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The finite element method (FEM) using Ansys program (APDL) was used in this
study to evaluate the idea of tuned vibration absorbers applied to a beam construction
for the undamped system. The ideal location for the Dynamic Vibration Absorbers
(DVAs) and their numbers to be installed on the fixed-fixed beam in order to lessen
beam vibration was also investigated. The DVA was coupled to the fixed-fixed beam
vibration node for three vibration modes. The natural frequency and frequency re-
sponse of the beam were calculated in this study using modal and harmonic analysis,
respectively. The vibrational characteristics of the F-F beam with and without DVAs
were presented. The simulation results demonstrated that the vibration amplitude de-
creases in the presence of the DVAs and its reduction depends on the locations of
the DVAs and its number. In addition, the attached DVAs affect the structural beam
vibration. Depending on the modes of vibration, the vibrational peak is the optimal
place to attach DVA.

1. Introduction

Forced vibration and free vibration are the two different types of vibration.
When no external forces are applied and the system oscillates as a result of inter-
nal forces, this is known as free vibration. At one or more basic frequencies, the
vibrating system is free, and these frequencies are affected by the mass, stiffness,
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boundary condition, and mass distributions [1]. Vibration reduction of the oscil-
lated structures is one of the major issues in the design process. One of the promised
solutions for vibration reductions is the use of dynamic vibration absorbers. When
forces are applied to the structure, the dynamic vibration absorber reacts by sup-
plying a force in the opposite direction, so limiting the movement of the beam. It
eliminates the steady-state motion of the linked point when appropriately tuned and
attached to a vibrating body that responds to harmonic stimulation. The DVA is a
device that consists of an auxiliary block spring system that absorbs the vibration
of the system with which it is associated [2, 3].

A dynamic vibration absorber, commonly referred to as “a tuned mass ab-
sorber”, can be connected to a primary dynamic structure to attenuate vibration or
sound emission. A mass-spring damper system with a single degree of freedom
(SDOF) is a typical passive vibration damper. The DVA can be used to lessen the
force or undesired vibration that the resonant mode in the fundamental structure
causes. The primary vibration of structures may be decreased by successfully trans-
ferring vibration energy to the DVA when DVA was set up to manage vibration
at the required frequency. In civil engineering, DVAs are widely used to increase
the durability of thin, tall structures [4–6]. According to Shi et al. (2014), suspen-
sion factors such as suspension frequency, damping ratio, mounting position, and
mass were examined for their effects on the vibration of the car body based on
the beam modal analysis and DVA parameter optimization [7]. In all four different
experimental settings, according to Zainulabidin and Jaini (2012), the vibration
amplitude is reduced, and the DVAs mounted on the beam efficiently absorb the
vibration [8]. The study is then validated by Noor Aslamiah (2016) utilizing the
(FEA) methodology and ANSYS APDL software. DVA effectively lowers the vi-
bration’s amplitude for particular vibration modes [9]. Salleh and Zaman (2016)
studied a fixed-fixed plate connected to a vibration absorber using finite elements
and utilized a single, lightweight DVA to absorb the vibration of a plate [10]. Ong
and Zainulabidin (2019) used FEA with ANSYS APDL software to demonstrate
that the DVA can reduce vibration amplitude at the applied natural frequency, re-
gardless of the number of DVAs used [11]. By comparing the amplitude before and
after fixing a DVA, Zainulabidin & Jaini (2013) were able to determine that the
DVA was successful in absorbing the beam vibration, which in turn lowered the
vibration amplitude of the beam structure [12]. Rozlan et al. (2017) showed that
combining two to ten (multiple) absorbers reduced vibration more effectively than
using only one [13]. In high-speed automobiles, the mode of vertical vibrations of
the car body was affected by the equipment of a DVA, according to the research
by Sunil K. Sharma and many others published in 2022. The influence of a DVA
approach is used to establish the ideal suspension frequency for different types of
equipment [14].

