶) is observable, 𝑢 = 0 constitutes an universal input. Thus,
for a small input 𝑢 there exists 𝜀 > 0 such that for |𝑢 | < 𝜀, 𝑢 is universal too (i.e.
if it distinguishes the points, that is, for all initial conditions (𝑥0; 𝑥0) there exists
𝑇 > 0 such that 𝐶 (𝑥𝑢 (𝑇)) ≠ 𝐶 (𝑥𝑢 (𝑇)), where 𝑥𝑢(𝑡) is the approximate solution
such that 𝑥𝑢 (0) = 𝑥0). Therefore, the Gramm observability matrix satisfies,

𝑊𝑢 (𝑡) =
𝑡∫
0

𝑒−𝜃 (𝑡−𝑠) (𝑇Φ𝑢(𝑠) (𝑡 − 𝑠))−1𝐶𝑇𝐶Φ−1
𝑢(𝑠) (𝑡 − 𝑠)d𝑠 ­ 𝛼𝐼, 𝛼 > 0.

On the one hand, if we consider the error equation:

¤𝑒(𝑡) = (𝐴 + 𝑢𝐵)𝑒(𝑡) − 𝑆−1𝜃 𝐶𝑇𝐶𝑒.

The error satisfies the estimate:

‖𝑒(𝑡)‖ ¬ 𝑘𝑒−
1
2 𝜃𝑡 , 𝑘 > 0,
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where the constant 𝑘 depends only on the initial state and 𝑢. This implies that the
estimate error converges exponentially. On the other hand, for a bounded control
𝑢(𝑡) the matrix 𝑆(𝑡) is bounded. Therefore, since the bilinear system is observable
for any input and the matrix 𝑆(𝑡) is bounded, by using some techniques regarding
the Ricatti equations as in [6], we can show that the matrix 𝑆−1(𝑡) is also bounded.
For the class of fuzzy bilinear systems, under the the condition of observability

for any input of the bilinear system, this observer converges for any bounded and
small input 𝑢 which is distant from bad inputs or just 𝑢(𝑡) is a regularly persistent
input. Let now consider the following T.S fuzzy bilinear model:

¤𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝑢𝐵𝑖𝑥

)
, (11)

𝑦 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥 , (12)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R is the control input, and 𝑦 ∈ R𝑞 is the output.
The matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are of appropriate dimension, then an observer can be
designed which has the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖 + 𝑢𝐵𝑖

)
𝑥 −

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦).

The system error is given by:

¤𝑒 =

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧)
(
(𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿 𝑗𝐶𝑖

)
𝑒.

Thus,

¤𝑒 =

𝑟∑︁
𝑖=1

𝜇2𝑖 Υ̃𝑖 𝑗𝑒 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗 (𝑧)Υ̃𝑖 𝑗𝑒,

where
Υ̃𝑖𝑖 = (𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿𝑖𝐶𝑖,

and
Υ̃𝑖 𝑗 =

1
2

(
(𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿 𝑗𝐶𝑖 + (𝐴 𝑗 + 𝑢𝐵 𝑗 ) − 𝐿 𝑗𝐶𝑖

)
.

According to the above analysis, the design procedure for T-S fuzzy systems is
summarized as follows:

Step 1: Verify that assumption (𝐴𝑙 , 𝐶𝑙) are observable for 𝑙 = 1, . . . , 𝑟 and then
for all 𝑖 = 1, . . . , 𝑟 , (𝐴𝑖𝑥 + 𝐵𝑖𝑢) are observable for small input 𝑢.
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Step 2: Solve the Lyapunov equations

Υ̃𝑇
𝑖𝑖𝑃 + 𝑃Υ̃𝑖𝑖 = −𝑄𝑖 , 𝑖 = 1, . . . , 𝑟,

and
1
2
Υ̃𝑇
𝑖 𝑗𝑃 + 1

2
𝑃Υ̃𝑖 𝑗 = −𝑄𝑖, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟,

by using the control toolbox, to determine a common definite positive
symmetric matrix 𝑃 for 𝑖 = 1, . . . , 𝑟 . For simplicity, one can take 𝑄𝑖 = 𝐼.

Step 3: Construct the gain matrices as

𝐿𝑖 = 𝑆−1𝜃 𝐶𝑇
𝑖 , 𝑖 = 1, . . . , 𝑟,

where 𝑆𝜃 satisfies the following stationary equations:

0 = −𝜃𝑆𝜃 − 𝐴𝑇
𝑖 𝑆𝜃 − 𝑆𝜃𝐴𝑖 + 𝐶𝑇

𝑖 𝐶𝑖, 𝜃 > 0.

