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Abstract
The paper presents an evaluation with the Type A and B methods for standard uncertainties of coefficients
of a polynomial function of order 𝑘 determined by 𝑛 points obtained by measurement of input and output
quantities. A method for deriving a posteriori distributions of function coefficients based on the transforma-
tion of estimator distributions without assuming any a priori distributions is presented. It was emphasized
that since the correct values of the standard uncertainty of type A depend on the

√
𝑛 − 𝑘 − 3 and not on the√

𝑛 − 𝑘 − 1, therefore, with a small number of measurement points, the use of the classical approach leads to
a significant underestimation of uncertainty. The relationships for direct evaluation with the type B method
of uncertainties caused by uncorrected systematic additive (offset error) and multiplicative (gain error)
effects in the measurements of both input and output quantities are derived. These standard uncertainties
are determined on the basis of the manufacturers’ declared values of the maximum permissible errors of the
measuring instruments used. A Monte Carlo experiment was carried out to verify the uncertainties of the
coefficients and quadratic function, the results of which fully confirmed the results obtained analytically.
Keywords: uncertainty, systematic, effects, polynomial function, measurement system.
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1. Introduction

In measurement practice polynomial function of order 𝑘:

𝑌 = 𝐹 (𝑋) = 𝛽0 + 𝛽1 · 𝑋 + . . . + 𝛽𝑘𝑋
𝑘 =

𝑘∑︁
𝑚=0

𝛽𝑚 · 𝑋𝑚 (1)

(where 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 )𝑇 is a vector of 𝑘+1 coefficients, 𝑋 is input and𝑌 is output quantities)
is used in various tasks, such as to determine (i) the conversion functions of the measurement
systems and sensors, (ii) the calibration function of measurement instruments and systems, (iii) the
parameters of time series functions which represent certain technological process, etc. [1–8]. Each
sensor can be used in a measurement system only when its conversion function as dependence
between the output and input quantities is known. In many cases such conversion functions have the
polynomial form (1). For example, traditionally, conversion functions of resistive copper, platinum
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and nickel temperature sensors and others are described with polynomial functions of order from
1 to 3 [4]. Function (1) also can be used to model the dynamic properties of sensors, namely their
complex frequency response [5]. One of the most important tasks in calibration of measuring
instruments and systems is to determine their calibration curve [6–8]. The calibration curve,
which represents the relation between quantity values provided by the measurement standards
and the corresponding indications of a measuring system or instrument, is usually presented in
the polynomial form (1) of a relatively small order. Polynomials of type (1) have also been often
used to describe time processes, especially relatively with smooth process parameters [9–11].

In the classical approach, such a function is called regression. Various issues relating to
polynomial regression have been deeply researched and presented in extensive literature, only
some of them listed in [11–13]. To determine regression coefficients, the 𝑛 (𝑛 > 𝑘) measurement
pairs (𝑥𝑖; 𝑦𝑖 , 𝑖 = 1, 2, . . . , 𝑛) of values 𝑥𝑖 (vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ) of the input quantity 𝑋

that are matched by values 𝑦𝑖 (vector y = (𝑦1, 𝑦2, . . . , 𝑦𝑛)𝑇 ) of the output quantity 𝑌 are used.
In a simple case, it is assumed that values 𝑦𝑖 of the output quantity 𝑌 are distorted by normally
distributed uncorrelated random noise Y𝑖 with zero expected value (` = 0) and standard deviation
𝜎. The estimators b = (𝑏0, 𝑏1, . . . , 𝑏𝑘 )𝑇 of regression coefficients 𝛃 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 )𝑇 are
usually determined with the maximum likelihood estimation (MLE) or the least squares method
(LSM) [11–13]. When using the LSM, the search values b = (𝑏0, 𝑏1, . . . , 𝑏𝑘 )𝑇 are the solution
of the matrix equation:

b =

(
𝚽𝑇𝚽

)−1
𝚽𝑇 · y = M−1 · Y, (2)

where
𝚽𝑖,𝑚 = 𝑥𝑚𝑖 , 𝑖 = 1, . . . , 𝑛; 𝑚 = 0, . . . , 𝑘 ,

M =

(
𝚽𝑇𝚽

)
, M−1 = D =

(
𝚽𝑇𝚽

)−1
, Y = 𝚽𝑇 · y.

(3)

In order to show a more transparent relationship, we will introduce a simple normalization:
matrices M and Y in (2) and (3) are divided by the number 𝑛 of observations:

M𝑛 =
M
𝑛

, Y𝑛 =
Y
𝑛
, D𝑛 = 𝑛 · D , b = D𝑛 · Y𝑛. (4)

Using this normalization, solution (2) will not change. On the other hand, the variances and
standard deviations of the coefficients and functions will receive a normalizing factor 1/

√
𝑛, which

is analogous to the factor in the evaluation uncertainty of measurement while processing multiple
observations 𝑖.𝑒., where the standard deviation of the mean value is 𝜎/

√
𝑛. After estimation of

the coefficients b = (𝑏0, 𝑏1, . . . , 𝑏𝑘 )𝑇 , the estimated dependence 𝑦(𝑥) between input and output
quantities can be presented by function:

𝑦(𝑥) = 𝑏0 + 𝑏1 · 𝑥 + . . . + 𝑏𝑘𝑥
𝑘 =

𝑘∑︁
𝑚=0

𝑏𝑚 · 𝑥𝑚. (5)

The variance 𝜎2 (𝑏𝑚) and standard deviation 𝜎(𝑏𝑚) of the estimated coefficient and standard
deviation of function 𝜎

[
𝑦(𝑥)

]
are given by formulas:

𝜎2 (𝑏𝑚) =
𝜎2

𝑛
· D𝑛𝑚,𝑚 ; 𝜎2 (𝑏𝑚) =

𝜎
√
𝑛
·
√︁

D𝑛𝑚,𝑚 ,

𝜎
[
𝑦(𝑥)

]
=

𝜎
√
𝑛

√√√
𝑘∑︁

𝑚=0

𝑘∑︁
𝑙=0

D𝑛𝑚,𝑙𝑥
𝑚+𝑙 ,

(6)
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where D𝑛𝑚,𝑚 is the corresponding diagonal element of inverse matrices D𝑛. As variation 𝜎2 of
population is usually unknown in praxis, so-called unbiased estimation is used [14]:

𝑆2 =
1

𝑛 − 𝑘 − 1

𝑛∑︁
𝑖=1

(
𝑘∑︁

𝑚=0
𝑏𝑚 · 𝑥𝑚𝑖 − 𝑦𝑖

)2

. (7)

Therefore, the approximated standard uncertainties of coefficients and function traditionally
are presented as [14]:

𝑢𝐴(𝛽𝑚) ≈
𝑆
√
𝑛
·
√︁

D𝑛𝑚,𝑚 , 𝑢𝐴 [𝑌 (𝑥)] ≈ 𝑆
√
𝑛
·

√√√
𝑘∑︁

𝑚=0

𝑘∑︁
𝑙=0

D𝑛𝑚,𝑙𝑥
𝑚+𝑙 . (8)

The model used in the above analysis of the influence of uncorrelated random noise only
on the output quantity, is very simplified. In practice, noise may be correlated or influenced by
both output and input quantities. It is also possible to deviate the probability density function
(PDF) of random noise from Gaussian. In addition to these, a very important factor, which is
not included in the classical regression model, are systematic effects in the measurement results
of both quantities. Therefore, extensive research is being carried out taking into account the
influence of random effects on input and output variables, the influence of correlated random
effects and the influence of systematic effects on the measurements of output quantities in the
uncertainty assessment. Namely, in [15] and [16] there were presented results of the estimation of
linear regression confidence bands in the case of correlated noise in the output quantity. In [17]
and [18] results of the evaluation of regression straight line uncertainty due to correlated random
effects in both quantities are presented. In this article, these problems are not being discussed.

On the other hand, it should be noted that there are limited research results for the impact
of uncorrected systematic effects on the measurement results of both quantities. Measurements
are realized with corresponding instruments, whose readings are never perfect, even after ap-
propriate correction. Each measuring instrument is characterized by the values of the maximum
permissible errors (MPE), which takes into account possible systematic effects. These systematic
effects have many components, but in practice, the main components are additive effects (inde-
pendent of the measurand), traditionally called offset errors Δ0, and multiplicative (proportional
to the measurand), traditionally called gain errors 𝛿𝑔. Not including the instrumental components
of uncertainty caused by systematic effects in measurement results in some cases can lead to
unjustifiably optimistic values of uncertainty of coefficients and function.