Structural dynamics is typically considered in civil, mechanical, and aerospace
engineering to be a field concerned with the analysis and characterization of struc-
tures’ vibratory response. A theory for substructurally synthesizing dissipation
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under free-wave motion conditions, i.e., waves not constrained to a particular
driving frequency, is presented and tested. This concept has ramifications for ap-
plications that require a high rigidity and high damping combination [15]. Bloch’s
theorem was used, along with a sub-structuring technique in which the resonating
branch was modelled independently and its effective dynamic stiffness was con-
densed [16]. Acoustic metamaterial beams contain an isotropic beam with built-in
spring-mass vibration absorbers. The structure may absorb waves in one direction
or two directions, depending on how the units were linked to the beam [17]. The
metamaterial sandwich panels were constructed using a host sandwich panel and
periodically connected resonant devices. Panels with and without damping were
explored. A significant decrease of vibration and sound was achieved also from
periodic design for the panels with varied parameter settings; on the other hand,
the reduction features were modified [18].

The vibration control performance of the MDOF DVA equipped with non-
linear HSLDS mount on the car body was analysed using dynamic simulation of
a nonlinear model in the time domain. The results reveal that the MDOF DVA
can effectively absorb vibration of the car body in many degrees of freedom and
improve the vehicle’s operating ride quality [19]. The beam tip responses were
compared to those simulated by ADAMS software to validate the dependability
of the DVA-beam element in handling different types of boundary conditions, and
good agreements was observed [20].

This work uses the spring block system, a fundamental vibration-absorbing
mechanism, to avoid the vibration of a fixed-fixed beam. Using APDL, finite
element analysis is used to perform the investigation. Furthermore, this works aims
at providing a comprehensive and innovative approach to the utilization of single
and multiple dynamic vibration absorbers (DVA) for controlling not just a single
mode shape, but three modes simultaneously. This distinguishes our work from
previous studies, such as the one conducted by Jacquot [Ref], which solely focused
on a single mode shape and lacked the consideration of multiple locations in the
DVA design. In addition, the current work presents a comparative analysis that
underscores the fundamental differences between our approach and the existing
literature. The example presented by Jacquot solely examined the DVA design
with respect to a single location, whereas our work accounts for multiple DVAs
and multiple locations, enabling the simultaneous control of three modes. This
expanded scope adds substantial value to the field and paves the way for more
effective vibration control strategies. Finally, the present work proposes a novel
mathematical expression for obtaining the optimal design of the DVA, taking into
consideration essential factors such as frequency shift, reduction in beam amplitude,
and achieving a trade-off between them. To the best of the author’s knowledge, this
proposed methodology stands as a unique contribution, not previously explored by
other researchers. The results can be used as a guide for the placement of DVA
because the objective of this research is to identify the ideal position for DVA
installation in order to obtain the highest level of vibration attenuation.
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2. Methodology

The beam is fixed at both ends and has a total length of 0.84 m, and is
partitioned into 43 nodes (N), each of which is 0.02 m apart. At node 4 of the beam,
a harmonic force, 𝐹𝑜, of 28.84 N was applied. The beam density, elasticity modulus,
and mass moment are 69 GPa, 2800 kg/m3 and 1.67 · 10−11 kg m2, respectively.
The stiffness (K) of the DVA had been chosen so that the values correspond to
the first three natural frequencies of the beam, and the dynamic vibration absorber
has a mass of 0.1 kg. This study has an initial set of testing scenarios that looked
into how tuning influences DVA performance at the vibration modes. There were
two cases of testing conditions, the first test was to study the effect of tuning a
single DVA at different nodes of vibration modes and the second test was used to
study the effect of multiple DVAs placed at deferent nodes for each mode of beam
vibrations. The two tests are presented in Tables 1 and 2.

Table 1. Conditions for the case one
Condition Configuration Condition Configuration

A1

B1 B2

C1 C3

Table 2. Conditions for the case two
Condition Configuration Condition Configuration

D E

G H

M
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2.1. Finite Element Method (FEM)

The FEM is one numerical technique for solving differential or integral prob-
lems. The finite element method is used to greatly simplify complex and difficult
situations. A geometry is broken down into finite, simple-shaped components for
easier and faster solutions [21].

