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ABSTRACT 

 

We examine Turing’s intriguing claim, made in the philosophy journal Mind, 

that he had created a short computer program of such a nature that it would be im-

possible “to discover by observation sufficient about it to predict its future behav-

iour, and this within a reasonable time, say a thousand years” (Turing, 1950, p. 457). 

A program like this would naturally have cryptographic applications, and we explore 

how the program would most likely have functioned. Importantly, a myth has re-

cently grown up around this program of Turing’s, namely that it can be used as the 

basis of an argument—and was so used by Turing—to support the conclusion that it 

is impossible to infer a detailed mathematical description of the human brain within 

a practicable timescale. This alleged argument of Turing’s has been dubbed “Tu-

ring’s Wager” (Thwaites, Soltan, Wieser, Nimmo-Smith, 2017, p. 3) We demonstrate 

that this argument—in fact nowhere to be found in Turing’s work—is worthless, 

since it commits a glaring logical fallacy. “Turing’s Wager” gives no grounds for pes-

simism about the prospects for understanding and simulating the human brain. 

Keywords: Alan Turing; Turing’s Wager; mechanized encryption; laws of be-

haviour; unspecifiability of the mind; brain modelling; whole-brain simulation; 

cipher machines; Enigma; Fish; Tunny; early computer-based cryptography. 

 

 

1. INTRODUCTION 

 

We live in an age of misinformation. This article highlights a tiny, but 

important, piece of misinformation. A prominent online “List of things 

named after Alan Turing” includes—among many bona fide items such as 

“Turing test” and “Turing machine”—something called “Turing’s Wager.”1 

Turing’s Wager has a Wikipedia entry (as well as a YouTube video “Turing’s 
————————— 

1 https://en.wikipedia.org/wiki/List_of_things_named_after_Alan_Turing 
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Wager—Know It ALL”2). This tells its readers that Turing’s Wager is a philo-

sophical argument “first given in 1950 by […] Alan Turing in his paper Com-

puting Machinery and Intelligence.”3 The conclusion of Turing’s argument, 

readers are told, is that “it is impossible to infer or deduce a detailed math-

ematical model of the human brain within a reasonable timescale, and thus 

impossible in any practical sense.” These claims are important because  

a number of large scientific research projects are currently trying to achieve 

exactly that, a detailed mathematical model of the whole human brain (for 

example the European Human Brain Project, Japan’s Brain/MINDS Pro-

ject, the China Brain Project, and the BRAIN Initiative in the United 

States). If this argument attributed to Turing is correct, then these whole-

brain projects are wrong-headed and doomed to failure. 

A recent article wields this claimed argument of Turing’s against any em-

pirical attempt to arrive at a whole-brain model (Thwaites, Soltan, Wieser, 

Nimmo-Smith, 2017). Its authors allege that Turing viewed the project of 

describing “the human brain in mathematical terms” with “blunt scepti-

cism” (Thwaites et al., 2017, p. 1). They explain that “Turing’s Wager (as we 

refer to it here) is an argument aiming to demonstrate that characterising 

the brain in mathematical terms will take over a thousand years,” and they 

leave readers in no doubt that they are attributing this argument to Turing 

himself: “Turing introduced [...] Turing’s Wager in [his] essay, Computing 

Machinery and Intelligence’ (Thwaites et al., 2017, p. 3). 

Their statement of the wager argument is concise. They explain that it 

utilizes a concrete illustration, by means of which Turing “sought to high-

light the challenges involved.” This is a “short computer program” that he 

wrote for the University of Manchester computer; it “accepted a single num-

ber, performed a series of unspecified calculations on it, and returned a sec-

ond number” (Thwaites et al., 2017, p. 1). 
 

“It would be extremely difficult, Turing argued, for anyone to guess these cal-

culations from the input and output numbers alone. Determining the calcula-

tions taking place in the brain, he reasoned, must be harder still: not only 

does the brain accept tens-of-thousands of inputs from sensory receptors 

around the body, but the calculations these inputs undergo are far more com-

plicated than anything written by a single programmer. Turing underscored 

his argument with a wager: that it would take an investigator at least a thou-

sand years to guess the full set of calculations his Manchester program  

employed. Guessing the full set of calculations taking place in the brain, he 

noted, would appear prohibitively time-consuming (Turing 1950)” (Thwaites 

et al., 2017, pp. 1–2). 
 

