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Abstract. The fixed fleet heterogeneous open vehicle routing problem (HFFOVRP) is one of the most practical versions of the vehicle routing
problem (VRP) defined because the use of rental vehicles reduces the cost of purchasing and routing for shipping companies nowadays. Also,
applying a heterogeneous fleet is recommended due to the physical limitations of the streets and efforts to reduce the running costs of these
companies. In this paper, a mixed-integer linear programming is proposed for HFFOVRP. Because this problem, like VRP, is related to NP-hard
issues, it is not possible to use exact methods to solve real-world problems. Therefore, in this paper, a hybrid algorithm based on the ant colony
algorithm called MACO is presented. This algorithm uses only global updating pheromones for a more efficient search of feasible space and
considers a minimum value for pheromones on the edges. Also, pheromones of some best solutions obtained so far are updated, based on the
quality of the solutions at each iteration, and three local search algorithms are used for the intensification mechanism. This method was tested
on several standard instances, and the results were compared with other algorithms. The computational results show that the proposed algorithm
performs better than these methods in cost and CPU time. Besides, not only has the algorithm been able to improve the quality of the best-known
solutions in nine cases but also the high-quality solutions are obtained for other instances.

Keywords: open vehicle routing problem; heterogeneous; ant colony optimization; combinatorial optimization problems.

1. INTRODUCTION

One way to reduce the cost of goods is to minimize transporta-
tion prices so that the goods can be transferred from place to
place with the least cost [1–6]. Therefore, nowadays, the impor-
tance of the vehicle routing problem (VRP) and its versions is
not hidden from anyone, and its real applications in daily life
have led researchers to pay more attention to it day by day. Fig-
ure 1 shows a feasible VRP solution that includes 46 customers
and six vehicles. In this figure, vehicles have the same specific
capacity, and each customer has a certain amount of demand.
The horizontal and vertical axes represent the two-dimensional
coordinate plane, and the total amount of customers’ demands
attributed does not exceed the vehicle capacity.
The OVRP issue happens in a lot of real problems, for ex-

ample, assuming that a manufacturing company has signed a
contract with a shipping company to distribute its goods, un-
der which a fleet of vehicles is tasked every day to load certain
goods from the company warehouse and deliver it to customers.
Due to the leasing of the relevant fleet, these vehicles have only
a duty to carry out the mission and no longer need to return
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Fig. 1. A feasible solution for a VRP issue

to the warehouse. This issue aims to find routes for the fleet of
vehicles at the lowest cost.
It should be noted that in these two instances, it is assumed

that the capacity of all customers assigned to each vehicle is no
more than its defined capacity. One of the earliest works on the
OVRP problem, attempting to examine and classify this practi-
cal problem, was done by Schrage in 1981 [8]. He defines this
issue as follows: A vehicle routing problem is identified based on
three characteristics: capacity, cost, and being a VRP or OVRP.
In a closed routing problem (VRP), vehicles are forced to return
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Fig. 2. The difference between VRP and OVRP [7]

to the warehouse after service. This constraint is not in the open
version, and the vehicles will not return to the depot. Raff in
1983, adapted the OVRP problem in daily life and used it to
solve the airmail distribution problem with several time win-
dow restrictions for receiving and delivering goods, the length
of the entire route traveled by each vehicle, and the capacity
of each vehicle [9]. They used a saving method to solve this
problem, either if they were just a recipient or just a delivery
provider. Tarantilis et al. proposed a population-based heuristic
method [10], and in 2005, these authors examined the issue in
more detail and suggested an acceptable starting point method
for the problem [11]. In 2004 and 2006, the tabu search al-
gorithm, which is one of the oldest methods of meta-heuristic
and has many high-quality solutions to escape from local opti-
mal points, was used by Brandao [12]. Pisinger and Ropke in
2007 and Lechford et al. in 2007 proposed a heuristic algorithm
and a branch-and-cut algorithm, respectively, for the problem.
These algorithms, compared to other methods presented in the
literature on the relevant subject have better solutions [12].
Also, the proposed branch and bound algorithm could ob-

tain better solutions for small and medium-sized instances and
achieve optimal solutions. In the same year, Li and his colleagues
implemented a hybrid algorithm for this issue. To test the effi-
ciency of the algorithm, they generated some problems with 200
to 480 customers and reported the results of their proposed algo-
rithm for these issues [13]. Also, a case of newspaper production
and distribution into homes and work centers is considered and
solved by the tabu search method. A variable neighbor search
algorithm was presented in 2009 by Fleszar and his colleagues
to solve the OVRP problem. This algorithm worked on edges
and changing them and it was able to show efficiency and get
some high-quality solutions in several standard instances [13].
Salari et al. presented an innovative improvement method for
the OVRP problem. Their strategy was based on the linear inte-
ger programming method [14]. In 2011, MirHassani and Abol-
ghasemi presented a particle swarm optimization method for
this problem in which a new coding method was used for the
issue [15]. A vector of customer position was created in a re-
duced order, and then each customer was selected according to
the limitations of the situation in a path. Finally, the method
used one-point motion to improve the solutions. A version of
the OVRP problem is presented in [16] in which multiple ware-