The FEA for structural components greatly shortens the design cycle and raises
the quality of the finished product. For instance, linear FEA for acoustic analysis is
used in the automotive industry to design engines with acceptable temperatures and
pressures, improve comfort, analyse vibrations, increase rigidity of the structure,
and increase stress life of suspension components, among many other tasks [22].
Beam189 is the name given to the finite element model of the beam structure, which
was partitioned into 21 elements. Because it is a fixed ends beam, displacement and
rotation of its end are restricted. The DVA spring element is constructed utilising
the COMBINI14 element type and longitudinal displacement is the only degree of
freedom that is considered. The dynamic vibration absorber system was created by
combining MASS21 and COMBIN14 for the lumped mass and spring, respectively.

Modal and harmonic analyses were carried out using the mechanical ANSYS-
APDL-19.2. Modal analysis was used to recognise the essential frequency and
mode shapes of the beam. The harmonic analysis was used to study the dynamic
response of the beam with and without DVA to calculate a linear steady-state
response to harmonically varying loads over time. By computing the structure’s
response at various frequency, an amplitude versus frequency graph is usually
constructed.

3. Results and discussion

3.1. Modal analysis of F-F beam

Modal analysis is carried out to determine natural frequencies and the corre-
sponding mode shapes. The vibration will occur at its natural frequency for the 1st,
2nd and 3rd modes presented in Fig. 1 that vibrate at 14.463 Hz, 39.867 Hz, and
78.159 Hz, respectively. To analyse the impact of absorber masses on the natural
frequencies of the beam, the natural frequency of the beam was constructed with or
without absorber masses. Additionally, Tables 3 and 4 display the natural frequency

Fig. 1. The first three mode shapes
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(𝜔𝑛) of a beam connected to a DVA. The symbols M, Ku, KL and X/L represent
the mass of the DVA, stiffness of the DVA located above the beam, stiffness of the
DVA located under the beam, and location of the DVA on the beam, respectively.

Table 3. The natural frequency of the fixed-fixed beam linked to one DVA only
(one point of DVA application)

Condition Stiffness values
(N/m)

Natural frequencies
𝜔𝑛1 𝜔𝑛2 𝜔𝑛3

A1 X/L = 0.5 (N23)
A11 KL = K1 7.2807 27.650 39.867
A12 KL = K2 7.9775 39.867 52.510
A13 KL = K3 8.0620 39.867 60.033
B1 X/L = 0.28 (N14)
B11 KL = K1 8.7367 20.496 45.387
B12 KL = K2 9.8745 26.982 64.994
B13 KL = K3 10.006 28.097 69.798
B2 X/L = 0.71 (N32)
B21 KL = K1 8.7367 20.496 45.387
B22 KL = K2 9.8745 26.982 64.994
B23 KL = K3 10.006 28.097 69.798
C1 X/L = 0.21 (N11)
C11 KL = K1 7.5463 17.216 43.376
C12 KL = K2 9.5880 22.393 54.306
C13 KL = K3 9.8623 23.846 58.955
C2 X/L = 0.5 (N23)
C21 KL = K1 7.2807 27.650 39.867
C22 KL = K2 7.9775 39.867 52.510
C23 KL = K3 8.0620 39.867 60.033
C3 X/L = 0.78 (N35)
C31 KL = K1 10.052 18.184 43.565
C32 KL = K2 11.599 25.054 55.766
C33 KL = K3 11.752 26.576 60.491

Table 4. The natural frequency of the F-F beam linked to multiple DVAs
(two or more DVAs attached to the beam)

Condition Stiffness
(N/m)

Natural frequency
𝜔𝑛1 𝜔𝑛2 𝜔𝑛3

D X/L = 0.28 and 0.71 (N14 and N32)
D1 KL = K1 7.6319 11.547 26.275
D2 KL = K2 8.4188 16.595 49.396
D3 KL = K3 8.5135 17.565 57.056
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Table 4 [cont.]