————————— 
2  https://www.youtube.com/watch?v=ONxwksicpV8 
3 https://en.wikipedia.org/wiki/Turing%27s_Wager 
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Our aims are (1) to publicize the fact that there is nothing like this argu-

ment to be found in Turing’s article (nor elsewhere in his writings); (2) to 

clarify the nature and purpose of Turing’s—very interesting—short program, 

around which Thwaites et al. have arranged their wager argument; and (3) 

to assess the implications for the study of the brain of Turing’s actual claims 

about this program. 

The first appearance in the historical record of Turing’s short program 

occurs in some notes (Copeland, 2005) which were taken during a discus-

sion on an autumn evening in 1949, in Manchester, where Turing was di-

recting the university’s Computing Machine Laboratory. In this discussion, 

Turing mentioned a program whose nature it would be “impossible” to de-

duce from observations of its input–output behaviour. He used this example 

to defeat an argument against the possibility of machine intelligence. Yet he 

gave few clues as to how the program worked. What was its structure such 

that it could defy analysis for (he said) “a thousand years?” Our suggestion 

will be that the program simulated a type of cipher device, and was perhaps 

connected with Turing’s post-war work for GCHQ (the UK equivalent of the 

US National Security Agency). After our efforts to piece together the textual 

clues concerning Turing’s mysterious program, we will go on to investigate 

the textual evidence, or lack of it, for the Thwaites et al. interpretation of 

Turing’s position. 

 

 

2. THE 1949 MANCHESTER DISCUSSION 

 

In the notetaker’s record of that 1949 discussion, held at Manchester 

University on 27 October, Turing is reported as making the intriguing claim 

that, in certain circumstances, “it would be impossible to find the pro-

gramme inserted into quite a simple machine.” That is to say, for the ma-

chine and program Turing was considering, reverse-engineering the pro-

gram from the machine’s behaviour is in practice not possible. 

The discussion involved Michael Polanyi, Dorothy Emmet, Max New-

man, Geoffrey Jefferson, J. Z. Young, and others (the notetaker was Wolfe 

Mays). At that particular point in the discussion, Turing was responding to 

Polanyi’s assertion that “a machine is fully specifiable, while a mind is not.” 

The mind is “only said to be unspecifiable because it has not yet been speci-

fied,” Turing replied; and it does not follow from this, he said, that “the 

mind is unspecifiable”—any more than it follows from the inability of inves-

tigators to specify the program in his “simple machine” that this program is 

unspecifiable. After all, Turing knew the program’s specification. 

Polanyi’s assertion is not unfamiliar; other philosophers and scientists 

make claims in a similar spirit. Recent examples are “mysterianist” philoso-

phers of mind, who claim that the mind is “an ultimate mystery, a mystery 
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that human intelligence will never unravel” (McGinn, 1999, p. 5).4 So, what 

was Turing’s machine, such that it might counterexample a claim like Po-

lanyi’s? A machine that—although “quite a simple” one—thwarted attempts 

to analyze it? 

 

 

3. BACKGROUND: TURING’S KNOWLEDGE  

OF CIPHER MACHINES 

 

The cipher machines used in the Second World War could certainly be 

described as “simple,” despite the monumental difficulty of inferring their 

mode of operation from their input–output behaviour. These machines typi-

cally employed a system of rotating code-wheels to encrypt a message. The 

best-known example is the German Enigma machine, with its three code-

wheels. Some later Enigma models contained a fourth wheel, with a conse-

quent step-change in the level of security the machine could provide. 

The form of Enigma used by the German military was derived from an 

earlier commercial version of the machine, by a series of significant en-

hancements that greatly increased security. In Germany, the military ma-

chine had the reputation of being well-nigh unbreakable; yet from 1933, 

Polish codebreakers regularly decrypted Enigma messages intercepted from 

the German Army’s radio network (Copeland, 2004). The Polish codebreak-

ers, led by mathematician Marian Rejewski, also broke into the Enigma traf-

fic of the German Air Force and Navy. Statistics gathered by the Biuro 

Szyfrów—the Polish Cipher Bureau—in 1938 showed that the Poles were by 

then successfully decrypting about 75 per cent of all intercepted Enigma 

material. 