In [19], the influence of additive systematic component on the output variable is taken into
account. In [20], the uncertainty of regression line is analyzed taking into account the Type A and
B uncertainties of the dependent (output) variable. It was noted in [9] that in some cases it would
be necessary to consider also the effects of the measurement error in the regression variables on
the model and also the correlation between the regression variable and the measurement error.
An example was given of the effect of additive influence on the value of a function in the linear
regression model. However, a method for evaluating the uncertainty caused by such an influence
is not provided. Multiplicative influences are generally not paid much attention.

It should be noted that since matrices (3) and (4) depend only on the input vector
x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 , therefore systematic effects on the output quantity do not change these
matrices. Therefore, such systematic effects can be introduced into the model of output quantity
(in matrix Y in (3)), and then an appropriate uncertainty assessment can be performed. On the
other hand, additive and multiplicative systematic effects in the results of the measurement of the
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input quantity (vector x = (𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑇 ) change the structure of matrices (3) and (4). Since
the values of these systematic effects are not known, taking them into account in these matrices
directly causes significant complications related to solving equation (2).

In addition to the problems related to random and systematic effects in measurements, there
is a very important methodological problem related to the incompatibility of the classical way of
evaluating uncertainty with the definition of uncertainty in the Guide [14]. Formally, the method
of evaluating of Type A uncertainty presented in the Guide [14], strictly speaking, directly relates
to statistical properties of the result determined after processing registered observations, but not
to the properties of the measurand. This is due to the fact that standard uncertainty (8) applies
to coefficient estimators b (which are the results) and not to the coefficients 𝛃 (which are the
measurands in (1)). It should be clearly noted that according to the definition [14], uncertainty
concerns the measurands, which are the coefficients 𝛃, and not the measurement results, which
are the estimators b. It is quite reasonably stated in [21] that the classical (so called “frequentist”)
statistical theory approach to the estimation of Type A uncertainty [14] is inconsistent with the
definition of the “uncertainty” of the measurement.

Hence, according to the definition, in order to correctly calculate the uncertainty, one should
use an appropriate PDF of the measurand referring to the measurement result and the parameter
characterizing the dispersion of its possible values. One possible way to obtain such a PDF of the
measurand is to use the Bayesian approach. Various aspects and problems related to the choice
of the Bayesian approach to uncertainty assessment with the Type A method are presented in
numerous literature [21–24]. Bayesian uncertainty analysis provides an a posteriori PDF of the
measurand under the assumption of an appropriate a priori PDF for it. A priori PDFs represent
the state of knowledge about population parameters before the measurements are performed. It
is obvious that the use of any other a priori PDF entails a change in the a posteriori PDF. In
general, choosing the proper a priori PDF is the fundamental problem of this method that gives
rise to many discussions on this subject. Usually, in the absence of information on the a priori
PDF, Jeffrey’s rule is used [25]. Namely, for a population described by an expected value ` and
a variance 𝜎2, these a priori PDFs are [22]:

𝑝𝑎 (`) ∝ 1, −∞ ≤ ` ≤ ∞, 𝑝𝑎 (𝜎2) ∝ 1
𝜎2 , 0 ≤ 𝜎2 ≤ ∞. (9)

For Gaussian uncorrelated random noise in the measurements of the output quantity, using
the Bayesian approach with a priory PDFs such as (9), the a posteriori PDF 𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) of
regression coefficient 𝛽𝑚 can be presented in the form of well-known 𝑡-Student’s distribution:

𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) =
1

√
𝜋
√︁

D𝑛𝑚,𝑚 · 𝑠
·

Γ

(
𝑛 − 𝑘

2

)
Γ

(
𝑛 − 𝑘 − 1

2

) · 1[
1 +

(
𝛽𝑚 − 𝑏𝑚

𝑠

)2
· 1

D𝑛𝑚,𝑚

] 𝑛−𝑘
2
,

𝑚 = 0, 1, . . . , 𝑘,

(10)

where

𝑠2 =
1
𝑛

𝑛∑︁
𝑖=1

(
𝑘∑︁

𝑚=0
𝑏𝑚 · 𝑥𝑚𝑖 − 𝑦𝑖

)2

=
𝑛 − 𝑘 − 1

𝑛
𝑆2. (11)

is the so-called biased estimate of variation.
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Based on (10), the standard uncertainty of the coefficient 𝛽𝑚 as standard deviation of Student’s
distribution for a number degrees of freedom 𝑑 = 𝑛 − 𝑘 − 1 is:

𝑢𝐴(𝛽𝑚 | 𝑠) =
𝑠

√
𝑛 − 𝑘 − 3

·
√︁

D𝑛𝑚,𝑚 =
𝑠

√
𝑑 − 2

·
√︁

D𝑛𝑚,𝑚 , 𝑑 ≥ 3. (12)

It means that when standard uncertainty is determined with classical approaches, then the
correct value of standard uncertainty must be changed by factor [21]:

𝑘𝑢𝐴
(𝑑) =

√︂
𝑛 − 𝑘 − 1
𝑛 − 𝑘 − 3

=

√︂
𝑑

𝑑 − 2
, 𝑑 ≥ 3. (13)

In the next part of the article, it will be shown that in order to obtain a posteriori PDF
𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) of regression coefficients, in general, there is no need to use any a priori PDF.
All you require is a joint PDF 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) of the estimated coefficients 𝑏𝑚 and estimated
standard deviation 𝑠.

The aims of this paper are: (i) using the joint PDF of the estimators, deriving the a posteriori
PDF of the coefficients of the function, which is then used to correctly evaluate Type A stan-
dard uncertainty; (ii) direct including the systematic (additive and multiplicative) components in
measurement results of both input and output quantities in the uncertainty relationship; (iii) per-
forming the Monte Carlo test for verification of the proposed approach to include systematic
components in evaluating the Type B component of standard uncertainty as well as combined and
expanded uncertainties.

2. Type A standard uncertainties

2.1. Derivation of the PDF of function coefficients

Similarly to the processing of multiple normally distributed uncorrelated observations [26],
the PDF 𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) of measurand 𝛽𝑚, can be derived from the joint PDF 𝑝𝑏,𝑠 (𝑏, 𝑠 | 𝛽, 𝜎)
of the estimators b = (𝑏0, 𝑏1, . . . , 𝑏𝑘 )𝑇 and 𝑠 when coefficients 𝛃 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 )𝑇 and
standard deviation 𝜎 are known. As was mentioned above, in solving the estimation problem the
coefficients 𝛽𝑚 and standard deviation 𝜎 are constants and their estimated values 𝑏𝑚 and 𝑠 are
random variables, which are described by the joint PDF 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎). It is well known [13]
that when the random noises Y𝑖 have normal distribution, then the PDF 𝑝𝑏 (𝑏𝑚 | 𝛽𝑚, 𝜎) of estimate
𝑏𝑚 of coefficient 𝛽𝑚 (𝑚 = 0, 1, . . . , 𝑘) is normal too, with the expected value 𝛽𝑚 and variance

𝜎2 ·
[
M−1]

𝑚,𝑚
=

𝜎2

𝑛
D𝑛𝑚,𝑚 (6):

𝑝𝑏 (𝑏𝑚 | 𝛽𝑚;𝜎) =
√
𝑛

𝜎
√

2𝜋
√︁

D𝑛𝑚,𝑚

𝑒
− 𝑛· (𝑏𝑚−𝛽𝑚 )2

2𝜎2 ·D𝑛𝑚,𝑚 . (14)

The covariance between estimates 𝛽𝑚 and 𝛽𝑙 is
𝜎2

𝑛
D𝑛𝑚,𝑙 , therefore the joint PDF 𝑝𝑏 (𝑏 | 𝛽, 𝜎)

of all estimates 𝑏𝑚 has a 𝑘+1-dimension normal distribution [13]. Besides, the estimate 𝑠2 of
variance𝜎2 is distributed independently of 𝑏𝑚, and this distribution refers to the Chi2 distributions
with 𝑛 − 𝑘 degrees of freedom [13]. As the estimate of standard deviation is 𝑠 =

√
𝑠2, the PDF
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𝑝𝑠 (𝑠 | 𝜎) of estimate 𝑠 can be presented in the form of Chi distribution [27]:

𝑝𝑠 (𝑠 | 𝜎) =
1
𝜎

·
2 ·

(𝑛
2

) ( 𝑛−𝑘−1
2 )

Γ

(
𝑛 − 𝑘 − 1

2

) ( 𝑠
𝜎

)𝑛−𝑘−2
𝑒
− 𝑛·𝑠2

2𝜎2 . (15)

Due to independence of estimates 𝑏𝑚 and 𝑠, their joint PDF 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) is a product
of the PDF 𝑝𝑏 (𝑏𝑚 | 𝛽𝑚, 𝜎) (14) and PDF 𝑝𝑠 (𝑠 | 𝜎) (15):

𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) =
√
𝑛

𝜎2
√

2𝜋
√︁

D𝑛𝑚,𝑚

2 ·
(𝑛
2

) ( 𝑛−𝑘−1
2 )

Γ

(
𝑛 − 𝑘 − 1

2

) ·
( 𝑠
𝜎

)𝑛−𝑘−2
· 𝑒

− 𝑛

2𝜎2

(
𝑠2+ (𝑏𝑚−𝛽𝑚 )2

D𝑛𝑚,𝑚

)
. (16)

On the other hand, in solving the uncertainty problem, inversely to the previous case, 𝑏𝑚 and 𝑠

are constants and 𝛽𝑚 and 𝜎 are the random variables for which there is a joint PDF 𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠).
Taking into account that both problems (estimation and uncertainty evaluation) relate to the same
measurement experiment, only from different sides, we can assume that the probability elements
𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) · 𝑑𝑏𝑚 · 𝑑𝑠 in the estimate problem and 𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) · 𝑑𝛽𝑚 · 𝑑𝜎 in the
uncertainty problem should be consistent with each other, 𝑖.𝑒.:

𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) · 𝑑𝛽𝑚 · 𝑑𝜎 = 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) · 𝑑𝑏𝑚 · 𝑑𝑠. (17)

As can be seen from previous relationship (14), the estimate 𝑏𝑚 and coefficient 𝛽𝑚 appear as
the difference (𝑏𝑚− 𝛽𝑚)/𝜎 (𝛽𝑚 and 𝜎 are independent), while in (15) the estimate 𝑠 and standard
deviation 𝜎 occur as the ratio: 𝑠/𝜎. Therefore, elementary increments 𝑑𝑏𝑚 · 𝑑𝑠 and 𝑑𝛽𝑚 · 𝑑𝜎
depend on each other:

𝑑

𝑑𝑏𝑚

(
𝑏𝑚 − 𝛽𝑚

𝜎

)
=

1
𝜎

;
𝑑

𝑑𝛽𝑚

(
𝑏𝑚 − 𝛽𝑚

𝜎

)
= − 1

𝜎
;

𝑑

𝑑𝑠

( 𝑠
𝜎

)
=

1
𝜎

;
𝑑

𝑑𝜎

( 𝑠
𝜎

)
= − 𝑠

𝜎2 . (18)

From (18), it follows that 𝑑𝑏𝑚 = −𝑑𝛽𝑚 and 𝑑𝑠 = − 𝑠
𝜎
𝑑𝜎, therefore 𝑑𝑏𝑚 · 𝑑𝑠 = 𝑠

𝜎
· 𝑑𝛽𝑚 · 𝑑𝜎,

and the substitution of it in (17) gives the desired joint a posteriori PDF:

𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) =
𝑠

𝜎
· 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎). (19)

It means that the joint PDF 𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) of the coefficients 𝛃 = (𝛽0, 𝛽1, . . . , 𝛽𝑘 )𝑇 and
𝜎 (in the uncertainty problem) can be obtained by multiplying the joint PDF 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎)
of the estimators b = (𝑏0, 𝑏1, . . . , 𝑏𝑘 )𝑇 and 𝑠 (in the estimation problem) by the ratio 𝑠/𝜎. After
substituting (16) in (19), the required a posteriori joint PDF takes the form of:

𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) =
√
𝑛

𝑠2
√

2𝜋
√︁

D𝑛𝑚,𝑚

2 ·
(𝑛
2

) ( 𝑛−𝑘−1
2 )

Γ

(
𝑛−𝑘−1

2

) ·
( 𝑠
𝜎

)𝑛−𝑘+1
𝑒
− 𝑛·𝑠2

2𝜎2 ·
(
1+ (𝑏𝑚−𝛽𝑚 )2

𝑠2D𝑛𝑚,𝑚

)
. (20)

It follows from (20) that, although the variables 𝑏𝑚 and 𝑠 in the estimation problem are
independent, in the uncertainty problem the random variables 𝛽𝑚 and 𝜎 are not independent.
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Integrating (20) with 𝜎 gives the a posteriori PDF 𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) of the coefficients:

𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠) =
1

𝑠
√
𝜋
√︁

D𝑛𝑚,𝑚

·
Γ

(
𝑛 − 𝑘

2

)
Γ

(
𝑛 − 𝑘 − 1

2

) · 11 +
(

𝛽𝑚 − 𝑏𝑚

𝑠 ·
√︁

D𝑛𝑚,𝑚

)2
𝑛−𝑘

2
. (21)

This PDF is exactly the same as PDF (10), which was obtained using the Bayesian approach,
but (21) was derived without assuming any a priori distributions. In addition, it should be noted
that to obtain the standard uncertainty of the function, you also need the covariance of the

coefficients 𝛽𝑚 and 𝛽𝑙 , which in this case is equal to: cov (𝛽𝑚, 𝛽𝑙) =
𝑠2

𝑛 − 𝑘 − 3
D𝑛𝑚,𝑙 .

2.2. Analysis of Type A standard uncertainty

The comparison of (8) and (12) shows that standard uncertainty calculated according to (8)
is only an approximation of the exact value of standard uncertainty (12) for a large number of
observations: 𝑛 � 𝑘+4 or 𝑑 � 3. For a small number of degrees of freedom, standard uncertainty
(8) may differ significantly from the exact value (12). This is shown in Fig. 1, which gives the
dependence of standard uncertainty underestimation

𝛿𝑢𝐴(𝑑) =
����𝑢𝐴(𝛽𝑚 | 𝑠)
𝜎(𝑏𝑚 | 𝑠)

− 1
���� · 100% =

�����
√︂

𝑑

𝑑 − 2
− 1

����� · 100% (22)

of approximate value (8) on the number of degrees of freedom 𝑑.

Fig. 1. Dependence of underestimation (𝛿𝑢𝐴 (𝑑) , %) of the approximate standard uncertainty (8)
on the number of degrees of freedom 𝑑 = 𝑛 − 𝑘 − 1.

When 𝑛 < 𝑘 + 4 or 𝑑 < 3, the correct values of standard uncertainties 𝑢𝐴(𝛽𝑚) (8) cannot be
determined, therefore in such a case standard uncertainty (8) makes no sense. When 𝑛 ≥ 𝑘 + 4
or 𝑑 ≥ 3, the approximate value (8) may be much lower than the exact value (12). For example,
if the number of observations is minimal 𝑖.𝑒., 𝑛 = 𝑘 + 4 or 𝑑 = 3, then the approximate standard
uncertainty �̃�𝐴(𝛽𝑚) in (8) is smaller by

√
3 than the exact value 𝑢𝐴(𝛽𝑚), 𝑖.𝑒., it is over ≈ 73%

underestimated. Even if 𝑛 = 𝑘 + 10 or 𝑑 = 9, then the approximate standard uncertainty is over
13% smaller than the exact value.

Here the question arises for what values of the number of degrees of freedom the standard un-
certainty determined with the classical method may substitute the exact value of this uncertainty?
The answer to this question can be obtained from [14], where Specific Guidance 7.2.6 indicates
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that the numerical values of the estimate 𝑦 and its standard uncertainty 𝑢𝑐 (𝑦) or expanded un-
certainty 𝑈𝑝 should not be given with an excessive number of digits. It usually suffices to quote
𝑢𝑐 (𝑦) and𝑈𝑝 [as well as the standard uncertainties 𝑢(𝑥𝑖) of the input estimates 𝑥𝑖] to at most two
significant digits, although in some cases it may be necessary to retain additional digits to avoid
round-off errors in subsequent calculations. If the uncertainty is expressed with two significant
digits, then the maximum rounding error has values not exceeding 4.76%. Therefore, we assume
a limit value of ≈ 5% for which an approximate uncertainty value can replace the exact value.
It follows from this that only at approximately 𝑛 − 𝑘 − 1 = 𝑑 > 21 the underestimation of the
approximate standard uncertainty versus the exact one is less than 5% (Fig. 1).