houses are considered. It should be noted that in actual cases,
this issue is usedmore, and an efficient algorithm including local
search algorithms for this problem is provided. This algorithm
produces very high-quality solutions using information updated
every moment. The results of comparison with different algo-
rithms show that this algorithm is very competitive compared
to other algorithms.
Although OVRP is still being studied, the use of a hetero-

geneous fleet had not been considered in this issue until 2012,
which is very practical. In other words, a homogeneous fleet can-
not be used in all cases to further reduce transportation costs and
traffic restrictions for vehicles. For this reason, Li considered a
fixed heterogeneous fleet for OVRP (HFFOVRP) and proposed
a modified meta-heuristic algorithm for this problem [17]. The
proposed algorithm is based on the multi-start adaptive mem-
ory algorithm, which has obtained excellent answers compared
to other algorithms. It should be noted that the reason for the
efficiency of the algorithm, in addition to using appropriate so-
lutions for intensification and diversification mechanisms, is the
use of efficient adjustment for algorithm parameters.
A hybrid meta-heuristic algorithm was proposed by Youse-

fikhoshbakht et al. in 2014, using several local search algo-
rithms to further enhance the solutions [18]. Also, by using
efficient modifications to the proposed TS algorithm, a better
feasible space was searched, and the algorithm became more
efficient in the global search of the problem. In other words,
the tabu period was used to improve the hybrid algorithm, and
the minimum and maximum values for the tabu tenure are con-
sidered for the intensity and diversity policy. Besides, the same
authors first proposed a mixed-linear programming model for
this problem [19] and showed that due to the complexity of the
problem, the exact algorithm could only solve problems up to 16
nodes optimally, but with an increasing number of nodes, it is
better to use meta-heuristic algorithms. For this reason, a rank-
ing ant system is presented in this paper [20]. The algorithm
used diversification mechanisms for global search and an in-
tensification mechanism for local search. In the article, a mixed
integer linear programming model for this problem is presented.
Then an exact and meta-heuristic combination method of col-
umn production is raised to solve this problem. In the proposed
method, a method of elite ant system as diversification issue is
presented to better search for possible space. Also, three local
search algorithms of insert, swap, and 2-opt were used as three
intensification methods. The results showed the efficiency of
this method in comparison with the column generation and ant
colony optimization (ACO).
Although the solution algorithms of this problem, like other

optimization, are divided into two exact and heuristic cate-
gories [21–24], the difficulty of this problem has caused to lose
efficiency of exact algorithms. In other words, when the size of
the problem is increased, these algorithms need more time to
find the optimal solution. Therefore, scientists use heuristic algo-
rithms to solve these problems to obtain a near-optimal solution
despite not getting the optimal solution to the issue at an accept-
able time. Therefore, a modified version of ACO, calledMACO,
is proposed in this paper after presenting a new mixed-integer
programming model. The proposed MACO uses some effective
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modifications and local search algorithms to improve the diver-
sification and intensification of the algorithm, including a new
global update, an influential state transition rule, and a modified
ranking method for ants. Comparing the results of MACO with
some approximation and meta-heuristics algorithms shows that
the algorithm can provide better solutions compared to these
algorithms within a comparatively shorter CPU time.
In this paper, a mixed-integer linear programming model is

presented in Section 2, and then Section 3 describes the proposed
method. Section 4 offers at first sensitive analysis, and then the
computational results performed on standard instances available
in the literature. Section 5 shows the conclusions and future
orientations.

2. PROBLEM DESCRIPTION AND FORMULATION
To present the HFFOVRP model, the 𝐺 (𝑉, 𝐴) graph is used
where 𝑉 = {0,1, . . . , 𝑛} is the nodes set and 𝐴 = {(𝑖, 𝑗) |𝑖, 𝑗 ∈
𝑉 and 𝑖 ≠ 𝑗} is the set of edges. In this issue, each node 𝑖, except
node 0 which shows the warehouse, represents the customers
and has the demand for 𝑝𝑖 goods. The distance 𝑐𝑖 𝑗 corresponds
to each arc in 𝐴, where 𝑐𝑖𝑖 = 0 for each 𝑖 ∈𝑉 . A fleet of𝐾 different
vehicle types is located at the depot so that each vehicle with
type 𝑘 has capacity 𝑄𝑘 , fixed cost 𝑓𝑘 , and variable cost 𝛼𝑘 . The
number of 𝑘-th device shown by 𝑛𝑘 is also available in the fleet.
If 𝛼𝑘 is the cost of each vehicle distance during one unit, the cost
of navigating each arc (𝑖, 𝑗) is equal to 𝑐𝑘

𝑖 𝑗
= 𝑐𝑖 𝑗 ×𝛼𝑘 for the 𝑘-

type vehicle. Therefore, there are𝐾 numbers of symmetrical cost
matrices in the problem. If for (𝑖, 𝑗 = 0,1,2, . . . , 𝑛 ; 𝑖 ≠ 𝑗), 𝑘-th
vehicle moves directly from nodes 𝑖 to 𝑗 , 𝑥𝑘