It was around that time that Rejewski, together with the engineer Antoni 

Palluth, designed the bomba, an ingenious machine for breaking Enigma 

messages. The bomba contained eighteen rotating wheels, each one simulat-

ing an Enigma wheel; thus, the bomba’s wheels collectively simulated six 

three-wheel Enigma machines. By mid-November 1938, half a dozen bomby 

were in continuous operation at an underground facility near Warsaw. Brit-

ish and French codebreakers were invited to view the bomby, as well as oth-

er items of codebreaking technology, in the summer of 1939. When Turing 

joined Bletchley Park—the British wartime headquarters for military code-

breaking—in the autumn of that year, the principles of the bomba were ex-

plained to him, and he went on to design his famous bombe, based on the 

bomba but larger, containing more than a hundred rotating drums. Like the 

bomba’s wheels, each drum simulated a single Enigma wheel. It was initially 

thought the bombe would be able to use the same codebreaking method that 

————————— 
4 McGinn is here describing, not only the mind, but the “bond between the mind and the brain.” 
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the bomba mechanized, until this method became wholly ineffective, due to 

a sudden change in German operating procedures in the spring of 1940. The 

actual bombe mechanised a very different codebreaking method, devised by 

Turing.5 

The Enigma machine had operational drawbacks—it was slow to use, as 

well as labour-intensive (requiring three operators at each end of the send-

er–receiver link), and moreover the practical upper limit on message size 

was only a few hundred characters. From 1940, the German military began 

to roll out a new breed of cipher machine (Copeland, 2006). These were 

collectively termed “Fish” at Bletchley Park. The British knew of three types 

of Fish machine; they named them “Tunny,” “Sturgeon” and “Thrasher.” 

The first experimental Tunny radio link went into operation in June 1941, 

and soon the Tunny machine was being used for the highest-level German 

Army message-traffic, between Berlin and the generals and field-marshals in 

charge of the fighting at the various battle-fronts. Tunny had twelve code-

wheels, Sturgeon had ten. The shadowy Thrasher remained unbroken; it 

seems to have used a pseudo-random tape produced by a wheeled machine. 

Bletchley Park broke both Tunny and Sturgeon. Tunny, in particular, pro-

duced a deluge of intelligence. Breaking into the Tunny system was a team 

effort and Turing played a fundamental role (in 1942). 

Wheeled cipher machines remained the principal means of encryption 

during the post-war years. Enigma was adopted by several Warsaw Pact 

countries, including East Germany, where the Stasi used it during the 1940s 

and 1950s (Weierud, 2006). It was also used by the Norwegian Security Po-

lice, until the 1960s. Large numbers of Sturgeon machines were employed 

by the French, Dutch, Norwegians, Swedes, and others. Tunny, though, was 

arguably the most important of the wheeled cipher-machines. The method 

of encryption it pioneered was a staple of military and commercial cryp-

tosystems for many decades after the war. 

 
 

4. MORE INFORMATION ABOUT TURING’S  

“SIMPLE MACHINE” 

 

Turing fleshed out his example a little in his 1950 article Computing Ma-

chinery and Intelligence (Turing, 1950). He was arguing against the propo-

sition that “given a discrete-state machine it should certainly be possible to 

discover by observation sufficient about it to predict its future behaviour, 

and this within a reasonable time, say a thousand years” (Turing, 1950,  
————————— 

5 Rejewski’s method attacked what was called the message’s indicator. This consisted of enci-
phered information about how the sender’s machine was configured, and the indicator was trans-
mitted to the receiver immediately prior to the message itself. Turing’s method, on the other hand, 
attacked the message text directly, by means of what he called “closures” in the relationship between 
the enciphered characters and their unenciphered equivalents. 
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p. 457). This “does not seem to be the case,” he said, and he went on to de-

scribe a counterexample: 
 
“I have set up on the Manchester computer a small programme using only 

1000 units of storage, whereby the machine supplied with one sixteen figure 

number replies with another within two seconds. I would defy anyone to 

learn from these replies sufficient about the programme to be able to predict 

any replies to untried values” (Turing, 1950, p. 457). 