Condition Stiffness
(N/m)

Natural frequency
𝜔𝑛1 𝜔𝑛2 𝜔𝑛3

E X/L = 0.21, 0.5 and 0.78 (N11, N23 and N35)
E1 KL = K1 6.6313 12.030 13.198
E2 KL = K2 7.1739 18.131 24.557
E3 KL = K3 7.2398 19.378 28.489
G X/L = 0.5 (N23)
G1 Ku = K2, KL = K1 5.9496 18.723 39.867
G2 Ku = K3, KL = K1 5.9669 19.308 39.867
G3 Ku = K3, KL = K2 6.1806 39.867 47.423
H X/L = 0.28 and 0.71 (N14 and N32)
H1 Ku = K2, KL = K1 6.3164 10.674 18.644
H2 Ku = K3, KL = K1 6.3362 10.724 19.190
H3 Ku = K3, KL = K2 6.5908 12.950 46.451
M X/L = 0.21, 0.5 and 0.78 (N11, N23 and N35)
M1 Ku = K2, KL = K1 5.2994 11.347 12.965
M2 Ku = K3, KL = K1 5.3126 11.393 12.987
M3 Ku = K3, KL = K2 5.4643 14.381 20.355

3.2. The fixed-fixed beam harmonic analysis without DVA

The frequency response of the fixed-fixed beam was studied through harmonic
analysis. Fig. 2 depicts the frequency response of the fixed-fixed beam when no
DVA is attached.

Fig. 2. Dynamic response without DVA

The three peaks indicate the amplitude of vibration that befalls at 14 Hz,
40 Hz, and 70 Hz for the first, second, and third mode of vibration, respectively.
The amplitude of the first mode of vibration is 3.49 · 10−2 m, the second mode is
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6.87 · 10−4 m, and the third mode is 7.95 · 10−2 m. Since the amplitude value in
the second mode is very low and close to zero, we will impose the reduction and
comparing with the first mode. After utilising a DVA to compute the amplitude
changes for each condition, the amplitude changes in these three frequencies are
monitored and analysed.

3.3. Harmonic analysis of fixed-fixed beam with DVA

The (DVA) is a device made up of an auxiliary mass-spring system that tends
to dampen the vibration of the structure to which it is attached, as shown in Fig. 3.
Many researchers have examined the use of a DVA in linear systems [23–25].
Two case studies were considered in the present work, attaching single DVA and
multiple DVA, respectively, and they are:

Case 1: Investigate the influence of the performance of a single DVA.
Fifteen experiments are presented in Table 3 for this case. Only one DVA is attached
at a specific point defined by the symbol N (as shown in Fig. 1). The values of the
DVA parameters are also varied for each experiment.

Case 2: Investigate the influence of the performance of multiple DVAs.
Fifteen experiments are presented in Table 4 for this case. Multiple DVAs are
attached at specific points defined by the symbol N (as shown in Fig. 1). Values of
the DVA parameters are also varied for each experiment. The symbol Kl and Ku
means that the DVA is attached to lower and upper sides of the beam, respectively.

Fig. 3. Schematic representation of a beam structure
attached with two DVA

3.4. The effect of each DVA in the 1st mode of vibration

According to Table 3, fifteen various types of conditions were applied, with
the first DVA of 14.463 Hz, the second DVA of 39.867 Hz, and the third DVA of
78.159 Hz, in their natural frequency, respectively. These DVAs were placed on the
peak and anti-peak of the 1st three modes of beam vibration.
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3.4.1. Result of the condition (A11, A12, and A13)

According to condition A11, the amplitude reduced in the first, second, and
third modes, as shown by the frequency response of DVA in Fig. 4. The system’s
new responses were similar to those of the original system. The inherent frequency
of the system is significantly influenced by the mass of the DVA. The vibration
amplitude of the initial mode increased and the new response frequency moved in
the conditions A12 and A13, proving that the DVA is ineffective.