In order to highlight the problems in the classical assessment of standard uncertainty related to
the limited number of experimental points, we will analyze some examples from various literature
sources. In numerical example 15.1.1 given in [28], the linear function (𝑘 = 1) is built using the
𝑛 = 4 experimental points. As in this example 𝑘 = 1 and 𝑛 = 4, the number of degrees of freedom
𝑑 = 4 − 1 − 1 = 2 < 3, then due to (10) and (11), the standard uncertainties 𝑢𝐴(𝛽0), 𝑢𝐴(𝛽1) of
the coefficients 𝛽0, 𝛽1 of linear function cannot be determined correctly. In another example –
16.1.1 in [28], the quadratic function (𝑘 = 2) is also built for the input data of 𝑛 = 4 points. In this
example 𝑘 = 2 and 𝑛 = 4, therefore 𝑑 = 4− 2− 1 = 1 < 3, standard uncertainties 𝑢𝐴(𝛽0), 𝑢𝐴(𝛽1)
and 𝑢𝐴(𝛽2) of coefficients 𝛽0, 𝛽1, 𝛽2 of the parabolic function cannot be determined correctly
either. One can find the same problem in Example 1.1 in [11] which refers to the treatment of
data from a study of effect of ozone pollution on soybean yield with a linear function (𝑘 = 1).
Here, the number of observations is also 𝑛 = 4, therefore also 𝑑 = 4 − 1 − 1 = 2 < 3, thus it is
impossible to determine correct values of the standard uncertainties.

In next examples the number of measurement points is sufficient: 𝑛 > 𝑘 + 3 or 𝑑 ≥ 3, but the
standard uncertainties of coefficients and functions are determined with significant underestima-
tion. The first one refers to Example H.3 Calibration of a thermometer in the Guide [14]: Linear
calibration curve (𝑘 = 1). The 𝑛 = 11 pairs of the data are given in the second and third columns
of Table H.6 [14], 𝑖.𝑒., here 𝑑 = 𝑛− 1− 1 = 9. Because the standard uncertainties of the intercept
and slope and also of the value predicted at 𝑡 = 30◦C in this example are determined by (8), these
values are underestimated (12) by (

√︁
9/7 − 1) · 100% ≈ 13.4%.

The problem arises to a greater extent in Example 8.5 in [29]. In this example the linear
dependence (𝑘 = 1) of temperature 𝑇 on pressure 𝑃 is constructed on the basis of 𝑛 = 5 pairs of
temperature measurement results at given pressure values. Here 𝑑 = 3, therefore the correct value
(12) of the standard uncertainty of the coefficients is

√
3 ≈ 1.73 times bigger then presented in

the example (underestimation is about 73%).
The next example is a linear function going through the origin that describes the relationship

of the relative risk of individuals exposed to different levels of dust [11]. The linear function
going through the origin (𝛽0 = 0) is built by 𝑛 = 9 points. The number of degrees of freedom
is 𝑑 = 9 − 1 = 8, therefore in this example the standard uncertainty is underestimated by about
≈ 15%. In the last example 8.1 in [11], the cubic polynomial model (𝑘 = 3) is built. This example
presents time serial analysis and relates to the treatment of algae density measurements over time.
The 𝑛 = 14 solutions were randomly assigned for measurement to each of 14 successive days of
the study. In this example the number of degrees of freedom is 𝑑 = 14 − 3 − 1 = 10, therefore,
according to (12), the standard uncertainties of measurands are underestimated by about≈ 11.8%.

After analysis of these examples, we can find that even when order 𝑘 of the function is low
but the number of experimental points is not enough large, the classical evaluation of Type A
uncertainty is not fully correct. Namely, when the number of degrees of freedom 𝑑 <≈ 20, the
classical approach provides significant (over than 5% up to 73%) underestimation of standard
uncertainties.
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3. Evaluation of Type B uncertainty caused by systematic effects in both input
and output quantities

In the following analysis it is assumed that the mathematical models of systematic effects
mainly consist of additive errorsΔ𝑥0 in input quantity andΔ𝑦0 in output quantity and multiplicative
𝛿𝑔𝑥 , 𝛿𝑔𝑦 in input and output quantities. Therefore, the results 𝑥𝑖 , 𝑦𝑖 of measurement of input and
output quantities are:

𝑥𝑖 = 𝑋𝑖 + Δ𝑥0 + 𝛿𝑔𝑥 · 𝑋𝑖 , 𝑦𝑖 = 𝑌𝑖 + Δ𝑦0 + 𝛿𝑔𝑦 · 𝑌𝑖 . (23)

In (23), the value of the input quantity can be approximated as:

𝑋𝑖 =
𝑥𝑖 − Δ𝑥0
1 + 𝛿𝑔𝑥

≈ 𝑥𝑖 − Δ𝑥0 − 𝛿𝑔𝑥 · 𝑥𝑖 . (24)

Here, product 𝛿𝑔𝑥 ·Δ𝑥0 is negligibly small, as of the second order of smallness, 𝑖.𝑒., it can be
neglected: 𝛿𝑔𝑥 ·Δ𝑥0 ≈ 0. Therefore, having taken into account (24), the result of measurement 𝑦𝑖
of output quantity 𝑌𝑖 can be presented in the form:

𝑦𝑖 = 𝑌𝑖 + Δ𝑦0 + 𝛿𝑔𝑦 · 𝑌𝑖 = 𝐹
(
𝑥𝑖 − Δ𝑥0 − 𝛿𝑔𝑥 · 𝑥𝑖

)
+ Δ𝑦0 + 𝛿𝑔𝑦 · 𝐹

(
𝑥𝑖 − Δ𝑥0 − 𝛿𝑔𝑥 · 𝑥𝑖

)
. (25)

Therefore, for the linear function (𝑘 = 1): 𝑌1(𝑥) = 𝛽10 + 𝛽11 · 𝑋 , using (25), the observed
values of output quantity can be presented in the form:

𝑦1𝑖 ≈ 𝛽10 + 𝛽11 · 𝑥𝑖 + Δ𝑦0 + 𝛿𝑔𝑦 · 𝛽10 − 𝛽11 · Δ𝑥0 + 𝛽11
(
𝛿𝑔𝑦 − 𝛿𝑔𝑥

)
· 𝑥𝑖

= 𝛽10 + 𝛽11 · 𝑥𝑖 + Δ10 + Δ11 · 𝑥𝑖 . (26)

Here and below, parts of expressions relating to second and higher order components are
assumed as negligibly small. The components which caused coefficient uncertainties in (26) are
approximately equal:

Δ10 ≈ 𝛽10 · 𝛿𝑔𝑦 − 𝛽11 · Δ𝑥0 + Δ𝑦0 ; Δ11 ≈ 𝛽11 ·
(
𝛿𝑔𝑦 − 𝛿𝑔𝑥

)
. (27)

From (27), even when the function is linear, the systematic additive and multiplicative effects
in the results of measurement of input quantity are processed with different coefficients. Namely,
in (27) the influence of additive component Δ𝑥0 of the input quantity is determined by coefficient
𝛽11, but the influence of additive component Δ𝑦0 on the output quantity is determined by
coefficient 1. Besides, the multiplicative component 𝛿𝑔𝑦 of the output quantity affects the additive
component by coefficient 𝛽10 (𝛽10 · 𝛿𝑔𝑦), but it also affects multiplicative component by the other
coefficient 𝑖.𝑒., 𝛽11 (𝛽11 · 𝛿𝑔𝑦). More complicate situations appear for high order functions.

For the quadratic function (𝑘 = 2):𝑌2(𝑋) = 𝛽20 + 𝛽21 · 𝑋 + 𝛽22 · 𝑋2 using (25), the observed
values of output quantity can be presented in the form of:

𝑦2𝑖 ≈ 𝛽20 + 𝛽21 ·𝑥𝑖 + 𝛽22 ·𝑥2
𝑖 +

(
Δ𝑦0 + 𝛿𝑔𝑦 ·𝛽20 − 𝛽21 ·Δ𝑥0

)
+

(
𝛽21 ·

(
𝛿𝑔𝑦 − 𝛿𝑔𝑥

)
− 2𝛽22 ·Δ𝑥0

)
·𝑥𝑖

+ 𝛽22 ·
(
𝛿𝑔𝑦 − 2𝛿𝑔𝑥

)
· 𝑥2

𝑖 = 𝛽20 + 𝛽21 · 𝑥𝑖 + 𝛽22 · 𝑥2
𝑖 + Δ20 + Δ21 · 𝑥𝑖 + Δ22 · 𝑥2

𝑖 . (28)

Therefore, the components, which caused uncertainties of corresponding function coefficients,
are equal:

Δ20 ≈ 𝛽20 ·
(
𝛿𝑔𝑦 − 0 · 𝛿𝑔𝑥

)
− 1 · 𝛽21 · Δ𝑥0 + Δ𝑦0 ;

Δ21 ≈ 𝛽21 ·
(
𝛿𝑔𝑦 − 1 · 𝛿𝑔𝑥

)
− 2 · 𝛽22 · Δ𝑥0 ; Δ22 ≈ 𝛽22 ·

(
𝛿𝑔𝑦 − 2 · 𝛿𝑔𝑥

)
.