 

These passages occur in a short section titled “The Argument from In-

formality of Behaviour,” in which Turing’s aim was to refute an argument 

purporting to show that “we cannot be machines” (1950, p. 457). The argu-

ment, as Turing explained it, is this: 

(1) If each man had a definite set of laws of behaviour which regulate his 

 life, he would be no better than a machine. 

(2) But there are no such laws. 

 (3) Men cannot be machines.6 

Turing agreed that “being regulated by laws of behaviour implies being some 

sort of machine (though not necessarily a discrete-state machine),” and that 

“conversely being such a machine implies being regulated by such laws” 

(1950, p. 457). If this biconditional serves as a reformulation of the argu-

ment’s first premiss, then the argument is plainly valid. 

Turing’s strategy was to challenge the argument’s second premiss. He 

said: 
 
“… we cannot so easily convince ourselves of the absence of complete laws of 

behaviour [...] The only way we know of for finding such laws is scientific ob-

servation, and we certainly know of no circumstances under which we could 

say ‘We have searched enough. There are no such laws’” (1950, p. 457). 
 

Turing then offered his example of the “small programme” that cannot be 

reverse-engineered, in order to demonstrate “more forcibly” that the failure 

to find laws of behaviour does not imply that no such laws are in operation 

(Turing, 1950, p. 457). 

These are the only appearances of Turing’s “simple machine” in the his-

torical record (at any rate, in the declassified record). How could Turing’s 

mysterious program have worked, such that in practice it defied analysis? 

And what implications might the program have for the study of the brain—

beyond Turing’s uses of it against Polanyi’s bold assertion and against the 

“informality of behaviour” argument? We discuss these questions in turn. 

————————— 
6 Turing first stated the argument in this form: “If each man had a definite set of rules of conduct 

by which he regulated his life he would be no better than a machine. But there are no such rules, so 
men cannot be machines” (1950, p. 457). He then considered the argument that results if “we substi-
tute ‘laws of behaviour which regulate his life’ for ‘laws of conduct by which he regulates his life’ ” 
(ibidem).  
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One obvious point about Turing’s mysterious program (henceforward: 

XX) is that it amply meets the specifications for a high-grade cipher ma-

chine. It is seldom noted that Turing’s career as a cryptographer did not end 

with the defeat of Hitler. During the post-war years, as well as playing  

a leading role in the Manchester Computing Machine Laboratory, Turing 

worked as a consultant for GCHQ, Bletchley Park’s peacetime successor 

(Copeland, 2017, p. 37). With the development of the first all-purpose elec-

tronic computers, two of Turing’s great passions, computing and cryptog-

raphy, were coalescing. He was an early pioneer in the application of elec-

tronic stored-program computers to cryptography. 

The Manchester computer’s role in Cold War cryptography remains 

largely classified. We know, however, that while the computer was at the 

design stage, Turing and his Manchester colleague Max Newman—both had 

worked on breaking the Tunny cipher system at Bletchley Park—directed the 

engineers to include special facilities for cryptological work.7 These included 

operations for differencing, a now familiar cryptological technique that orig-

inated in Turing’s wartime attack on Tunny, and was known at Bletchley 

Park as “delta-ing.” GCHQ itself took a keen interest in the Manchester 

computer. Jack Good, who in 1947 had a hand in the design of Manchester’s 

prototype “Baby” computer, joined GCHQ full-time in 1948 (Copeland, 

2011, pp. 5–6, 28–29). Others at Manchester who were closely involved with 

the computer also consulted for GCHQ (Copeland, 2011, p. 6); and a contin-

gent from GCHQ attended the inaugural celebration for what Turing called 

the Mark II8 version of the Manchester computer, installed in Turing’s lab in 

1951. The idea of programming electronic digital computers to encrypt mili-

tary and commercial material was new and promising. GCHQ installed  

a Mark II at its new headquarters in Cheltenham.9 

 

 

5. XX AS AN ENCRYPTION DEVICE 

 

How might XX be used for encryption? A hypothetical example illus-

trates the general principles. Suppose Alice wishes to encipher her message 

“I LUV U” (the “plaintext”) before sending the result (the “ciphertext”) to 

Bob. Bob, who knows Alice’s enciphering method, will uncover the plaintext 

by using Alice’s method in reverse. 