𝑖 𝑗
= 1 and otherwise

𝑥𝑘
𝑖 𝑗
= 0. Also, if for 𝑖 = 0,1,2, . . . , 𝑛, 𝑘-th vehicle moves from

customer 𝑖, ℎ𝑖𝑘 = 1 and otherwise ℎ𝑖𝑘 = 0. 𝑦𝑘𝑖 𝑗 is the amount of
goods that 𝑘-th vehicle carries when traveling from node 𝑖 to
𝑗 node.
The HFFOVRP problem involves determining a set of routes

and allocating them to existing vehicles. The aim is to underesti-
mate the total cost of the routes so that the following conditions
are established:
• Meet the demands of all customers.
• Only use existing vehicles in customer service.
• Each customer’s request is met once by a vehicle.
• No customer request 𝑝𝑖should be more than 𝑄𝑘 .
• No 𝑘-service is allowed along the way to upload more than
the specified 𝑄𝑘 capacity.

• All vehicles must be at point 0 at the beginning and end their
routes at arbitrary customers.
The mixed-integer linear programming model of HFFOVRP

is as follows.

Min
𝐾∑︁
𝑘=1

𝑓𝑘

𝑛∑︁
𝑗=1
𝑥𝑘0 𝑗 +

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=0

𝑛∑︁
𝑗=0
𝑐𝑘𝑖 𝑗𝑥

𝑘
𝑖 𝑗

subject to

𝑛∑︁
𝑖=0

𝑝𝑖ℎ𝑖𝑘 ≤ 𝑄𝑘 ∀𝑘 = 1,2, . . . , 𝐾, (1)

𝐾∑︁
𝑘=1

ℎ𝑖𝑘 = 1 ∀𝑖 = 1,2, . . . , 𝑛, (2)

𝑛∑︁
𝑖=0
𝑥𝑘𝑖 𝑗 = ℎ𝑖𝑘 ∀ 𝑗 = 1,2, . . . , 𝑛, ∀𝑘 = 1,2, . . . ,𝐾, (3)

𝑛∑︁
𝑗=1
𝑥𝑘𝑖 𝑗 = ℎ𝑖𝑘 ∀𝑖 = 0,1, . . . , 𝑛, ∀𝑘 = 1,2, . . . , 𝐾, (4)

𝑛∑︁
𝑗=1
𝑥𝑘0 𝑗 ≤ 𝑛𝑘 ∀𝑘 = 1,2, . . . , 𝐾, (5)

𝑛∑︁
𝑗=1
𝑥𝑘𝑖0 = 0, ∀𝑘 = 1,2, . . . , 𝐾, (6)

𝑥𝑘𝑖 𝑗 , ℎ𝑖𝑘 ∈ {0,1} ∀𝑖, 𝑗 =0,1, . . . , 𝑛, 𝑖≠ 𝑗 , ∀𝑘 =1,2, . . . ,𝐾, (7)

𝑦𝑘𝑖 𝑗 ≥ 0 ∀𝑖, 𝑗 = 0,1, . . . , 𝑛, ∀𝑘 = 1,2, . . . , 𝐾. (8)

In this proposed model, the objective function is composed of
two parts. In the first part, the total fixed cost for the use of ve-
hicles is taken into account, while the second part considers the
sum of all the edges met by the vehicles. Here, the objective of
the problem is to minimize the sum of these two functions. Re-
strictions (1) prevent vehicle capacity from being breached, and
vehicles can meet more vehicles as long as possible. Also, the
limitations (2) make each node demand answered by a vehicle
only once visited. Constraints (3) and (4) are very important in
this model, which together ensure the continuity of the path for
a vehicle. In other words, the vehicle that enters the node exits
the same node. Also, the number used by vehicles should not be
greater than the number available based on constraints (5). As a
solution to this issue, there should be no way from any customer
to the warehouse, which is guaranteed by (6). Binary variables
must be used to calculate only the costs of the scrolling edges
in the objective function. These limitations are considered by
(7). If the edge is met, the amount 1 for this variable is devoted.
Otherwise, the price is estimated to zero. Finally, restrictions
(8) ensure that the flow of goods between nodes should never be
negative.