Therefore as in the proof of Theorem 1, if we consider the Lyapunov function
candidate 𝑉 (𝑒) = 𝑒𝑇𝑃𝑒, it’s derivative with respect to time along the error
equation gives ¤𝑉 (𝑒) ¬ −𝜂𝑉 (𝑒) for a certain nonnegative constant 𝜂 which proves
that the error converges exponentially to the origin.

4.1. Uncertain fuzzy bilinear systems

Let now consider the following T.S uncertain fuzzy bilinear model:

¤𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝑢𝐵𝑖𝑥 + 𝑑𝑖 (𝑡)

)
, (13)

𝑦 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥 (14)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R is the control input, and 𝑦 ∈ R𝑞 is the output.
The matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are of appropriate dimension, 𝑑𝑖 (𝑡) are some external
disturbances for 𝑖 = 1, . . . , 𝑟 , 𝑟 ­ 2 is the number of rules, 𝑧 is the premise vector
which may include unmeasurable variables. It is assumed that: 𝜇𝑖 (𝑧) ­ 0, for all

𝑖 = 1, . . . , 𝑟 and
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) = 1, for all 𝑡 ­ 0.

The function 𝑑𝑖 represent the uncertain external disturbance of each fuzzy
subsystem and are time-varying satisfying the following inequality,

‖𝑑𝑖 (𝑡)‖ ¬ 𝜁𝑖 (𝑡), 𝑖 = 1, 2, . . . , 𝑟, (15)
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for all 𝑡 ­ 0 and 𝑥 ∈ R𝑛, where 𝜁𝑖 (.) are known positive continuous functions
satisfying that, there exists 𝜅 a nonnegative scalar constant satisfying,

𝜁 (𝑡) ¬ 𝜅,

with

𝜁 (𝑡) :=
(

𝑟∑︁
𝑖=1

𝜁𝑖 (𝑡)2
)1/2

.

One can consider an observer which has the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖 + 𝑢𝐵𝑖

)
𝑥 −

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦). (16)

We have the following theorem.

Theorem 2 Suppose that there exist positive symmetric definite matrices 𝑃, 𝑄

and some matrices 𝐿𝑖, 𝑖 = 1, . . . , 𝑟, such that the following inequalities hold,

Υ̃𝑇
𝑖𝑖𝑃 + 𝑃Υ̃𝑖𝑖 < −𝑄, 𝑖 = 1, . . . , 𝑟, (17)

and
Υ̃𝑇
𝑖 𝑗𝑃 + 𝑃Υ̃𝑖 𝑗 < −𝑄, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟, (18)

also the disturbances satisfy (15), then the system (16) is an exponential ob-
server for system (13) in the sense that the error converges exponentially to the
compact set

S =

{
𝑒 ∈ R𝑛/ ‖𝑒‖ ¬ 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅

}
,

where 𝜆0 = 𝜆min(𝑄).

Remark 2 (17) and (18) can be written as LMIs by a simple congruence as in
(Tanaka et al. [26]), with the terms 𝑋 = 𝑃−1, 𝐿 𝑗 = 𝑃𝑁 𝑗 and 𝐻 = 𝑋𝑄𝑋.

Proof. The system error is given by:

¤𝑒 =

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧)
(
(𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿 𝑗𝐶𝑖

)
𝑒 +

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝑑𝑖 (𝑡).

Thus,

¤𝑒 =

𝑟∑︁
𝑖=1

𝜇2𝑖 Υ̃𝑖 𝑗𝑒 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗 (𝑧)Υ̃𝑖 𝑗𝑒 +
𝑟∑︁
𝑖=1

𝜇𝑖𝑑𝑖 (𝑡),



642 F. DELMOTTE, N. HADJ TAIEB, M.A. HAMMAMI, H. MEGHNAFI

where
Υ̃𝑖𝑖 = (𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿𝑖𝐶𝑖,

and
Υ̃𝑖 𝑗 =

1
2

(
(𝐴𝑖 + 𝑢𝐵𝑖) − 𝐿 𝑗𝐶𝑖 + (𝐴 𝑗 + 𝑢𝐵 𝑗 ) − 𝐿 𝑗𝐶𝑖

)
.

Consider the Lyapunov function candidate 𝑉 (𝑒) = 𝑒𝑇𝑃𝑒. It’s derivative with
respect to time is given by:

¤𝑉 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇

(
Υ̃𝑇
𝑖𝑖𝑃 + 𝑃Υ̃𝑖𝑖

)
𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇

(
Υ̃𝑇
𝑖 𝑗𝑃 + 𝑃Υ̃𝑖 𝑗

)
𝑒

+ 2𝑥𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝑑𝑖 (𝑡).