Alice’s first step is to convert the plaintext into binary. Turing would have 

done this using teleprinter code (also known as Baudot-Murray code). Em-
————————— 

7 Tom Kilburn in interview with Copeland, July 1997; G. C. Tootill, Informal Report on the De-
sign of the Ferranti Mark I Computing Machine, November 1949, National Archive for the History 
of Computing, University of Manchester, p. 1. 

8 The computer that Turing called the Mark II is also known as the Ferranti Mark I, after the 
Manchester engineering firm that built it. 

9 The manufacturer’s name for the model installed at GCHQ was the Ferranti Mark I Star. 
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ployed worldwide in communications systems at that time, teleprinter code 

transformed each keyboard character into a different string of five bits; for 

example, “A” was 11000 and “B” was 10011. Teleprinter code is the ancestor 

of the ASCII and UTF-8 codes used today to represent text digitally. Turing 

was very familiar with teleprinter code from his time at Bletchley Park, since 

the German Tunny system used it. In fact, Turing liked teleprinter code so 

much that he chose it as the basis for the Manchester computer’s program-

ming language. 

To convert the plaintext into binary, Alice needs to know the following 

teleprinter code equivalences: “I” is 01101; “L” is 01001; “U” is 11100; “V” is 

01111; and space is 00100. To do the conversion, she first writes down the 

teleprinter code equivalent of “I,” and then (writing from left to right) the 

teleprinter code equivalent of space, and then of “L,” and so on, producing: 
 

01101001000100111100011110010011100 

This string of 35 figures (or bits) is called the “binary plaintext.” 

So far, there has been no encryption, only preparation. The encryption 

will be done by XX. Recall that XX takes a sixteen-figure number as input 

and responds with another sixteen-figure number. Alice readies the binary 

plaintext for encryption by splitting it into two blocks of sixteen figures, with 

three figures “left over” on the right: 
 

0110100100010011 1100011110010011 100 

Next, she pads out the three left-over figures so as to make a third sixteen-

figure block. To do this, she first adds “/” (00000), twice, at the end of the 

binary plaintext, so swelling the third block to thirteen figures, and then she 

adds (again on the far right of the third block) three more bits, which she 

selects at random (say 110), so taking the number of figures in the third 

block to sixteen. The resulting three blocks form the “padded binary 

plaintext”: 
 

0110100100010011 1100011110010011 1000000000000110 

Alice now uses XX to encrypt the padded binary plaintext. She inputs the 

left-hand sixteen-figure block and writes down XX’s sixteen-figure response; 

these are the first sixteen figures of the ciphertext. Then she inputs the mid-

dle block, producing the next sixteen figures of the ciphertext, and then the 

third block. Finally, she sends the ciphertext, 48 figures long, to Bob. Bob 

splits up the 48 figures of ciphertext into three sixteen-figure blocks and 

decrypts each block using his own XX (configured identically to Alice’s); and 

then, working from the left, he replaces the ensuing five-figure groups with 

their teleprinter code equivalent characters. He knows to discard any termi-

nal occurrences of “/,” and also any group of fewer than five figures follow-

ing the trailing “/.” Bob is now in possession of Alice’s plaintext. 
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This example illustrates how XX could have been used for cryptography; 

but it gets us no closer, however, to knowing how XX generated its sixteen-

figure output from its input. Probably this will never be known—unless the 

classified historical record happens to include information about XX, but this 

seems unlikely. However, let us speculate. As previously mentioned, the lead-

ing cipher machines of that era—Enigma, Tunny, and Sturgeon, as well as the 

Hagelin, the British Typex and Portex, and Japanese machines such as Pur-

ple—all used a system of wheels to produce the ciphertext from the plaintext. 

We shall focus on Tunny, since it is the simplest of these machines to de-

scribe, and also because of its importance post-war. At Bletchley Park, Turing 

had invented the first systematic method for breaking the German Army’s 

Tunny messages; it is quite possible that he was interested after the war in 

refining the machine’s principles of encryption for future applications. 