3. THE PROPOSED METHOD
Nowadays, the VRP problems are significant, and these issues
exist in daily life, and solving them solves socio-economic prob-
lems. These problems cannot be solved in practical sizes by ex-
act optimization methods at an acceptable time. Because these
problems have many local optimizations, innovative algorithms
cannot get away from these local optimizations and achieve
global optimizations. Therefore, researchers are looking for al-
gorithms that have a suitable way to get away from local optimal
points and reach a high-quality answer at an acceptable time.
Metaheuristic methods can respond to this need and achieve a
high-quality solution at a good CPU time. These algorithms,
when trapped in local optimization, can escape them as much
as possible, achieve other spatial solutions, and examine more
areas. Therefore, these algorithms achieve better solutions by
searching more and using more efficient procedures. In this sec-
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tion, we present the proposed MACO for solving HFFOVRP
with n customers.
In this method, a feasible solution to the problem is created as

stated, which uses insert and exchange algorithms. The proce-
dure is that the number of vehicles is considered first, and then
the full 360 degrees of 2D space is divided into this number.
Now, the algorithm starts from the maximum capacity of the
vehicle and uses these two algorithms in which the number of
demands is no greater than the ability of the vehicle. For each
partition, the Hamilton path problem is created and solved by us-
ing the ACO described before. Therefore, the proposed method
is a constructive algorithm, including random and probabilistic
elements that cause the initial solution. Then, the initial value of
the pheromone is attributed ten values to the edges of the feasible
solution. Now, m different initial solutions, as a diversification
strategy, are generated for n groups of ants. In this algorithm,
each ant plays the vehicle role and builds a Hamiltonian route
step by step. The probability of ant k is presented in formula (9)
which moves from customer 𝑖 to customer 𝑗 . Besides, customer
𝑗 has not been visited yet and its ability does not exceed the
capacity of the corresponding ant.

𝑃𝑘𝑖 𝑗 =



1 if 𝑔 ≤ 𝑞0 & 𝑖 = 𝑗∗,

0 if 𝑔 ≤ 𝑞0 & 𝑖 ≠ 𝑗∗,

𝜏𝛼
𝑖𝑟
(𝑡)𝜂𝛽

𝑖𝑟
(𝑡)∑︁

𝑟 ∈𝐽 𝑘
𝑖

𝜏𝛼𝑖𝑟 (𝑡)𝜂
𝛽

𝑖𝑟
(𝑡)

otherwise,
(9)

where:
𝑗∗ = argmax𝑟 ∈𝐽 𝑘

𝑖
𝜏𝛼
𝑖𝑟
(𝑡)𝜂𝛽

𝑖𝑟
(𝑡) identifies the unvisited node in 𝐽𝑘

𝑖

maximizing 𝑃𝑘
𝑖 𝑗
(𝑡).

𝜏𝑖 𝑗 (𝑡) : The value of pheromone on arc (𝑖, 𝑗).
𝜂𝑖 𝑗 (𝑡) : The heuristic information arc (𝑖, 𝑗) is defined as the
reciprocal of the distance between node 𝑖 and node 𝑗 .
Parameters 𝛼 and 𝛽 determine the relative importance of

pheromone level versus distance.
𝑞 : A uniformly distributed random number between 0 to 1.
𝑞0 : A variable assumed 0.2 at the beginning of the algorithm.
In every iteration of the algorithm, this variable is increased

by 0.01 compared to the previous iteration until 𝑞0 is equal to
0.9. The smaller the 0 ≤ 𝑞0 ≤ 1, the higher the probability of
making a random choice.
𝛼, 𝛽 : The controlling parameters by the user.
To consider the solutions obtained in new iterations by the

proposed ACO algorithm, which usually has better quality, the
pheromone of the paths traveled by the ants should be updated
at each iteration. In other words, in this algorithm, adaptive
learning is done to make ants more inclined to higher-quality
solutions. This is done by combining two operations to pour the
pheromone in the new edges belonging to high-quality solution
in the current repetition, and evaporation of the pheromone on all
edges of the problem graph. This leads to new edges belonging
to high-quality solutions, like all edges, losing some of their
pheromones due to evaporation but in the same repetition, they
receive a considerable amount of pheromone on their edges. The
more time passes since the algorithm starts, themore pheromone

difference will be created, which will attract more attention in
subsequent repetitions of these solutions, and their neighbors.
For this purpose, the proposed algorithm only uses global

updating, and unlike the classic ACO mode, local updating is
not used. This strategy brings more attention to high-quality
solutions, and two types of updating are used in the algorithm
(formula (10)). The best answer in the current repetition is en-
couraged, and the pheromones on its edges are increased based
on the amount of the quality solution obtained. On the other
hand, the algorithm should consider perfect solutions and try
to make a good balance between local and global search mech-
anisms. For this purpose, 𝜎 − 1 of the best solutions obtained
so far are considered, and in addition to being updated in each
iteration, the pheromones of their mane are updated. This will
re-emphasize the excellent answers in each iteration mechanism
and its neighbors will be searched more.
Indeed, to prevent premature convergence, an attempt to avoid

other solutions soon is made. In this way, at least a minimum
amount of pheromone is considered on the edges, equal to the
Map value of the primary pheromone. In other words, whenever
the amount of pheromone on the edge is less than Map the
initial pheromone according to the evaporation, the value of the
pheromone is replaced.

𝜏𝑖 𝑗 (𝑡 +1) = (1− 𝜌)𝜏𝑖 𝑗 (𝑡) +
𝜎−1∑︁
𝜇=1

Δ𝜏
𝜇

𝑖 𝑗
(𝑡) +Δ𝜏𝑔𝑏

𝑖 𝑗
(𝑡), (10)

where: 𝜌 – a parameter called evaporation rate in the range [0,1]
regulating the reduction of pheromone on the edges.

