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CONTROL, INFORMATICS AND ROBOTICS

Transformations of the matrices of linear systems
to their canonical form with desired eigenvalues

Tadeusz KACZOREK ∗∗∗

Bialystok University of Technology, Białystok, Poland

Abstract. A new approach to the transformations of the matrices of linear continuous-time systems to their canonical forms with desired
eigenvalues is proposed. Conditions for the existence of solutions to the problems were given and illustrated by simple numerical examples.
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1. INTRODUCTION
The concepts of controllability and observability introduced by
Kalman [9, 10] are the basic notions of modern control theory.
It is well-known that if the linear system is controllable then by
the use of state feedback it is possible to modify the dynami-
cal properties of the closed-loop systems [1, 2, 5–8, 11–13, 17].
If the linear system is observable then it is possible to de-
sign an observer that reconstructs the state vector of the sys-
tem [1, 2, 5–8, 11–13, 17]. Descriptor systems of integer and
fractional order were analyzed in [6, 14, 16]. The stabilization
of positive descriptor fractional linear systems with two differ-
ent fractional orders by the decentralized controller was investi-
gated in [16]. A survey of the matrix black box algorithms was
given in [14]. The eigenvalues assignment in uncontrollable lin-
ear continuous-time systems was analyzed in [4].

In this paper, new approaches to the transformations of the
linear continuous-time systems to their asymptotically stable
canonical controllable (observable) forms with desired eigen-
values are proposed. In Section 2 some basic definitions and
theorems concerning linear standard continuous-time systems
and systems of algebraic matrix equations are recalled. A new
approach to the transformations of the linear systems to their
asymptotically stable controllable and observable canonical
forms with desired eigenvalues is proposed in Sections 3 and 4.
Concluding remarks are given in Section 5.

The following notation will be used: ℜ – the set of real num-
bers, ℜn×m – the set of n×m real matrices, In – the n×n identity
matrix.

2. PRELIMINARIES
Consider the linear continuous-time system

ẋ = Ax+Bu, (1a)
y =Cx, (1b)
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where x= x(t)∈ℜn, u= u(t)∈ℜm, y= y(t)∈ℜp are the state,
input, and output vectors and A ∈ℜn×n, B ∈ℜn×m, C ∈ℜp×n.

Theorem 1. [1, 8–13] The solution of equation (1a) has the
form

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ, x0 = x(0). (2)

Definition 1. [1, 8–13] The linear system (1) is called con-
trollable in time [0, t f ] if there exists an input u(t) ∈ ℜm for
t ∈ [0, t f ] which steers the state of the system from the zero ini-
tial condition x(0) = 0 to the final state x f = x(t f ).

Theorem 2. [1, 8–13] The linear system (1a) is controllable if
and only if

1)
[
B AB . . . An−1B

]
= n, (3a)

2) rank
[
Ins−A B

]
= n for s ∈W, (3b)

where W is the field of complex numbers.

Definition 2. [6, 8] The continuous-time linear system (1) is
called observable if knowing its input u(t) and output y(t) in
some given interval [0, t f ] it is possible to find its unique initial
condition x(0).

Theorem 3. [1, 8–13] The continuous-time linear system (1)
is observable if and only if one of the following conditions is
satisfied:

1) rank


C

CA
...

CAn−1

= n, (4a)

2) rank

[
Ins−A

C

]
= n for s ∈W, (4b)

where W is the field of complex numbers.
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Theorem 4. [3] (Kronecker–Cappelli). Matrix equation

PX = Q, P ∈ℜ
n×p, Q ∈ℜ

n×q (5)

has a solution X if and only if

rank
[
P Q

]
= rankP. (6)

Theorem 5. [3] If condition (6) is satisfied then the solution
X ∈ℜp×q of matrix equation (5) for P ∈ℜn×p is given by

X =
{

PT [PPT ]−1 +(Iq−PT [PPT ]−1P)K1
}

Q, (7a)

or

X = K2[PK2]
−1Q, (7b)

where K1, K2 are real matrices, rankP = n and det[PK2] 6= 0.

3. TRANSFORMATIONS OF THE PAIRS (A, B) AND (A, C)
TO THE DESIRED PAIRS IN CANONICAL FORMS AND
WITH GIVEN EIGENVALUES

The following two cases will be considered for nonsingular ma-
trix A (detA 6= 0).

Case 1. m≥ p. It is assumed that

rank[CA−1B] = p. (8)

In this case matrix [
A B
C 0

]
∈ℜ

(n+p)×(n+m) (9)

has full row rank equal to n+ p, since

[
A B
C 0

]
=

[
In 0

CA−1 Ip

][
A 0
0 −CA−1B

][
In A−1B
0 Ip

]
. (10)

Note that in this case

lim
s→0

T (s) = lim
s→0

{
C[Ins−A]−1B

}
=−CA−1B 6= 0 (11)

for nonzero matrices B and C, where T (s) is the transfer matrix
of system (1).