 

 

6. SIMULATING CODE-WHEEL CIPHER-MACHINES 

 

The Tunny machine had at its heart twelve code-wheels, but here we 

shall focus on a form of the Tunny machine with only ten code-wheels. Tu-

ring’s wartime Tunny-breaking colleagues Jack Good and Donald Michie 

have argued persuasively that if (counterfactually) the Germans had used 

this ten-wheel version of the machine, it would have offered a far higher 

level of crypto-security than the twelve-wheel machine (Good, Michie, 

2006). In fact, Michie remarked that, had the Germans used the ten-wheel 

version, “it is overwhelmingly probable that Tunny would never have been 

broken.” With the ten-wheel machine, he said, there would be no “practical 

possibility of reverse-engineering the mechanism that generated it” (Good, 

Michie, 2006, p. 409). Assuming that the machine was not compromised by 

security errors, and that the state of the art in cryptanalysis persisted much 

as it was in 1949, then the ten-wheel Tunny might indeed have remained 

unbroken for Turing’s “a thousand years.” If Turing was interested in Tunny 

post-war, it was most probably in this form of the machine. 

As far as the user is concerned, the Tunny machine (both the ten- and 

twelve-wheel versions) is functionally similar to XX. When supplied with 

one five-figure number, the Tunny machine responds with another. When 

the number that is supplied (either by keyboard or from punched paper 

tape) is the teleprinter code of a letter of plaintext, the machine’s reply pro-

vides the corresponding five figures of ciphertext. If, on the other hand, the 

machine is being used, not to encrypt the plaintext, but to decrypt the ci-

phertext, then its reply to five figures of ciphertext is the teleprinter code of 

the corresponding plaintext letter. 

The machine produces its reply by first generating five figures internally, 

and then “adding” these to the number that is supplied as input. Tunny “ad-
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dition” is better known to logicians as exclusive disjunction: 0 + 0 = 0, 1 + 0 

= 1, 0 + 1 = 1, and 1 + 1 = 0. For example, if the incoming five figures are 

01101, and the internally generated five figures are 00100, then the ma-

chine’s reply is 01001 (i.e. 01101 + 00100). 

The function of the code-wheels is to generate the five figures that are 

added to the incoming number. A simple way to generate five figures is to 

use an arrangement of five wheels, each of which contributes one figure. 

However, the set-up actually used in the ten-wheel Tunny machine (and the 

same in the twelve-wheel version) is more complicated, the aim being great-

er security. Rather than a single group of five wheels, there are two groups, 

with five wheels in each group. In Bletchley Park jargon, the two groups 

were known respectively as the “-wheels” and the “-wheels.” Each group 

of wheels produces five figures; and these two five-figure numbers are then 

added together. It is the result of this addition that the machine goes on to 

add to the incoming number. 

The Tunny machine’s action is transparently described by the machine’s 

so-called “encipherment equation:” 
( + ) + P = C 

Adding the number  that is produced by the -wheels to the number  

produced by the -wheels, and then adding the resulting number to P—the 

incoming five figures of binary plaintext—produces C, the corresponding 

five figures of ciphertext. With each incoming five-figure number, every 

wheel of the 10-wheel machine turns forwards a step; this has the result that 

the internally-generated number  +  is always changing. (Incidentally, 

the function of the twelve-wheel Tunny’s two extra wheels was quite differ-

ent. Known as the “motor wheels,” these served to create irregularities in the 

motions of the -wheels. No doubt the engineers at Lorenz10 thought this 

arrangement would enhance the security of the machine, but they were bad-

ly mistaken. The motor wheels introduced a serious weakness, and this be-

came the basis of Bletchley Park’s highly successful attack on the twelve-

wheel Tunny machine.) 