Δ𝜏
𝜇

𝑖 𝑗
(𝑡) =


(𝜎− 𝜇) 𝑄

𝐿𝜇 (𝑡) (𝑖, 𝑗) ∈ 𝑆𝜇,

0 (𝑖, 𝑗) ∉ 𝑆𝑘 ,
(11)

𝑄 : A constant coefficient determined by the user.
𝜎 : The number of ranked solutions in which the pheromone has
been deposited on their edges.
𝜇 : The variable indicating ranking index from 1 to 𝜎−1.
𝑆𝜇 : The traversed edges belonged to the 𝜇-th rank.
𝐿𝜇 (𝑡) : The length of the paths traversed by the 𝜇-th ant.
The amount of the global pheromone release for the best

solution is calculated by equation (12):

Δ𝜏
𝑔𝑏

𝑖 𝑗
(𝑡) =


𝜎

𝑄

𝐿𝑔𝑏 (𝑡)
(𝑖, 𝑗) ∈ best route,

0 (𝑖, 𝑗) ∉ best route.
(12)

Although the ACO algorithm generally has good efficiency
in global search, using local search algorithms is recommended
to combine with this algorithm. Local search algorithms are
commonly used in many articles to improve an initial solution
and usually get high-quality solutions. Therefore, for a more
efficient and diverse search in problem space, three local search
algorithms, including insert move, exchange move, and 2-opt
algorithm, are used in the proposed algorithm. In this algorithm,
when the best solution is improved, it is better to use these
algorithms to search more around the found solutions. Because
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the implementation time of the algorithm is critical, in addition
to quality, a percentage of the best solutions are considered to
reduceCPU run time.Also, each of these local search algorithms
is donewith a probability of 1/3. It is logical to use this strategy at
this time because better solutions in its neighbors aremore likely
to happen when a high-quality solution is obtained. It should be
noted that the use of local search algorithms is only acceptable
when the previous solution is replaced by an improved one.
In the insert algorithm, one node is selected and moves to

a place in the current path or another path. Besides, in the
exchange move, two nodes are selected from one or two paths
and changed with each other. Finally, in the 2-opt local search,
two edges are selected and replaced by the other two. In this
algorithm, two edges can be found to be intersecting together,
they are replaced with two other ones. These three local search
algorithms are acceptable when all limitations are not violated,
and the new solution has better quality than the previous one.

4. COMPUTATIONAL RESULTS

The proposed algorithm was coded in Matlab 2016 and all
the experiments were implemented on a Laptop with core 3
2.6 GHZ, 4GB RAM, and Windows 7 Home Basic Operating
system. In this section, the parameter tuning is presented, and
the results of the MACO are shown.

4.1. Parameter tuning
Metaheuristic algorithms can obtain excellent solutions in a lim-
ited time because they use randomness to create solutions. Also,
to develop this concept, an algorithmmust use many parameters
and there are different ways to find optimal solutions for them.
Because this paper aims to find answers in an adequate time,
an attempt is made to use a more uncomplicated strategy to
adjust the parameters in this section. For this purpose, based on
the results obtained in other articles, the essential parameters,
including 𝛼, 𝛽, 𝜎, and Mao, are considered in Table 1. In this
table, the candidate values, and problem a5 are considered. Be-
sides, this test problem is solved ten times for each parameter
combination, and the best results are reported in the table below.

Table 1
Range of parameters of the proposed algorithm

Parameters Range The best value

alpha 0.5 1.5 2 2.5 3 3.5 4 4.5 5 1

beta 1 1.5 2 2.5 3 3.5 4 4.5 5 1

sigma 1 2 3 4 5 6 7 8 9 5

Mao 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.5

As mentioned above, the algorithm results with different pa-
rameters are displayed in Fig. 3 inmore detail. In these forms, the
amplitude of the parameters considered in the horizontal axis
is shown, while the vertical axis represents the Gap between
the best result obtained compared to the best-known solution

(BKS). The Gap for the best solution obtained is computed by
using formula (13):

𝐺𝑎𝑝 =
Best solution – BKS

BKS
×100. (13)

It should be noted that since the quality of the algorithm is
often lower than BKS, the values of these Gaps are positive
numbers. On the other hand, a zeroGap shows that the algorithm
has a high performance, and achieves BKS. By comparing the
results in Table 1 for alpha, it can be concluded that based on
Fig. 7, the Gap change diagram is almost ascending based on
its values. In other words, the higher the amount of alpha, the
lower the quality of the solution. Therefore, value 1 for this
parameter causes the importance of pheromone information not
to affect choosing a new path, especially at the beginning of the
algorithm,which has not yet obtained reasonable solutions to the
problem. Also, obtaining value 1 of beta has led the algorithm to
seek more global searches in initial iterations and prevent early
convergence at a slow rate to increase the pheromone on the
edges. Also, for the best solutions obtained so far that they must
have an updating pheromone at each iteration, value 5 for sigma
has been obtained. Finally, the minimum pheromone of each
edge for this problem is 0.5. In other words, if the pheromone
of each edge is less than 0.5, the amount of the pheromone on
the edge is increased to 0.5. It should be noted that high values
cause the difference between the edges to increase slowly, and
the algorithm does not have enough time to search locally.