(29)
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Using a similar procedure, error expressions for high order (𝑘) functions can be derived:

Δ0 ≈ 𝛽0 · 𝛿𝑔𝑦 − 𝛽1 · Δ𝑥0 + Δ𝑦0 ;
Δ𝑚 ≈ 𝛽𝑚 ·

(
𝛿𝑔𝑦 − 𝑚 · 𝛿𝑔𝑥

)
− 𝑚(𝑘) · 𝛽𝑚+1 · Δ𝑥0 , 𝑚 = 1, . . . , 𝑘,

(30)

where 𝑚(𝑘) = mod (𝑚 + 1, 𝑘 + 1).
From (27), (29) and (30) we can see that each error expression (except the last one when

𝑚 = 𝑘) consists of the both additive and multiplicative systematic components. Besides, in each
expression two different coefficients 𝛽𝑚, 𝛽𝑚+1 (𝑚 = 0, 1, . . . , 𝑘−1) are presented. Due to [14]
the type B standard uncertainty usually is determined using the MPE (±ΔMPE) of a verified
instrument which often are given in manufacturer’s specifications traditionally as: ±𝑐 % (or ppm)
of instrument indication (𝑥) +±𝑑% (or ppm) of instrument range (𝑅). In a given digital measuring
instrument the characteristic curve of the errors must have values within ±ΔMPE. Under such
assumptions, the sum of additive and multiplicative error components satisfies the condition:

− ΔMPE = − (𝑐 · 𝑥 + 𝑑 · 𝑅) ≤≈ Δ0 + 𝛿𝑔 · 𝑥 ≈≤ + (𝑐 · 𝑥 + 𝑑 · 𝑅) = +ΔMPE . (31)

More often the distribution of variation of indication of measuring instrument within low
level −ΔMPE = −(𝑐 · 𝑥 + 𝑑 · 𝑅) and high level +ΔMPE = +(𝑐 · 𝑥 + 𝑑 · 𝑅) is assumed as uniform [14].
In the case of two instruments of the same type (equal ±ΔMPE values), each has different values
of systematic effects within the same limits ±ΔMPE. For example, Fig. 2a shows the relationships
Δ1 (𝑥) = Δ01 + 𝛿𝑔1 · 𝑥 and Δ2 (𝑥) = Δ02 + 𝛿𝑔2 · 𝑥 for a single-polarity measuring instrument. Both
Δ1 (𝑥) and Δ2 (𝑥) are within ±ΔMPE. From the physical point of view, based on the knowledge of
MPE, there is no reason to assume in (31) a complete lack of correlation between the additive Δ0
and multiplicative 𝛿𝑔 · 𝑥 components. Namely, when Δ(𝑥) = Δ0 + 𝛿𝑔 · 𝑥, assuming rectangular
distribution and corresponding limits ±𝑑 · 𝑅 for Δ0 and ±𝑐 for 𝛿𝑔, without taking into account
their correlation, standard deviation is:

𝜎𝑦 (𝑥) =
√︂

𝑑2 · 𝑅2 + 𝑐2 · 𝑥2

3
. (32)

When 𝑥 =0, 𝜎(Δ(0)) = 𝑑 · 𝑅/
√

3, 𝑖.𝑒., it is correct, but when 𝑥 = 𝑅 then standard deviation

is 𝜎(Δ(𝑅)) = 𝑅 ·
√︂

𝑑2 + 𝑐2

3
≠ 𝑅 · 𝑐 + 𝑑

√
3

. The last may be true when both components (offset and

gain errors) are strongly correlated, which in praxis does not take place.

a) b)

Fig. 2. Offset Δ0 and gain 𝛿𝑔 · 𝑥 error components versus indication 𝑥 for the known maximum permissible errors
±ΔMPE: a) two different sums of both components; b) the ranges of changes between low 𝛿𝑔𝑙 and high 𝛿𝑔ℎ values of

multiplicative components when an additive component takes the value Δ0.
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From (31) and Fig. 2b it follows that for a single-polarity instrument when 𝑥 = 𝑅, the low
level is −ΔMPE = −𝑅 · (𝑑 + 𝑐) and high level is +ΔMPE = +𝑅 · (𝑑 + 𝑐). Therefore, for an actual
value Δ0: −𝑑 · 𝑅 ≤ Δ0 ≤ +𝑑 · 𝑅, the value of 𝛿𝑔 must be within the limits:

𝛿𝑔𝑙 = −
(
𝑐 + 𝑑 + Δ0

𝑅

)
≤≈ 𝛿𝑔 ≈≤

(
𝑐 + 𝑑 − Δ0

𝑅

)
= 𝛿𝑔ℎ . (33)

Thus, from (33) it follows that additive and multiplicative components should be partially
dependent. Namely, when Δ0 = +𝑑 · 𝑅, the maximum range of the gain error component is
−(𝑐 + 2𝑑) ≤≈ 𝛿𝑔 ≈≤ 𝑐. Similarly, when Δ0 = −𝑑 · 𝑅, the maximum range of the gain error
component is −𝑐 ≤≈ 𝛿𝑔 ≈≤ (𝑐 + 2𝑑). It means that the range of the gain error components
depends on the actual value of the offset error component, and inversely. In other words, the value
of the gain error is negatively correlated with the offset error. It is possible to show that under
these assumptions the standard deviation of the multiplicative component and covariation of both
components (𝛿𝑔 and 𝛿0 = Δ0/𝑅) are:

𝜎𝑔 =

√︂
(𝑐 + 𝑑)2 + 𝑑2

3
, cov

(
𝛿𝑔,Δ0

)
= −𝑑2 · 𝑅

3
. (34)

Therefore, taking into account that 𝜎𝑠 (Δ0) = 𝑑 · 𝑅/
√

3 and (34), depending on the indication
of 𝑥, standard deviation caused by systematic components can be given as:

𝜎𝑠 (𝑥) =
1
√

3

√︃
𝑑2𝑅2 +

(
(𝑐 + 𝑑)2 + 𝑑2) 𝑥2 − 2𝑑2𝑅 · 𝑥 =

1
√

3

√︁
𝑑2 (𝑅 − 𝑥)2 + (𝑐 + 𝑑)2𝑥2 . (35)

In (35), when 𝑥 = 0, standard uncertainty takes the value 𝜎𝑠 (0) = 𝑑 · 𝑅/
√

3, and when 𝑥 = 𝑅,
it takes the value 𝜎𝑠 (𝑅) = (𝑐+𝑑) ·𝑅/

√
3. Therefore, assuming that MPEs of both input and output

errors are determined by 𝑐𝑥 , 𝑑𝑥 , 𝑥, 𝑅𝑥 and 𝑐𝑦 , 𝑑𝑦 , 𝑦, 𝑅𝑦 respectively, the covariance components,
which the determined impact of systematic effects in (30), can be described analytically as:

𝑢2
𝑐𝐵 (𝛽0) = 𝑢2

𝑐𝐵 (𝛽0, 𝛽0) ≈
𝑏2

0 · (𝑑𝑦 + 𝑐𝑦)2 + 𝑏2
1 · 𝑑

2
𝑥𝑅

2
𝑥 + 𝑑2

𝑦

(
𝑅𝑦 − 𝑏0

)2

3
, (36)

𝑢2
𝑐𝐵 (𝛽0, 𝛽𝑚) ≈

1
3

[
𝑏0 · 𝑏𝑚

[
𝑑2
𝑦 +

(
𝑑𝑦+𝑐𝑦

)2
]
− 𝑏𝑚𝑅𝑦𝑑

2
𝑦 + 𝑏1𝑅𝑥𝑑

2
𝑥 [𝑚(𝑘) · 𝑏𝑚+1𝑅𝑥 − 𝑚 · 𝑏𝑚]

]
,

𝑚 = 1, . . . , 𝑘, (37)

𝑢2
𝑐𝐵 (𝛽𝑚) = 𝑢2

𝑐𝐵 (𝛽𝑚, 𝛽𝑚) ≈
𝑏2
𝑚 ·

[
𝑑2
𝑦 + (𝑑𝑦 + 𝑐𝑦)2 + 𝑚2 (

𝑑2
𝑥 + (𝑑𝑥 + 𝑐𝑥)2) ]

3

+ 𝑚(𝑘) · 𝑏𝑚+1𝑅𝑥𝑑
2
𝑥 · [𝑚(𝑘) · 𝑏𝑚+1 · 𝑅𝑥 − 2𝑚 · 𝑏𝑚]

3
, (38)

𝑢2
𝑐𝐵 (𝛽𝑙 , 𝛽𝑚) ≈

1
3


𝑏𝑙 ·𝑏𝑚 ·

[
𝑑2
𝑦 + (𝑑𝑦+𝑐𝑦)2 + 𝑙 · 𝑚

(
𝑑2
𝑥 + (𝑑𝑥+𝑐𝑥)2) ]