To simplify the notation we assume m = p = 1.
Consider the equation

[
A B
C 0

]
M =

[
A B
C 0

]
, (12)

where

A =



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 0 1
−a0 −a1 −a2 . . . −an−1

 , B =


0
...
0
1

 ,

C =
[
1 0 . . . 0

]
(13)

and the A has the desired eigenvalues s1, s2, . . . , sn satisfying
the stability condition

Resk < 0 for k = 1, . . . ,n. (14)

In this case matrix [
A B
C 0

]
(15)

is nonsingular and from (12) we have

M =

[
A B
C 0

]−1[
A B
C 0

]
. (16)

Therefore, knowing the matrices A, B, C and A, B, C we may
compute the desired nonsingular matrix (16).

Theorem 6. If detA 6= 0, matrix (9) is nonsingular and the ma-
trices A, B, C have the canonical forms (13) then the nonsingular
matrix M is given by (16).

Example 1. For the given matrices

A =

[
0 1
1 0

]
, B =

[
1
0

]
, C =

[
0 1

]
(17)

and

A =

[
0 1
−2 −3

]
, B =

[
0
1

]
, C =

[
1 0

]
(18)

compute matrix M ∈ℜ3×3 satisfying (12).

In this case the matrices

[
A B
C 0

]
=

0 1 1
1 0 0
0 1 0

 , [
A B
C 0

]
=

 0 1 0
−2 −3 1
1 0 0

 (19)

are nonsingular and equation (12) has the form0 1 1
1 0 0
0 1 0

M =

 0 1 0
−2 −3 1
1 0 0

 (20)
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and its solution

M =

0 1 1
1 0 0
0 1 0


−1 0 1 0
−2 −3 1
1 0 0

=

−2 −3 1
1 0 0
−1 1 0

 . (21)

Matrix (21) is nonsingular.
Now let us assume that m > p > 1 and

rank

[
A B
C 0

]
= n+ p. (22)

In this case, by Theorem 4 equation (12) has many solutions
which can be computed using (7). The solutions depend on the
matrices K1 and K2.

Example 2. For the given matrices

A =

[
1 0
0 2

]
, B =

[
1 0
0 1

]
, C =

[
0 1

]
(23)

and

A =

[
0 1
−2 −3

]
, B =

[
1 0
0 1

]
, C =

[
1 0

]
. (24)

Compute matrix M ∈ℜ3×3 satisfying (12).

In this case the matrices

[
A B
C 0

]
=

1 0 1 0
0 2 0 1
0 1 0 0

 ,
[

A B
C 0

]
=

 0 1 1 0
−2 −3 0 1
1 0 0 0


(25)

have full row ranks and equation (12) has the form1 0 1 0
0 2 0 1
0 1 0 0

M =

 0 1 1 0
−2 −3 0 1
1 0 0 0

 . (26)

Using (7b) for

P =

1 0 1 0
0 2 0 1
0 1 0 0

 , K2 =


k1 0 0
0 0 k2

0 k3 0
0 k4 0

 ,

Q =

 0 1 1 0
−2 −3 0 1
1 0 0 0


(27)

we obtain

M = K2
[
PK2

]−1Q

=


k1 0 0
0 0 k2

0 k3 0
0 k4 0


k1 k3 0

0 k4 2k2

0 0 k2


−1 0 1 1 0
−2 −3 0 1
1 0 0 0



=



4k3

k4
1+

3k3

k4
1 −k3

k4

1 0 0 0

−4k3

k4
−3k3

k4
0

k3

k4
−4 −3 0 1


. (28)

Matrix (28) is singular even for nonzero k1, k2 and k4.

Case 2. p≥ m.
Consider matrix equation

M

[
A B
C 0

]
=

[
A B
C 0

]
, (29)

where the pair (A, B) is controllable, the pair (A, C) is observ-
able and matrix A has the desired eigenvalues satisfying (14).

In this case, it is assumed that

rank

[
A B
C 0

]
= n+m, (30a)

or equivalently
rank

[
CA−1B] = m. (30b)

To simplify the notation, it is assumed m = p = 1. In this par-
ticular case the matrices A, B, C have canonical forms (13). Ap-
plying the transposition to equation (29) we obtain[

AT CT

BT 0

]
MT =

[
AT CT

BT 0

]
, (31)

where T denotes the transposition.
Therefore, the problem in Case 2 has been reduced to the

dual problem analyzed in Case 1, and we have the following
Theorem.