Fig. 3. Parameter tuning of the proposed algorithm

4.2. Comparison to other algorithms
The numerical experiment is performed using three sets of prob-
lem instances available in the literature. The first set was intro-
duced in [25], and (0,0) is considered a depot for all cases. This
data set was derived from the well-known Taillard’s benchmark
for the HFFVRP and consists of eight tests numbered from a1 to
a8 with sizes ranging from 11 to 50 customers. The second data
set is provided by Taillard [26] and consists of eight instances
from a13 to a20 with sizes ranging from 50 to 100 customers.
The third data set was introduced in [25], and its size is from 10
to 100 customers.
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A simple criterion to measure the efficiency and the quality
of an algorithm is to compute the Gap of its solutions from the
exact solution on specific benchmark instances. Therefore, the
Gap of solutions of ant colony optimization (ACO) and modi-
fied ant colony optimization (MACO) are compared to the IBM
ILOG CPLEX Optimization Studio (often informally referred
to simply as CPLEX) solver results on AIMMS software as an
exact algorithm over the new eight small benchmark instances
in Table 2. The default stop condition is that AIMMS will let
the CPLEX solve the problem to local optimality. In this table,
𝑛 is the number of customers for each example, and the results
of three algorithms, including CPLEX solver, ACO, andMACO
are shown. The last column presents BKSs for each instance in
the literature. It is noted that each algorithm has three charac-
teristics; the best solution (cost), CPU time (Time), and Gap.
Since the ACO and MACO are meta-heuristic algorithms, the
algorithms are run ten independent times, and the Gap and time
of the best result are reported here.
Following Table 2, CPLEX can reach optimal solutions for

only two small-scale instances but in other cases, this algorithm
traps on local optimum points, and the lower bounds found
are worse than their best solution results of other metaheuristic
algorithms. The results indicate that ACO has been able to find
the best solutions in two examples, including a1 and a2, of
the eight examples. Furthermore, this algorithm has failed to
improve the solutions in only one instance in the name of a4
compared to CPLEX and has come up with solutions similar to
the ones found. Hence, it can be concluded that ACO is more
efficient than CPLEX in finding high-quality solutions. On the
other hand, theMACOhas been able to find better solutions than
CPLEX in five out of eight examples. In other words, theMACO
algorithm has been capable of improving the solutions gained
from CPLEX in instances a4, a5, a6, a7, and a8. Furthermore,
the MACO can improve solutions obtained by the ACO in most
instances, including a3, a4, a5, a6, a7, and a8. As a result,
the proposed algorithm yields better solutions than ACO and
CPLEX.
To assess the effectiveness of theMACO algorithm compared

to ACO in large-size instances, the results of the proposed al-

gorithm and ACO are shown in Table 3. This table contains
eight standard HFFVRP problems which possess a fair number
of customers whose sizes are between 50 and 100 called a13
to a20. For more information regarding the provided examples,
visit:
http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html
In Table 3, columns 3, 4, 5, and 6 show the results of ACO

andMACO, and their CPU times. From the comparison between
ACO and MACO, it can be seen that the ACO has been able
to find near solutions with a gap of less than one percent in
three examples compared with MACO. In more detail, ACO
has produced an equaled solution only in a14, while MACO
has generated better solutions in the remaining seven examples.
It should be noted that ACO has had a weak performance in
general, and has not produced the best solutions in any of the
examples except for a14. Therefore, MACO can escape local
optimum points and it makes a satisfactory improvement in the
performance compared to the ACO algorithm.

Table 3
Comparing ACO and MACO for HFFOVRPS

Instance 𝑁 ACO
Time
of
ACO

MACO
Time
of

MACO
BKS

a13 50 992.76 98.15 990.11 94.32 990.11

a14 50 448.25 101.42 448.25 104.11 448.25

a15 50 714.67 88.73 709.31 92.22 709.31

a16 50 802.95 99.52 791.01 106.31 791.01

a17 75 823.56 123.52 815.05 129.11 815.05

a18 75 1635.67 135.78 1601.55 145.04 1601.55

a19 100 938.62 172.77 900.11 189.78 900.11

a20 100 1088.62 178.02 1038.58 179.81 1038.58

To provide a better comparison between the classic ACO al-
gorithm and the proposed algorithm, see Fig. 4. In this figure,
several examples are shown in the horizontal axis, while the Gap