Fig. 4. Comparison of amplitudes between without and with DVA for conditions A11, A12 and A13

3.4.2. Result of the condition (B11, B12, and B13)

At condition B11, the amplitude decreased in the first, second, and third modes,
as shown in Fig. 5. The new response frequencies were similar to those of the
original systems. By altering the mass of DVA, it was possible to drastically
alter the reaction frequency of the system. The response frequencies changed at
conditions B12 and B13, and the vibration amplitudes of its first and second modes
increased, showing that the absorber did not absorb any vibrations.
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Fig. 5. Comparison of amplitudes between without and with DVA for conditions B11, B12 and B13

3.4.3. Result of the condition (B21, B22, and B23)

The amplitude reduced in the first and third modes, as can be seen in the
condition B21 in Fig. 6. The new response frequencies of the system shifted toward
those of the original systems. The conditions B22 and B23 showed a change in
the response frequencies and an increase in amplitude of the first and second
modes, respectively, which showed that the absorber was not efficient in reducing
vibrations.
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Fig. 6. Comparison of amplitudes between without and with DVA for conditions B21, B22 and B23

3.4.4. Result of the condition (C11, C12, and C13)

The condition C12 in Fig. 7 shows that the amplitude of all vibrations decreased.
The new response frequencies of the system approached those of the initial systems.
However, not all the types of vibration exhibit a reduction in amplitude, as shown
by the condition C13 (the DVA is not functional). According to condition C11, the

Fig. 7. Comparison of amplitudes between without and with DVA for conditions C11, C12 and C13
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amplitude of vibration for the first mode decreased by 22.23%, while increased by
9.98% for the third mode. The frequencies shifted, implying that the tuned absorber
only vibrates with the beam at two or three new peaks.

3.4.5. Result of the condition (C31, C32, and C33)

As seen in Fig. 8, condition C33 caused the vibration amplitude for the first
mode to increase by 10.31% while decreased by 70% for the third mode. The
frequencies subsequently reverted to their initial settings. The DVA was able to
absorb vibration for the first and third modes, but not for the second mode for the
condition C32. Since the tuned absorber vibrated together with the beams at three
additional frequencies under condition C31, the amplitude of vibration in all modes
increased.

Fig. 8. Comparison of amplitudes between without and with DVA for conditions C31, C32 and C33

Table 5 shows that all vibration modes could be effectively absorbed by DVA
placements, with the exception of the case when they were situated at the node of
the second vibration mode, which increased the vibration amplitude. In comparison
to the third vibration mode, the amplitude of the second mode increased as a result
of the second DVA’s inertial impact at the vibration node, which led to a smaller
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Table 5. Amplitude percentage changes (APC %) for case-1

Cond.
N23

1st mode 2nd mode 3rd mode
Ampl.
(m)

APC
%

Shift
(Hz)

Ampl.
(m)

APC
%

Shift
(Hz)

Ampl.
(m)

APC
%

Shift
(Hz)

Without
DVA 3.49 · 10−2 Ref. 6.87 · 10−4 Ref. 7.95 · 10−2 Ref.

A1
A11 2.19 · 10−2 −37.24 −7 2.33 · 10−2 −33.23 −12 3.10 · 10−2 −61 +3
A12 3.54 · 10−1 +914 −6 3.02 · 10−6 −99.55 0 6.02 · 10−3 −92.42 −25
A13 1.33 · 10−1 +281 −6 2.03 · 10−4 −70.45 0 4.48 · 10−2 −43.64 −18
B1
B11 3.03 · 10−2 −13.18 −5 7.59 · 10−3 −78.2 +5 2.95 · 10−2 −62.89 +2
B12 9.81 · 10−2 +181 −4 3.36 · 10−1 +862 −13 1.86 · 10−1 +133 −13
B13 2.003 +5639 −4 6.89 · 10−2 +97 −12 3.22 · 10−2 −59.49 −8
B2
B21 2.64 · 10−2 −24.35 +6 9.49 · 10−3 −72.8 +5 2.69 · 10−2 −66.16 +2
B22 5.82 · 10−2 +66.76 −4 6.52 · 10−2 +79 −13 2.39 +2906 −13
B23 1.22 +3395 −4 1.12 · 10−1 +220 −12 7.87 · 10−2 −1.006 −8
C1
C11 2.71 · 10−2 −22.34 +3 4.53 · 10−3 −87.02 +3 8.68 · 10−2 +9.18 +3
C12 3.04 · 10−2 −12.89 −4 1.73 · 10−2 −50.42 −18 2.31 · 10−4 −99.70 0
C13 9.94 · 10−1 +2748 −4 5.45 · 10−2 +56.16 −16 7.83 · 10−2 −1.50 −19
C3
C31 8.45 · 10−2 +142 −4 5.05 · 10−3 −85.53 +3 1.28 · 10−1 +61 +3
C32 2.20 · 10−2 −36.96 −2 1.77 · 10−1 +407 −15 3.94 · 10−2 −50.44 −22
C33 3.85 · 10−2 +10.31 −2 2.25 · 10−2 −35.53 −13 2.47 · 10−2 −68.93 −18