Let 𝜆0 = 𝜆min(𝑄), 𝜆min denoting the smallest eigenvalue of the matrix. Thus, we
have

𝑒𝑇 (Υ̃𝑇
𝑖𝑖𝑃 + 𝑃Υ̃𝑖𝑖)𝑒 ¬ −𝜆0‖𝑒‖2, 𝑖 = 1, . . . , 𝑟,

and
𝑒𝑇 (Υ̃𝑇

𝑖 𝑗𝑃 + 𝑃Υ̃𝑖 𝑗 )𝑒 ¬ −𝜆0‖𝑒‖2, 1 < 𝑖 < 𝑗 < 𝑟.

Then, one gets

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 + 2𝑥𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖𝑑𝑖 (𝑡).

Remark that,

‖
𝑟∑︁
𝑖=1

𝜇𝑖𝑑𝑖 (𝑡)‖ ¬
𝑟∑︁
𝑖=1

𝜇𝑖 (𝜁𝑖 (𝑡)).

Taking into account the above expressions, it follows that

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2 + 2‖𝑥‖‖𝑃‖
𝑟∑︁
𝑖=1

𝜇𝑖 (𝜁𝑖 (𝑡)).

Then, one gets

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2 + 2‖𝑥‖‖𝑃‖
©­«
(

𝑟∑︁
𝑖=1

𝜇2𝑖

)1/2 (
𝑟∑︁
𝑖=1

𝜁𝑖 (𝑡)2
)1/2ª®¬ .
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On the one hand, in the case where 𝑑𝑖 (𝑡) = 0, for all 𝑖 = 1, . . . , 𝑟 , then using the
fact that,

𝑉 (𝑒) = 𝑒𝑇𝑃𝑒 ¬ 𝜆max(𝑃)‖𝑒‖2.
one obtains,

¤𝑉 (𝑒) ¬ − 𝜆0

𝜆max(𝑃)
𝑉 (𝑒),

and so, we obtain the following estimation:

‖𝑒(𝑡)‖ ¬
(
𝜆max(𝑃)
𝜆min(𝑃)

)1/2
‖𝑒(0)‖𝑒− 12𝜆0𝑡 .

Then, we deduce that (16) is an exponential observer for (13).
On the other hand, in the case where 𝑑𝑖 (𝑡) are not all zero, it means that

in presence of 𝑑𝑖 (𝑡) satisfying (15), at least there exists 𝑖 = 1, . . . , 𝑟 such that
𝑑𝑖 (𝑡) ≠ 0, then we have

¤𝑉 (𝑒) ¬ −𝜆0
1

𝜆max(𝑃)
𝑉 (𝑒) + 2𝜆max(𝑃)

𝜆
1/2
min(𝑃)

𝜁 (𝑡)𝑉 (𝑒)1/2.

If follows that,

¤𝑉 (𝑒) ¬ −𝜆0
1

𝜆max(𝑃)
𝑉 (𝑒) + 2𝜆max(𝑃)

𝜆
1/2
min(𝑃)

𝜅𝑉 (𝑒)1/2.

Let,

𝑟0 = 𝜆0
1

𝜆max(𝑃)
, 𝑟1 = 2

𝜆max(𝑃)
𝜆
1/2
min(𝑃)

𝜅.

With the previous notations, it follows that

¤𝑉 (𝑒) ¬ −𝑟0𝑉 (𝑒) + 𝑟1𝑉 (𝑒)1/2.

In the last expression, we make the following change of variable, 𝑢(𝑡) = 𝑉 (𝑒)1/2.
The derivative with respect to time is given by

¤𝑢(𝑡) =
¤𝑉 (𝑒)

2𝑉 (𝑒)1/2
.

This implies that,

¤𝑢(𝑡) ¬ −1
2
𝑟0𝑢(𝑡) +

1
2
𝑟1.
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Therefore, a simple computation gives:

¤𝑢(𝑡) ¬
(
𝑢(0) − 𝑟1

𝑟0

)
𝑒−

𝑟0
2 𝑡 + 𝑟1

𝑟0
.

‖𝑒(𝑡)‖ ¬ 1

𝜆
1/2
min(𝑃)

(
𝜆
1/2
max(𝑃)‖𝑒(0)‖ − 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅

)
𝑒
− 𝜆0
2𝜆max (𝑃) 𝑡 + 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅.

So, for all initial conditions taken outside

S = {𝑒 ∈ R𝑛/ ‖𝑒‖ ¬ 2
𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅},

one has,

‖𝑒(𝑡)‖ − 2
𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅 ¬
1

𝜆
1/2
min(𝑃)

(
𝜆
1/2
max(𝑃)‖𝑒(0)‖ − 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅

)
𝑒
− 𝜆0
2𝜆max (𝑃) 𝑡 .