Table 2
Comparison results for small-size problems

𝑛
CPLEX ACO MACO

BKS
Cost Cap Time Cost Gap Time Cost Gap Time

a1 11 400.53 0 8 400.53 0 4.19 400.53 0 3.91 400.53

a2 16 416.80 0 5299 416.80 0 6.12 416.80 0 5.76 416.80

a3 21 723.90 0.54 14528 721.35 0.19 9.93 719.989 0 8.22 719.989

a4 26 734.99 0.26 18953 738.45 0.73 30.45 733.12 0 29.97 733.12

a5 31 827.51 0.14 11734 827.51 0.14 46.11 826.33 0 48.22 826.33

a6 36 530.18 2.13 131144 529.12 1.93 93.43 519.12 0 99.12 519.12

a7 41 – – 267161 785.92 1.29 99.19 775.92 0 98.23 775.92

a8 50 – – 645442 658.77 2.47 90.12 642.88 0 88.32 642.88
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Fig. 4. The Gap of solutions by ACO compared to the MACO

obtained by the ACO algorithm compared to the best MACO
solutions is presented in the vertical axis. Note that in this form,
there is only one specific curve that is ascending. This shows
that with the increasing number of customers, the difference
between the two algorithms grows. Therefore, the proposed al-
gorithm is more efficient than the classic type of algorithm in
large-size problems. Also, to determine the efficiency of the two
algorithms, and the obtained solutions during the implementa-
tion of the algorithm, Fig. 5 shows the value of the solutions of
the two algorithms for instance a19. It should be noted that in
this figure, the horizontal axis shows the repeat number of the
algorithm, and the vertical axis shows the repeat number of the
best solution obtained in that repetition. This is why the curves
of both algorithms are descending, although the quality of the
solutions has not grown in some repeats. In this figure, it can be
seen that although the ACO algorithm has good performance in
the tenth repetition of the implementation, and achieved 938.62,
in subsequent iterations it has not been able to escape from this
optimal local point and achieve better solutions. Therefore, it

Fig. 5. Comparison of MACO (top) and ACO (bottom) in example a13

has suffered a premature convergence and lost many repetitions
to improve. On the other hand, the MACO algorithm obtained
a much better solution than ACO and has been able to achieve
BKS at 16 repetitions with a good speed. The obtained result
for this problem is 900.11, which is 4% better than the ACO
solution.
From the statistical viewpoint in Table 4 there is no sta-

tistically significant difference between MACO and ACO (p-
value = 0.908687). Furthermore, it can be observed from both
the Mean and Standard Deviation values that the proposed al-
gorithm is better than the ACO algorithm. In more detail, the
Mean values are 302.82 for ACO and 292.81 for MACO. Also,
the results indicate that these two algorithms have perfect ability
for small-size problems, have approximately similar behavior,
and can converge to the best solutions. However, the ability of
ACO, against the proposed MACO, decreases when the number
of nodes and solutions increases.

Table 4
ANOVA table

Source SS df MS F Prob

Between-treatments 1186.953 1 1186.953 0.013 0.909

Within-treatments 2661572.123 30 88719.071

Total 2662759.076 31

To confirm the results obtained byMACO, two obtained solu-
tions are shown in Fig. 6. It should be noted that in this example,

a13

a17

Fig. 6. Some of the HFFOVRP solutions found by MACO
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the origin of the coordinates is considered as the depot, and the
rest of the customers are scattered in the first quarter of the coor-
dinates. In this figure, the horizontal and vertical axes show the
coordinates of the customers and the warehouse, and the routes
are obtained openly, indicating the correctness of the solutions
obtained. The MACO algorithm in these two forms has better
quality than ACO.
Although direct comparisons of the required computational

times cannot be generally conducted for various algorithms in
different computers, comparing the CPU time of the mentioned
algorithms is possible here because they run in the same sys-
tem. Figure 7a shows the CPU times of CPLEX compared to the
proposed algorithm and the CPU comparison of the ACO and
MACO algorithms are shown in Fig. 7b. Because the CPU time
of CPLEX could not be reported for the large-size instances,
only eight instances, including a1, a2, a3, a4, a5, a6, a7, and a8
are considered for the first comparison. For the second compar-
ison, all instances including small- and large-size instances are
considered for comparing MACO against ACO. By comparing
the obtained results in these figures, it is concluded that the
proposed MACO algorithm can obtain high-quality solutions in
sufficient CPU time.

(a)

(b)

Fig. 7. Comparison of the CPU time between CPLEX, ACO,
and MACO

The third category of instances, which includes a range be-
tween 10 and 100 customers, is derived from reference [25]. In
this set, the customers are scattered around the depot randomly.
Also, since the coordinates of customers and warehouses exist
as two-dimensional points as data it is easy to calculate their
Euclidean distances. In Table 4, the specifications of these cus-

tomers along with the proposed algorithm results are presented,
and compared to the results of the elite ant system (EAS), ge-
netic algorithm (GA), column generation (CG), and column
generation with modified ant system mixed with local search
(SISEC). It should be noted that this table presents the number
of customers of each example, the amount of CPU time of each
algorithm for each example, the BKS results, and the Gap be-
tween the results of the proposed algorithm compared to BKSs.
In other words, the solution to the CG and SISEC algorithms
will be improved sequentially until the software itself stops it.
On the other hand, EAS, GA, and MACO methods have user-
controlled execution time and their results have been considered
in ten repetitions, and the best ones were reported.