One last relevant detail about Tunny’s wheels. Each wheel had pins 

spaced regularly around its circumference. An operator could set each pin 

into one of two different positions, protruding or not protruding. (For secu-

rity, the positions were modified daily.11) An electrical contact read figures 

from the rotating wheel (one contact per wheel): a pin in the protruding 

position would touch the contact, producing 1 (represented by electricity 

flowing), while a non-protruding pin would miss the contact, producing 0 

————————— 
10 The Tunny machine was manufactured by the Berlin engineering company C. Lorenz AG. For 

that reason it was also called the “Lorenz machine” at post-war GCHQ (although never at wartime 
Bletchley Park, where the manufacturer was unknown and the British codename “Tunny machine” 
was invariably used). 

11 From 1 August 1944. 
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(no flow). As a group of five wheels stepped round, the row of five contacts 

delivered five-figure numbers. Each wheel had a different number of pins, 

ranging from 23 to 61; at Bletchley Park, this number was referred to as the 

length of the wheel. 

It would have been completely obvious to the post-war pioneers of com-

puterized cryptography that one way to create a secure enciphering program 

was to simulate an existing secure machine. Turing’s mysterious program 

may well have been a simulation of the ten-wheel Tunny machine, or of 

some other wheeled cipher machine.  

Turing’s brief descriptions of XX contain some small numerical clues. He 

gave in effect an upper bound on the number of instruction-executions that 

were performed in the course of encrypting one sixteen-figure number: XX 

gives its reply “within two seconds,” he said. In 1949-1950, most of the Man-

chester computer’s instructions took 1.8 milliseconds to execute; so approx-

imately 1000 instructions could be implemented in two seconds. He also 

said that XX required 1000 units of storage. In the Manchester computer as 

it was in 1949–1950, a unit of high-speed storage consisted of a line of 40 

bits spread horizontally across the screen of a Williams tube (Turing 

c.1950).12 (A Williams tube, the basis of the computer’s high-speed memory, 

was a cathode ray tube; a small dot of light on the tube’s screen represented 

1 and a large dot 0.) 1000 units is therefore 40,000 bits of storage. To simu-

late the ten-wheel Tunny on the Manchester computer, Turing would have 

needed ten variable-length shift registers to represent the wheels. Since the 

lengths of the ten wheels were, respectively, 41, 31, 29, 26, 23, 43, 47, 51, 53, 

and 59, a total of 403 bits of storage would be required for the pin patterns. 

This leaves more than 39 kilobits, an ample amount for storing the instruc-

tions—which add ,  and P, shift the bits in the wheel registers (simulating 

rotation), and perform sundry control functions—and for executing them. 

Why, one might wonder, are the numbers encrypted by XX sixteen fig-
ures long? This might indicate that XX simulated a cipher machine with 
more than ten wheels—possibly a Tunny-like machine with modifications 

introduced by Turing for greater security: he might have increased the num-
ber of -wheels and -wheels (and also the lengths of the wheels), or made 
other modifications that are impossible now to reconstruct. On the other 

hand, however, the number sixteen might in fact be no guide at all to the 
number of wheels. During 1941, when Tunny was first used for military traf-
fic, it was relatively obvious to the Bletchley Park codebreakers that the new 

machine had twelve wheels—invaluable information. Turing’s choice of six-
teen-figure numbers (rather than some number of figures bearing an imme-
diate relationship to the number of wheels) might simply have been a way of 

masking the number of wheels. 
————————— 

12 Turing described the computer as it was at that time in an Appendix to (Turing, c.1950) entitled 
“The Pilot Machine (Manchester Computer Mark I).” 
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Our first question about Turing’s mysterious program was: how could it 

have worked, such that in practice it defied analysis? One plausible answer 

is: by simulating a Tunny or other wheeled cipher-machine. We turn now to 

the question: does XX have implications concerning the feasibility of whole-

brain simulation? 

 

 

7. XX AND BRAIN SIMULATION 

 

According to Thwaites, Soltan, Wieser and Nimmo-Smith, the answer to 

that question is a resounding yes. As we mentioned earlier, they claim to 

find in Turing “an argument aiming to demonstrate that characterising the 

brain in mathematical terms will take over a thousand years” (Thwaites et 

al., 2017, p. 3), and they say that XX serves as a practical illustration of the 

challenges involved. 