Theorem 7. If m = p = 1, detA 6= 0,

det

[
A B
C 0

]
6= 0 (32)

and the matrices A, B, C have the canonical forms (13) then the
nonsingular matrix MT is given by

MT =

[
AT CT

BT 0

]−1[
AT CT

BT 0

]
. (33)
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Example 3. For given matrices

A =

[
0 1
2 0

]
, B =

[
1
0

]
, C =

[
0 2

]
(34)

and

A =

[
0 1
−3 −4

]
, B =

[
0
3

]
, C =

[
2 0

]
. (35)

compute matrix MT ∈ℜ3×3 satisfying equation (31).
In this case the matrices

[
AT CT

BT 0

]
=

0 2 0
1 0 2
1 0 0

 ,
[

AT CT

BT 0

]
=

0 −3 2
1 −4 0
0 3 0


(36)

are nonsingular and equation (31) has the form0 2 0
1 0 2
1 0 0

MT =

0 −3 2
1 −4 0
0 3 0

 (37)

and its solution is given by

MT =

0 2 0
1 0 2
1 0 0


−10 −3 2

1 −4 0
0 3 0

=

 0 3 0
0 −1.5 1

0.5 −3.5 0

 .
(38)

Matrix (38) is nonsingular.
In a similar way as in Case 1 the considerations can be easily

extended to m+ p > 2.

4. EXTENSIONS TO LINEAR SYSTEMS WITH SINGULAR
STATE MATRICES

In this Section, the considerations of Section 3 will be extended
to linear systems (1) with singular state matrices (detA = 0).

Case 1. m > p.
To simplify the notation we assume m = p = 1.
Consider the equation[

A B
C 0

]
N =

[
A B
C 0

]
, (39)

where

det

[
A B
C 0

]
6= 0, det

[
A B
C 0

]
6= 0 (40)

and the desired matrices A, B, C have the forms (13).

If condition (40) is satisfied then from (39) we have

N =

[
A B
C 0

]−1[
A B
C 0

]
(41)

and detN 6= 0.

Theorem 8. If detA = 0, the condition (40) is satisfied, and
desired matrices A, B, C have the canonical forms (13) then
nonsingular matrix N is given by (41).

Example 4. For given matrices

A =

[
0 1
0 2

]
, B =

[
1
0

]
, C =

[
1 0

]
(42)

and

A =

[
0 1
−2 −3

]
, B =

[
1
0

]
, C =

[
1 0

]
(43)

compute matrix N satisfying equation (39).

Note that matrix A given by (42) is singular, the pair (A, B) is
not controllable, and the pair (A, C) is observable.

In this case the matrices[
A B
C 0

]
=

0 1 1
0 2 0
1 0 0

 , [
A B
C 0

]
=

 0 1 1
−2 −3 0
1 0 0

 (44)

are nonsingular and equation (39) has the form0 1 1
0 2 0
1 0 0

N =

 0 1 1
−2 −3 0
1 0 0

 . (45)

The solution of (45) has the form

N =

 1 0 0
−1 1.5 0
1 2.5 1

 (46)

and it is nonsingular.
The considerations can be easily extended to the case n+m>

n+ p.

Case 2. p > m.
Consider matrix equation

N

[
A B
C 0

]
=
[
A BC 0

]
, (47)

where the pair (A, B) is controllable, the pair (A, C) is observ-
able and matrix A has the desired eigenvalues satisfying (14).

It is assumed that

rank

[
A B
C 0

]
= n+m. (48)
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To simplify the notation it is assumed that m = p = 1 and the
matrices A, B, C have the canonical forms (13). Applying the
transposition to equation (47) we obtain[

AT CT

BT 0

]
NT

=

[
AT CT

BT 0

]
. (49)

Therefore, the problem has been reduced to the dual problem
analyzed in Case 1.

Theorem 9. If m = p = 1, conditions (40) are satisfied and the
desired matrices A, B, C have the canonical forms (13) then the
nonsingular matrix N is given

NT
=

[
AT CT

BT 0

]−1[
AT CT

BT 0

]
. (50)

The proof is similar to the proof of Theorem 7.
The considerations can be easily extended to the case

n+m > n+ p.

5. CONCLUDING REMARKS
A new approach to the transformations of the matrices of linear
continuous-time systems to their canonical forms with desired
eigenvalues is proposed. Conditions for the existence of solu-
tions to the problems are given (Theorems 6–9) and illustrated
by simple numerical examples. The considerations can be eas-
ily extended to linear discrete-time systems. An open problem
is an extension of the considerations to fractional orders linear
systems.
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