+𝑅𝑥𝑑
2
𝑥 ·

[
(𝑙 + 1) · 𝑚(𝑘) · 𝑏𝑙+1 · 𝑏𝑚+1𝑅𝑥

−𝑙 · 𝑚(𝑘)𝑏𝑙 · 𝑏𝑚+1 − (𝑙 + 1) · 𝑚 · 𝑏𝑙+1 · 𝑏𝑚
]
,


𝑙 = 1, . . . , 𝑚−1,
𝑚 = 2, . . . , 𝑘 . (39)

4. Combined standard uncertainties of the functions

The combined standard uncertainties of functions can be determined by standard proce-
dure [14], 𝑖.𝑒., as the square root of the sum of the squares of both components. Using the
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Type A component (12) and Type B components (36)–(39), the combined standard uncertainties
of coefficients and functions of order 𝑘 are given as:

𝑢𝑐 (𝛽𝑚) =

√︄
𝑠2
𝑘

𝑛 − 𝑘 − 3
· D𝑛𝑚,𝑚 + 𝑢2

𝑐𝐵
(𝛽𝑚) , 𝑚 = 0, 1, . . . , 𝑘, (40)

𝑢𝑐 (𝑦(𝑥)) =

√√√
𝑠2
𝑘

𝑛 − 𝑘 − 3
·

𝑘∑︁
𝑚=0

𝑘∑︁
𝑙=0

D𝑛𝑚,𝑙𝑥
𝑚+𝑙 +

𝑘∑︁
𝑚=0

𝑘∑︁
𝑙=0

𝑢2
𝑐𝐵

(𝛽𝑚, 𝛽𝑙)𝑥𝑚+𝑙 . (41)

It should be noted that if the nonlinearity of the function (1) is not significant, 𝑖.𝑒., the
influence of its second- and higher-order components compared to the linear component is small,
then the second component of the combined uncertainty in (41) mainly depends on the constant
and linear components, 𝑖.𝑒., it consists of only three terms:

𝑢𝑐 (𝑦(𝑥)) ≈

√√√
𝑠2
𝑘

𝑛−𝑘−3
·

𝑘∑︁
𝑗=0

𝑘∑︁
𝑖=0

D𝑛𝑚,𝑙𝑥
𝑚+𝑙 + 𝑢2

𝑐𝐵
(𝛽0) + 2𝑢2

𝑐𝐵
(𝛽0, 𝛽1) · 𝑥 + 𝑢2

𝑐𝐵
(𝛽1) · 𝑥2 . (42)

5. Result verifications by Monte-Carlo method

TheMonte Carlo method (MCM) is a practical alternative to the GUM uncertainty framework
and mainly can be applied when a) linearization of the model provides an inadequate represen-
tation, or b) the PDF for the output quantities and also for the input ones departs appreciably
from Gaussian distribution [30]. Since in the investigated problem of systematic effects in the
measurement results of the input quantity cannot be linearly introduced into the model for cal-
culating the coefficients of a polynomial function and their uncertainties, and in addition, these
effects are usually characterized by uniform or other distributions, 𝑖.𝑒., not Gaussian, the Monte
Carlo method is used to verify the results obtained in this paper. The object of verification is the
nominal quadratic function:

𝑌𝑛 (𝑋) = 𝛽0𝑛 + 𝛽1𝑛 · 𝑋 + 𝛽2𝑛 · 𝑋2 = 100 + 0.39702 · 𝑋 − 5.8893 · 10−5 · 𝑋2, (43)

with coefficients: 𝛽0𝑛 = 100.00, 𝛽1𝑛 = 0.39702, 𝛽2𝑛 = −5.8893 · 10−5.
A basic analysis of the impact of type B uncertainty components was performed with the

following measurement instrument’s data:
– measurements of input quantity 𝑋: main parameters are: Range 𝑅𝑥 = 300,

MPE: 𝑐𝑥 = ±0.025% of Reading (𝑥), 𝑑𝑥 = ±0.033% of range 𝑅𝑥 ;
– measurements of output quantity 𝑌 : main parameters are: Range 𝑅𝑦 = 1000,

MPE: 𝑐𝑦 = ±0.017% of Reading (𝑦), 𝑑𝑦 = ±0.001% of range 𝑅𝑦 .
The study was carried out in was stages.
Stage 1. At this stage the correctness of the derived formulas (30) was examined, according

to which the influence of uncorrected systematic effects on the measurement results of the input
and output quantities was evaluated. At this stage, the random effects in the measurement results
were not taken into account (in MCM simulation 𝜎𝑛 = 0.00001).

The 𝑛 = 13 values of the input quantity were calculated, of which the results are: 𝑥0,𝑖 = 0 25
50 75 100 125 150 175 200 225 250 275 300.
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For these values, the nominal values of the output quantity were determined according to the
nominal function (43): 𝑦𝑛,𝑖 = 100.000 109.889 119.704 129.445 139.113 148.707 158.228
167.675 177.048 186.348 195.574 204.727 213.806.

According to the instrument’s MPE values (𝑐𝑥 , 𝑑𝑥 and 𝑐𝑦 , 𝑑𝑦) given above, the ranges 𝑅𝑥

and 𝑅𝑦 and indications within their respective limits, the 𝑀 = 30 000 sets ( 𝑗 = 0, 1, . . . , 𝑀 − 1)
of values of additive (offset error) Δ0𝑥, 𝑗 , Δ0𝑦, 𝑗 , and multiplicative (gain error) 𝛿𝑔𝑥, 𝑗 , 𝛿𝑔𝑦, 𝑗 effects
were generated, which determine the corresponding effects in the measurement results of both
quantities:

Δ(𝑋)𝑖, 𝑗 = Δ0𝑥, 𝑗 + 𝛿𝑔𝑥, 𝑗 · 𝑋𝑖 , Δ(𝑌 )𝑖, 𝑗 = Δ0𝑦, 𝑗 + 𝛿𝑔𝑦, 𝑗 · 𝑌𝑖 . (44)

The simulated values of the output quantity taking into account these effects were determined
according to (25) (𝑖 = 0, 1, . . . , 12; 𝑗 = 0, 1, . . . , 𝑀 − 1):

𝑦𝑖, 𝑗 =
[
𝛽0𝑛 + 𝛽1𝑛 ·

[
𝑥0,𝑖 (1 − 𝛿𝑔𝑥, 𝑗 ) − Δ0𝑥, 𝑗

]
+ 𝛽2𝑛

[
𝑥0,𝑖

(
1 − 𝛿𝑔𝑥, 𝑗

)
− Δ0𝑥, 𝑗

]2
]
·
(
1 + 𝛿𝑔𝑦, 𝑗

)
+ Δ0𝑦, 𝑗 . (45)

Using a vector of the 𝑛 = 13 values of the input quantity from (3) and (4) the matrices M𝑛

and D𝑛 are calculated:

M𝑛 =
©«

1 150 31250
150 31250 7.313 · 106

31250 7.313 · 106 1.824 · 109

ª®¬ ,
D𝑛 =

©«
6.71 −0.086 2.29 · 10−4

−0.086 1.61 · 10−3 −4.99 · 10−6

2.29 · 10−4 −4.99 · 10−6 1.66 · 10−8

ª®¬ .
(46)

After substituting the values of 𝑦𝑖, 𝑗 (45) into (4), the 𝑀 sets of values of the estimated
coefficients (b = D𝑛 · Y𝑛) were determined:

b𝑇
𝑗 =

(
𝑏0, 𝑗 ; 𝑏1, 𝑗 ; 𝑏2, 𝑗

)
, 𝑗 = 0, 1, . . . , 𝑀−1. (47)

Then, based on the given values of coefficients (43) and determined b 𝑗 (47), 𝑀 set error
values Δ𝑏𝑚, 𝑗 were calculated:

Δ𝑏0, 𝑗 = 𝑏0, 𝑗 − 𝛽0 ; Δ𝑏1, 𝑗 = 𝑏1, 𝑗 − 𝛽1 ; Δ𝑏2, 𝑗 = 𝑏2, 𝑗 − 𝛽2 . (48)

At the same time, the expected error values Δ20, Δ21 and Δ22 of these coefficients were
calculated directly according to approximate expressions (29). The values of the first 6 ( 𝑗 =

0, 1, . . . , 5) sets of estimated errors (48) and directly calculated errors (29) are given in Tables 1
and 2. From a comparison of the error values given in these tables, we see their complete
convergence. It means that the simplifications assumed in (24)–(30) for determining the impact
of systematic effects are quite correct.

Table 1. Values of estimated errors (48) of coefficients, 𝑚 = 0, 1, 2, 𝑗 = 0, 1,. . . , 5.