percentage of the drop caused by the original reduction in amplitude. The goal of
each DVA was to reduce vibration at a given location, however, when a DVA was
made to focus on a single vibration mode, it might also be able to lower vibration
for other modes because the DVA effect changed the initial vibration of the beam.
However, the natural frequency would be preserved if the block was positioned at
the node of the designated vibration mode. Furthermore, it was believed that the
DVA would work better if it was placed close to both the vibratory peak and the
stimulation source. This may be seen by contrasting the DVA mode’s measurements
at the peak of the first and third mode, respectively. The most successful example in
Table 5 is the Case-1, where DVA decreased vibration in each of the three vibration
modes based on the amplitude percentage change (APC) of the specific mode
compared to the one without DVA. The negative sign of the percentage change
means a reduction in the amplitude, while the positive sign means an increasing
in the amplitude (which is undesirable). In addition, the system frequency varies,
increases or decreases, based on the DVA design parameters and its location. This
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causes a shift to the left or to the right of the frequency at the peaks, as shown
in Table 5. The negative sign means that the system frequency decreased due to
addition of the DVA, while the positive sign means that system frequency increased.
Frequency shift and its importance will be discussed in Section 5.

3.5. Effect of DVA placement of the beam at case-2

A number of simulations were run according to Table 4 to analyse the vibra-
tion characteristics of a fixed-fixed beam after the installation of several DVAs at
particular locations.

3.5.1. Result for condition (D1, D2 and D3)

The first DVA is installed at N14 from the fixed end of the beam, and the second
DVA is installed at N32. Fig. 9 illustrates how the conditions D2 and D1 reduced
the amplitude and brought the frequencies closer to those of the initial system.
Although the amplitude was decreased in condition D3, the DVA did not function
for the third mode. The condition that best absorbed vibrations was found to be D2.

Fig. 9. Comparison of amplitudes between without and with DVA for conditions D1, D2 and D3
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3.5.2. Result for condition (E1, E2 and E3)

As seen in Fig. 10, the vibration amplitude was successfully decreased in the
E1 condition when the absorber was tuned to the first and second mode of the beam.
The amplitude of vibration was also successfully decreased in situations E2 and
E3, where the absorber was in the third mode of the beam. The system response
frequency was similar to that of the original system for all situations. The absorber
in the first mode did not, however, reduce the amplitude in the E2 condition.

Fig. 10. Comparison of amplitudes between without and with DVA for conditions E1, E2 and E3

3.5.3. Result for condition (G1, G2 and G3)

A single DVA was used in this work and was mounted in the middle of the
beam at N23. As seen in Fig. 11, condition G3 successfully lowered the amplitude
for the third mode while leaving the second amplitude unchanged. Furthermore,
the new response frequency was similar to that of the initial system. The third mode
of vibration was successfully suppressed under all conditions. The DVA did not
function for the first mode under the circumstances G1 and G2, as the first mode
did not exhibit a decrease in beam vibration amplitude.
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Fig. 11. Comparison of amplitudes between without and with DVA for conditions G1, G2 and G3

3.5.4. Result for condition (H1, H2 and H3)

Two DVAs are connected in parallel at N14 and N32 from the fixed beam in the
vibration mode shape. All three kinds of vibration are successfully minimized, as
seen in Fig. 12. The H1, H2, and H3 conditions resulted in a decrease in vibration
amplitude.
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Fig. 12. Comparison of amplitudes between without and with DVA for conditions H1, H2 and H3

3.5.5. Result for condition (M1, M2 and M3)

At positions N11, N23, and N35 from the fixed beam, three DVA are parallelly
attached to the beam. All three peaks of vibration are effectively decreased for
all conditions, as seen in Fig. 13. The new response frequencies are comparable
to those of the original system. The DVA mass affects the system’s fundamental
frequency, demonstrating that the DVA tuned to the beam is successful in reducing
vibration amplitude.