However, the only conclusion that Turing drew from the XX example was 

(as we described above) that failing to find the laws of behaviour or a full 

specification does not imply that none exist. Contrary to what Thwaites and 

his co-authors say, there is no argument in “Computing Machinery and In-

telligence” (nor elsewhere in Turing’s writings) aiming to demonstrate that 

“characterising the brain in mathematical terms will take over a thousand 

years.” It is false that Turing noted (as Thwaites and his co-authors claim) 

anything to the effect that “[g]uessing the full set of calculations taking place 

in the brain would appear prohibitively time-consuming,” or that he rea-

soned in “Computing Machinery and Intelligence” about the difficulty of 

determining “the calculations taking place in the brain” (Thwaites et al., 

2017, pp. 1, 2). Thwaites and his co-authors tell us that Turing was not  

“optimistic about [the] chances of beating Turing’s Wager” (Thwaites et al., 

2017, p. 3), but this is an extraordinary claim—Turing never mentioned the 

so-called Wager. 

A defender of Turing’s Wager might perhaps respond that the fact that 

Turing himself did not state or suggest “Turing’s Wager” is of only historical 

or scholarly importance. If valid, the wager argument is certainly significant, 

owing to its powerful negative implications about the feasibility of whole-

brain simulation, as discussed above. But is the wager argument valid? 

Set out explicitly, the wager argument is as follows: 

 

(1) It would take at least 1000 years to determine the calculations occur-

ring in XX. 

(2) The calculations occurring in the brain are far more complicated 

than those occurring in XX. 

  (3) It would take well over 1000 years to determine the calculations 

occurring in the brain. 
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Both (1) and (2) are true, we may assume—certainly the calculations done 

by the ten-wheel Tunny are extremely simple in comparison with those tak-

ing place in the brain. However, these premises do not entail (3). If XX sim-

ulates a cryptographic machine, something carefully and cleverly designed 

to thwart any efforts to determine the calculations taking place within it, 

there is no reason why a more complicated but potentially more transparent 

machine should not succumb to analysis more quickly than XX. The mere 

possibility that XX simulates a cipher-machine, a machine designed to be 

unfathomable, shows that in some possible world (1), (2), and the negation 

of (3) are true, and thus that the Turing’s wager argument is invalid. 

The answer to our second question, then, is no: XX has nothing to tell us 

about the prospects of whole-brain simulation.  

 
 

8. CONCLUSION 
 
In the 1949 Manchester discussion, Turing employed one of his hallmark 

techniques: attacking a grand thesis with a concrete counterexample. He 

used XX to undermine both Polanyi’s claim that “a machine is fully specifia-

ble, while a mind is not” and the Informality of Behaviour Argument against 

machine intelligence. But his writings contain no trace of an attempt to use 

XX to undermine whole-brain modelling.  “Turing’s Wager” is a fabrication, 

as is the claim by Thwaites and his co-authors that Turing “noted” that a 

quest for “the full set of calculations taking place in the brain [...] would 

appear prohibitively time-consuming.” Moreover, as we have just argued, 

the attempt by Thwaites et al. to recruit XX to their effort to undermine the 

viability of whole-brain modelling is deeply misguided. 

Although Turing himself made no connection between XX and the pro-

spects for brain-modelling, one may still ask: What might Turing have 

thought of the BRAIN Initiative and other large-scale brain-modelling pro-

jects? It is impossible to say—but Turing was, after all, an early pioneer of 

brain-modelling. Not long after the war, he wrote: 
 

“In working on the ACE I am more interested in the possibility of producing 

models of the action of the brain than in the practical applications to compu-

ting. [...] [A]lthough the brain may in fact operate by changing its neuron  

circuits by the growth of axons and dendrites, we could nevertheless make  

a model, within the ACE, in which this possibility was allowed for, but in 

which the actual construction of the ACE did not alter.”13 
 

Turing might well have cheered on his 21st century descendants.14 
————————— 

13 Letter from Turing to W. Ross Ashby, undated, circa 1947 (Woodger Papers, Science Museum, 
London, catalogue reference M11/99). Cf. The Essential Turing, B. J. Copeland (Ed.), Oxford Uni-
versity Press, 2004, p. 375. 

14 This article is a derivative of one that appeared in the 2019 APA Newsletter on Philosophy and 
Computers. 
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