Hence, the error solution converges globally and exponentially to the the compact
set S. 2

5. Application to Van de Vusse system

Consider the dynamics of an isothermal continuous stirred tank reactor (cstr)
for the Van de Vusse example [24], given by:

¤𝑥1 = −𝑘1𝑥1 − 𝑘3𝑥
2
1 + 𝑢(𝐶𝐴𝑂 − 𝑥1) + 𝑑 (𝑡),

¤𝑥2 = 𝑘1𝑥1 − 𝑘2𝑥2 + 𝑢(−𝑥2),
𝑦 = 𝑥1 ,

(19)

where the state 𝑥1 represents the concentration of the reactant inside the reactor
(mol/L) and the state 𝑥2 is the concentration of the product in the (cstr) output
stream (mol/L). The output 𝑦 determines the grade of the final product. The
input-feed stream to the (cstr) consists of a reactant with concentration 𝐶𝐴𝑂 and

the controlled in the dilution rate 𝑢 =
𝐹

𝑉
(ℎ−1) where 𝐹 is the input flow rate

to the reactor (L/h) and V is the constant volume of the (cstr) (litres). In all
the following discussions, the kinetic parameters are chosen to be 𝑘1 = 50ℎ−1,
𝑘2 = 100ℎ−1, 𝑘3 = 10 L/(molh), 𝐶𝐴𝑂 = 10 mol/L and 𝑉 = 1𝐿. The system (19)
can be written as: with the output 𝑦 = 𝐶𝑥, 𝐶 =

[
1 0

]
,{ ¤𝑥 = 𝐴𝑥 + 𝑢𝐵𝑥 + 𝑑 (𝑡),

𝑦 = 𝐶𝑥
(20)
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where 𝑥 = (𝑥1, 𝑥2)𝑇 and

𝐴(𝑥) =
[
−𝑘1 − 𝑘2𝑥2 0

𝑘1 −𝑘2

]
, 𝐵 =

[
−1 0
0 −1

]
,

and
𝑑 (𝑡) = Δ(𝑢(𝑡)) + 𝑑 (𝑡),

where
𝑑 (𝑡) =

(
Δ1(𝑢(𝑡)), Δ2(𝑢(𝑡))

)
, 𝑑 (𝑡) =

(
𝑑1(𝑡) 𝑑2(𝑡)

)
.

We define the membership functions as

𝜇1(𝑥1(𝑡)) =
1 − 𝑥1(𝑡)
2

and 𝜇2(𝑥1(𝑡)) =
𝑥1(𝑡) + 1
2

.

The associated fuzzy system, with 𝑥1(𝑡) ∈ [−1, 1] and 𝑦 = 𝐶𝑥(𝑡) =

[1, 0] (𝑥1, 𝑥2)𝑇 , can be represented as:

¤𝑥(𝑡) =
2∑︁
𝑖=1

𝜇𝑖 (𝑥1)
(
𝐴𝑖𝑥(𝑡) + 𝑢(𝑡)𝐵𝑖𝑥(𝑡) + 𝑑𝑖 (𝑡)

)
(21)

with
𝐴1 =

[
−60 0
50 −100

]
, 𝐵1 =

[
−1 0
0 −1

]
,

𝐴2 =

[
−40 0
50 −100

]
, 𝐵2 =

[
−1 0
0 −1

]
.

The fuzzy output matrices are given by,
𝐶1 =

[
1 0

]
, 𝐶2 =

[
1 0

]
.

Let 𝐿𝑖 = (𝑙1, 𝑙2)𝑇 , 𝑖 = 1, 2, one has R𝑒𝜆(𝐴𝑖 + 𝐿𝑖𝐶𝑖) < 0 for 𝑙1 = 𝑙2 = 1,

𝑖 = 1, 2. Therefore, taking into account Theorem 2, with 𝑑1(𝑡) =
1
1 + 𝑡2

and

𝑑2(𝑡) =
1
1 + 𝑡2

, one can design an observer which has the following form:

¤̂𝑥 =

2∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖 + 𝑢𝐵𝑖) 𝑥 −
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦) .

Thus, with 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡), one gets the following estimation:

‖𝑒(𝑡)‖ ¬ 1

𝜆
1/2
min(𝑃)

(
𝜆
1/2
max(𝑃)‖𝑒(0)‖ − 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅

)
𝑒
− 𝜆0
2𝜆max (𝑃) 𝑡 + 2

𝜆2max(𝑃)
𝜆0𝜆

1/2
min(𝑃)

𝜅.

By using the initial conditions 𝑥1(0) = 1, 𝑥2(0) = 1, 𝑥1(0) = 1 and 𝑥2(0) = 1,
Figure 1 illustrate the simulation results for the estimated states.
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Figure 1: Time evolution of the estimation 𝑒(𝑡) = (𝑒1(𝑡), 𝑒2(𝑡))

6. Conclusion

In this paper, a new way to simplify the design of observer for T-S fuzzy
bilinear system is presented. Some results are obtained, the observer can therefore
be designed under some sufficient conditions. Moreover, an application to Van
de Vusse system is given.
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