Fig. 8. Comparison of the CPU time between metaheuristics

According to these results, it can be seen that the proposed
algorithm has perfect performance compared to other methods
and has been able to improve BKS values in nine instances.
Apart from two examples 6 and 12, algorithms have achieved
BKSs in the rest of the instances. This algorithm has been able
to significantly improve the quality of the solutions compared
to the two EAS and GA meta-heuristic methods. In addition,
these two algorithms have been able to compete closely with
the proposed algorithm and achieve better solutions in less time
compared to the SISEC algorithm which has the best solutions.
Figure 8 presents the comparison of CPU time between meta-
heuristic algorithms, including EAS, GA, and MACO for the 22
instances. In this figure, the horizontal axis shows the names of
instances, and the vertical axis indicates the CPU time of each
algorithm.

5. CONCLUSION AND FUTURE WORK
In this paper, the HFFOVRP problem was investigated, as a
new version of the OVRP problem and a hybrid meta-heuristic
algorithm was presented. The MACO algorithm had excellent
efficiency in exploration and exploitation mechanisms and was
able to get high-quality solutions compared to other presented
methods for this problem (Table 5). It should be noted that
several effective solutions were presented to better search the
neighbors of high-quality solutions, and therefore it has an out-
standing performance in finding high-quality answers. It can be
predicted that using this algorithm for new versions of VRP will
lead to finding high-quality solutions. Besides, other methods
can be used as local search algorithms.On the other hand, paying
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Table 5
Comparison results of MACO with other algorithms

Instance n EAS T(EAS) GA T(GA) CG T(CG) SISEC T(SISEC) MACO T(MACO) BKS Gap

1 10 191.10 0.55 191.10 1.55 191.10 0.36 191.10 0.21 191.10 0.85 191.10 0

2 15 282 3.61 282 3.69 282 4.28 282 2.34 282 3.91 282 0

3 20 379.63 3.12 379.63 4.62 379.63 5.44 379.63 3.51 379.63 4.11 379.63 0

4 25 439.12 15.53 441.56 16.73 437.79 9.78 437.79 7.54 437.79 13.53 437.79 0

5 30 473.31 39.65 475.61 45.87 473.31 16.46 471.81 10.26 471.81 36.61 471.81 0

6 35 349.95 56.31 351.73 63.81 349.95 370.08 345.81 165.45 346.42 52.34 345.81 -0.18

7 40 607.99 61.68 611.67 72.39 600.99 767.42 589.41 457.94 587.64 64.62 589.41 0.30

8 45 676.04 62.64 687.46 77.67 676.04 2408.40 671.91 1157.81 671.91 66.72 671.91 0

9 50 915.63 67.27 924.73 76.72 907.3 256.72 899.51 98.64 895.75 66.73 899.51 0.42

10 50 537.18 69.76 537.18 85.62 507.58 2253.26 451.21 1784.54 443.31 68.59 451.21 1.75

11 50 829.24 64.31 829.24 86.11 826.19 840.18 798.61 621.39 790.86 63.29 798.61 0.97

12 50 952.41 64.51 963.61 89.12 947.81 698.96 924.18 584.74 926.11 70.11 924.18 -0.21

13 55 1086.65 65.98 1084.16 88.52 1074.91 1940.82 998.81 1254.93 998.81 69.90 998.81 0

14 60 1984.09 73.71 1984.09 98.62 1937.03 8807.25 1842.81 5694.87 1803.56 79.83 1842.81 2.13

15 65 1598.23 78.61 1599.18 106.67 1563.33 4203.14 1498.28 3549.14 1498.28 81.31 1498.28 0

16 70 974.27 76.73 983.52 156.27 962.57 6357.70 925.48 3614.87 925.48 86.82 925.48 0

17 75 1399.17 87.72 1421.60 154.72 1356.67 6021.97 1326.36 4987.31 1307.67 89.28 1326.36 1.41

18 80 1321.44 94.93 1387.29 167.13 1285.74 8331.64 1248.21 5927.98 1248.21 99.38 1248.21 0

19 85 1295.58 92.72 1341.52 189.32 1295.58 13731.35 1254.33 8642.29 1225.63 103.30 1254.33 2.29

20 90 1685.51 98.83 1783.29 223.69 1645.21 62748.94 1512.84 14621.62 1512.84 110.38 1512.84 0

21 95 1998.62 107.72 2210.27 289.73 1951.45 124548.98 1789.34 36124.87 1734.76 147.27 1789.34 3.05

22 100 2198.56 112.82 2287.39 332.27 2154.36 195648.84 2054.11 32548.18 2001.11 145.28 2054.11 2.58

attention to another version of this problem called HFFOVRP
with time windows is very useful, which can be utilized in the
delivery of perishable goods or the time limit of the recipients
of the goods. The application of these ideas and the presentation
of this new version will be postponed to future work.
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