Δ𝑏 =

0 1 2 3 4 5

0 −4.409 · 10−3 0.023 5.267 · 10−3 −0.02 −0.043 −0.027

1 1.979 · 10−4 −1.538 · 10−4 −9.806 · 10−5 9.574 · 10−5 5.628 · 10−5 1.236 · 10−4

2 −6.127 · 10−8 3.681 · 10−8 2.659 · 10−8 −3.022 · 10−8 −1.738 · 10−8 −4.463 · 10−8
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Table 2. Values of directly determined errors (29) of coefficients.

Δ2 =

0 1 2 3 4 5

0 −4.415 · 10−3 0.023 5.256 · 10−3 −0.02 −0.043 −0.027

1 1.98 · 10−4 −1.538 · 10−4 −9.787 · 10−5 9.565 · 10−5 5.625 · 10−5 1.235 · 10−4

2 −6.155 · 10−8 3.676 · 10−8 2.602 · 10−8 −2.986 · 10−8 −1.732 · 10−8 −4.396 · 10−8

Stage 2. At this stage, the simultaneous influence of both systematic and random components
on the combined uncertainty of the parabolic function was examined.
1. For this purpose, there were generated uncorrelated random 𝑢𝑛𝑖, 𝑗 (𝑖 = 0, 1, . . . , 12; 𝑗 =

0, 1, . . . , 𝑀−1) values with normal distribution with zero expected value and standard devia-
tion 𝜎𝑛, which were added to the values 𝑦𝑛,𝑖 of the output quantity. The study was carried out
for four values of standard deviation of random component: 𝜎𝑛 = 0.01; 0.0316; 0.1; 0.316, in
the following order.

2. For each value of 𝜎𝑛 there were determined 𝑀 sets values of:
a) coefficients: 𝑏0, 𝑗 , 𝑏1, 𝑗 , 𝑏2, 𝑗 as in (4);
b) errors Δ𝑏0, 𝑗 ; Δ𝑏1, 𝑗 ; Δ𝑏2, 𝑗of these coefficients as in (48);
c) errors of estimated quadratic function:

Δ𝑦𝑖, 𝑗 = Δ𝑏0, 𝑗 + Δ𝑏1, 𝑗 · 𝑥𝑖 + Δ𝑏2, 𝑗 · 𝑥2
𝑖 ; (49)

d) estimated standard deviations of the coefficients:

𝑠(𝑏𝑚) =

√√√
1

𝑀 − 1

𝑀−1∑︁
𝑗=0

(
𝑏𝑚, 𝑗 − 𝑏𝑚

)2
, 𝑏𝑚 =

1
𝑀

𝑀−1∑︁
𝑗=0

𝑏𝑚, 𝑗 , 𝑚 = 0, 1, 2; (50)

e) combined standard uncertainties of the coefficients as in (40):

𝑢𝑐 (𝛽𝑚, 𝑗 ) =
√︃
𝑢2
𝐴
(𝛽𝑚, 𝑗 ) + 𝑢2

𝑐𝐵
(𝛽𝑚, 𝑗 ) , 𝑚 = 0, 1, 2, 𝑗 = 0, . . . , 𝑀 − 1. (51)

3. The standard deviations 𝑠(𝑏𝑚) (50) (including the coefficient
√︂

𝑛 − 3
𝑛 − 5

(13)) were compared

to the mean values 𝑢𝑐 (𝛽𝑚) of standard uncertainties (51). The results of the comparison are
given in Table 3. They show a very good convergence of standard deviations 𝑠(𝑏𝑚) and mean
standard uncertainty 𝑢𝑐 (𝛽𝑚) values.

4. Next, there were determined the estimates of expanded (for a confidence level 𝑝 = 0.95)
uncertainties:
a) of the coefficients:

𝑈𝑝,𝑒 (𝛽𝑚) = 𝑘 𝑝 · 𝑢𝑒 (𝛽𝑚), 𝑚 = 0, 1, 2; (52)

b) of the quadratic function:

𝑈𝑝,𝑒 (𝑌𝑖) = 𝑘 𝑝 · 𝑢𝑒 (𝑌𝑖) , 𝑖 = 1, 2, . . . , 𝑛. (53)
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Table 3. Estimated standard deviations 𝑠 (𝑏𝑚) of coefficients and the mean values of standard uncertainties 𝑢𝑐 (𝛽𝑚) and
also the values of estimated probabilities 𝑝𝑒 (𝛽𝑚) and 𝑝𝑒 (𝑦) , when coefficients errors and function errors are within the
corresponding limits determined by expanded uncertainties 𝑈0.95,𝑒 (𝛽𝑚) and 𝑈0.95,𝑒 (𝑌 (𝑥)) , as functions of standard

deviation 𝜎𝑛 of random effect.

𝜎𝑛 0.01 0.0316 0.1 0.316

𝑠 (𝑏0) ·
√︂

𝑛 − 3
𝑛 − 5

𝑢𝑐 (𝛽0)
0.030
0.027

0.038
0.036

0.086
0.084

0.253
0.256

𝑠 (𝑏1) ·
√︂

𝑛 − 3
𝑛 − 5

𝑢𝑐 (𝛽1)
2.23 · 10−4

2.05 · 10−4
4.33 · 10−4

4.17 · 10−4
1.29 · 10−3

1.25 · 10−3
3.87 · 10−3

3.95 · 10−3

𝑠 (𝑏2) ·
√︂

𝑛 − 3
𝑛 − 5

𝑢𝑐 (𝛽2)
4.08 · 10−7

4.02 · 10−7
1.32 · 10−6

1.27 · 10−6
4.03 · 10−6

3.99 · 10−6
1.24 · 10−5

1.27 · 10−5

𝑝𝑒 (𝛽0) 0.955 0.955 0.952 0.952

𝑝𝑒 (𝛽1) 0.952 0.952 0.952 0.952

𝑝𝑒 (𝛽2) 0.949 0.950 0.951 0.955

𝑝𝑒 (𝑦) 0.947 0.951 0.953 0.951

5. The values Δ𝑏0, 𝑗 ; Δ𝑏1, 𝑗 ; Δ𝑏2, 𝑗 of the calculated errors were compared with the expanded
uncertainty values𝑈𝑝,𝑒 (𝛽𝑚) and estimates 𝑝𝑒 (Δ𝑏𝑚) of the probability of not exceeding these
errors of the respective expanded uncertainty values 𝑈𝑝,𝑒 (𝛽𝑚) were determined:

𝑝𝑒 (Δ𝑏𝑚) =

𝑀−1∑︁
𝑗=0

𝑓𝑚, 𝑗

𝑀
, 𝑓𝑚, 𝑗 =

{
1, if

��Δ𝑏𝑚, 𝑗

�� ≤ 𝑈𝑝,𝑒 (𝛽𝑚),
0, otherwise,

𝑚 = 0, 1, 2. (54)

The values of 𝑝𝑒 (Δ𝑏𝑚) are presented in Table 3. We can see that estimated probability values
𝑝𝑒 (Δ𝑏𝑚) are very close to the given value 𝑝 = 0.95.

6. On the basis of estimated coefficients, the standard uncertainties of the quadratic function at
each value 𝑥𝑖 of the input quantity were determined:

𝑢𝑒 (𝑌𝑖) =

√√√
1

𝑀 − 1

𝑀−1∑︁
𝑗=0

(
𝑏0, 𝑗 − 𝑏0 +

(
𝑏1, 𝑗 − 𝑏1

)
· 𝑥𝑖 +

(
𝑏2, 𝑗 − 𝑏2

)
· 𝑥2

𝑖

)2
, 𝑖 = 1, 2, . . . , 𝑛.

(55)
7. Taking into account analytical components of matrix D𝑛 in (4), the analytical Type A standard

uncertainty of quadratic function was determined:

𝑢2
𝐴(𝑥) =

𝜎2
𝑛

𝑛

1 + 3
𝑛 − 1
𝑛 + 1

(
𝑥 − 𝑥

𝑉𝑥

)2
+ 5

4
· 𝑛

2 − 1
𝑛2 − 4

(
3
𝑛 − 1
𝑛 + 1

(
𝑥 − 𝑥

𝑉𝑥

)2
− 1

)2 , (56)

where 𝑥 =
1
𝑛

𝑛∑︁
𝑙=1

𝑥𝑙 = 150, 𝑉𝑥 =
𝑥𝑛 − 𝑥1

2
= 150.
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8. Based on parameters 𝑐𝑥 , 𝑑𝑥 and 𝑐𝑦 , 𝑑𝑦 and the ranges 𝑅𝑥 , 𝑅𝑦 of instruments, the components
(36), (37) and (38) of Type B combined standard uncertainties of coefficients were determined:

𝑢2
𝐵,𝑎 (𝛽0) =

𝛽2
0 ·

(
𝑑𝑦 + 𝑐𝑦

)2 + 𝛽2
1 · 𝑑

2
𝑥𝑅

2
𝑥 + 𝑑2

𝑦

(
𝑅𝑦 − 𝛽0

)2

3
≈ 6.324, (57)

𝑢2
𝐵,𝑎 (𝛽0, 𝛽1) =

𝛽0 · 𝛽1

[
𝑑2
𝑦 +

(
𝑑𝑦 + 𝑐𝑦

)2
]
− 𝛽1𝑅𝑦𝑑

2
𝑦 − 𝛽1𝑅𝑥𝑑

2
𝑥 (𝛽1 − 2𝛽2𝑅𝑥)

3
≈ −0.0147, (58)

𝑢2
𝐵,𝑎 (𝛽1) =

𝛽2
1 ·

[
𝑑2
𝑦 +

(
𝑑𝑦 + 𝑐𝑦

)2 + 𝑑2
𝑥 + (𝑑𝑥 + 𝑐𝑥)2

]
− 4𝛽2𝑅𝑥𝑑

2
𝑥 (𝛽1 − 𝛽2𝑅𝑥)

3
≈ 2.648 · 10−4. (59)

9. After substituting both Type A (56) and Type B (57)–(59) components in (42), the analytical
expression for the expanded (𝑝 = 0.95) uncertainty𝑈𝑝,𝑎 (𝑌 (𝑥)) of the function takes the form:

𝑈0.95,𝑎
(
𝑌 (𝑥)

)
= 1.96

√√√√√√√√√√√√√√ 𝜎2
𝑛

13

1 + 18
7

(
𝑥 − 150

150

)2
+ 14

11

(
18
7

(
𝑥 − 150

150

)2
− 1

)2
+

6.324 − 2 · 0.0147 · 𝑥 +
(
2.648 · 10−4)2 · 𝑥2

3 · (100%)2

. (60)

The𝑈0.95,𝑒
(
𝑌 (𝑥𝑖)

)
values of the estimated expanded uncertainty (53) and𝑈0.95,𝑎

(
𝑌 (𝑥𝑖)

)
values

of the analytical uncertainty (60) as a function of 𝑥𝑖 values are presented in Fig. 3.

Fig. 3. Estimated expanded uncertainty 𝑈0.95,𝑒
(
𝑌 (𝑥𝑖)

)
(solid black line) and a priory

expanded uncertainty 𝑈0.95,𝑎
(
𝑌 (𝑥𝑖)

)
(red dots) for 𝑝 = 0.95 and 𝜎𝑛 = 0.010 (1),

𝜎𝑛 = 0.0316 (2), 𝜎𝑛 = 0.10 (3), 𝜎𝑛 = 0.316 (4).

10. The values Δ𝑦𝑖, 𝑗 of the calculated errors (49) were compared with the expanded uncertainty
values 𝑈0.95,𝑒 (𝑌𝑖) (53) and estimates 𝑝𝑒 (Δ𝑦) of the probability of not exceeding these errors
of the expanded uncertainty values 𝑈0.95,𝑒 (𝑌𝑖) were determined:

𝑝𝑒 (Δ𝑦) =

𝑀−1∑︁
𝑗=0

𝑛−1∑︁
𝑖=0

𝑑𝑖, 𝑗

𝑀
, 𝑑𝑖, 𝑗 =

{
1, if

��Δ𝑦𝑖, 𝑗 �� ≤ 𝑈𝑝,𝑒 (𝑌𝑖) ,
0, otherwise.

(61)
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The values of estimated probability 𝑝𝑒 (Δ𝑦) are given in Table 3. We can see that the estimated
values of 𝑝𝑒 (Δ𝑦) also are very close to the given value 𝑝 = 0.95.
Fig. 3 also shows a very good convergence between the estimated𝑈0.95,𝑒 (𝑌 (𝑥𝑖)) and analytical
𝑈0.95,𝑎 (𝑌 (𝑥𝑖)) expanded uncertainties. Namely, the maximum relative values of the differences
between these uncertainties are about: 6% when 𝜎𝑛 = 0.01, 6% when 𝜎𝑛 = 0.0316, 2% when
𝜎𝑛 = 0.1, and 0.3% when 𝜎𝑛 = 0.316. In addition, we can see from this figure that at a small
level of random component (𝜎𝑛 = 0.01, 2𝜎𝑛/𝑌max) ≈ 0.009%), the main factors determining
the level of uncertainty are systematic effects in the measurement results. In contrast, if the
level of the random component increases significantly (𝜎𝑛 = 0.316, 2𝜎𝑛/𝑌max ≈ 0.3%), then
the random factor determines the level of uncertainty.

6. Conclusions

The conclusions formulated below refer to the evaluation of the uncertainties caused by random
independent noises distorting the output quantity and the uncorrected additive and multiplicative
systematic effects in the measurements of both the input and output quantities of the systems, which
are described by a polynomial function whose parameters are determined by the experimental
data.

1. According to definition of uncertainty in the Guide [14], the standard uncertainty 𝑢𝐴(𝛽𝑚 | 𝑠)
of the polynomial function coefficient 𝛽𝑚 can be determined correctly only on the basis of
its PDF 𝑝𝛽 (𝛽𝑚 | 𝑏𝑚, 𝑠). It was shown that this PDF can be derived directly from integrating
a joint PDF 𝑝𝛽,𝜎 (𝛽𝑚, 𝜎 | 𝑏𝑚, 𝑠) which can be obtained from PDF 𝑝𝑏,𝑠 (𝑏𝑚, 𝑠 | 𝛽𝑚, 𝜎) (of
estimates 𝑏𝑚 of coefficient and 𝑠 of standard deviation 𝜎) multiplied by a ratio 𝑠/𝜎. In the
presented method, no a priori distribution is required.
Because the values of type A standard uncertainty depend on

√
𝑛 − 𝑘 − 3 =

√
𝑑 − 2 (where

𝑑 = 𝑛− 𝑘 −1 is the number of degrees of freedom) when the number of degrees of freedom
is low (less than about 20), determination of standard uncertainty with classical approach
provides its underestimation from about 5% when 𝑑 = 20 up to 73% when 𝑑 = 3. Based
on the analysis of a number of examples, taken from literature sources, it was found that
in these examples, due to the relatively small number of experimental points, the standard
uncertainty values determined with the classical approach are less than correct between ten
and several tens of percent or cannot be determined.

2. A very simple way of estimating the component of type B uncertainty caused by uncorrected
systematic effects in the results of measurements of input and output quantities has been
proposed. For this purpose, analytical expressions of coefficients errors dependent on the
additive Δ0𝑥 , Δ0𝑦 and multiplicative 𝛿𝑔𝑥 , 𝛿𝑔𝑦 systematic components in measurements of
both input 𝑋 and output𝑌 quantities were derived. It has been shown that the impact of these
components of errors on error Δ𝑚 of coefficient 𝑏𝑚 depends on the values of the function
coefficients 𝛽𝑚, 𝛽𝑚+1 (𝑚 = 0, 1, . . . , 𝑘 − 1). On the basis of these analytical expressions of
errors, formulas for type B standard uncertainties were derived in the function of declared
in the manufacturer’s specification values of the MPE of the measuring instruments used.
Namely, the type B standard uncertainty components are determined as a function of
parameters: 𝑐𝑥 , 𝑐𝑦 of instruments indications (𝑥, 𝑦) and 𝑑𝑥 , 𝑑𝑦 of instruments ranges
(𝑅𝑥 , 𝑅𝑦).

3. Monte Carlo simulation studies carried out for the estimation (with both Type A and Type B
methods) of the corresponding uncertainty components of coefficients of the quadratic
function showed a very good convergence with the derived analytical relationships.
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Namely, from the results obtained by the MCM we can see that: (i) the derived relationships
(30) for calculating coefficient errors caused by the influence of systematic additive and
multiplicative effects on the measurement results of input and output quantities are fully
correct, and (ii) and formulas (36)–(39) based on them, used for the calculation of the
components of type B uncertainty, are also correct.
Studies of the simultaneous impact of both factors (random and systematic) were carried
out in the form of a comparison of determined errors of coefficients and functions with
the estimated values and their analytically determined expanded uncertainties. Namely,
the maximum relative error between the estimated and analytically determined expanded
uncertainties ranges from a few tenths of a percent to several percent.

4. The results obtained and presented in the paper are very important for practical applications
because when determining the parameters of a polynomial (and other) function on the basis
of the measurement results of both input and output quantities, it is not always possible
to omit the instrumental components of uncertainty, and in many cases these components
may be dominant in the combined uncertainties of coefficients and functions.
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