Fig. 13. Comparison of amplitudes between the cases without and with DVA for conditions M1, M2,
and M3
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A summary of the results of the amplitude reduction is shown in Table 6,
where in some situations it was possible to absorb the second vibration mode
without changing the capacity. The first and third vibration modes also experienced
notable drops in vibration amplitude. The optimum vibration reduction state was
represented by the M3 (Ku = K3, KL = K2), where the amplitude reduction of
the vibration mode was greatest at the first vibratory peak. In E2, G1, and G2, the
amplitude of the first mode reduced, and in condition D3, the third mode reduced.
In such cases, the addition of DVA did not help reducing the amplitude of other
vibration mode forms but rather boosted the vibration of the first or third vibration
mode. Conditions D3, E2, G1, and G2, though, may demonstrate that the attached
DVA decreased the vibration of the beam.

Table 6. Amplitude percentage change (APC%) for case-2

Cond.
N23

1st mode 2nd mode 3rd mode
Ampl.
(m)

APC.
%

Shift
(Hz)

Ampl.
(m)

APC.
%

Shift
(Hz)

Ampl.
(m)

APC.
%

Shift
(Hz)

Without
DVA 3.49 · 10−2 Ref. 6.87 · 10−4 Ref. 7.95 · 10−2 Ref.

D1 1.76 · 10−2 −49.57 −6 1.94 · 10−2 −44.41 −14 5.36 · 10−2 −32.74 +3
D2 2.24 · 10−2 −35.81 −6 7.21 · 10−4 −97.93 0 1.26 · 10−2 −84.15 −29
D3 1.94 · 10−2 −44.41 −5 7.09 · 10−4 −97.97 0 1.73 · 10−1 +117.6 −21

E1 1.61 · 10−2 −53.86 −7 2.27 · 10−2 −34.95 −19 2.75 · 10−2 −65.40 +7
E2 4.54 · 10−2 +30.08 −7 4.70 · 10−3 −86.53 −15 1.47 · 10−2 −81.50 −3
E3 3.39 · 10−2 −2.85 −7 7.45 · 10−3 −78.65 −12 1.47 · 10−7 −99.99 0

G1 1.07 · 10−1 +206.5 −8 5.51 · 10−3 −85.24 −21 1.15 · 10−2 −85.53 −25
G2 1.65 · 10−1 +372.7 −8 6.05 · 10−3 −82.66 −21 1.92 · 10−2 −75.84 −18
G3 3.47 · 10−2 −0.57 −8 2.68 · 10−3 -92.32 +7 6.44 · 10−3 −91.89 −17

H1 2.07 · 10−2 −40.68 −8 4.80 · 10−3 −86.24 −21 1.15 · 10−2 −85.53 −28
H2 1.97 · 10−2 −43.55 −8 9.76 · 10−3 −72.03 −21 7.17 · 10−2 −9.81 −21
H3 1.77 · 10−2 −49.28 −7 3.63 · 10−3 −89.59 +6 1.96 · 10−2 −75.34 −20

M1 1.88 · 10−2 −46.13 −9 3.69 · 10−3 −89.42 −14 5.42 · 10−3 −93.18 −1
M2 2.96 · 10−2 −15.18 −1 3.10 · 10−3 −91.11 −20 8.45 · 10−3 −89.37 −37
M3 1.33 · 10−2 −61.89 −9 6.81 · 10−3 −80.48 −20 2.32 · 10−3 −97.08 −29

4. Parametric study

4.1. Effect of mass on a harmonic response for different stiffness values

The harmonic response of the F-F beam for each of the three distinct mode
forms, with variable DVA mass values, is shown in Fig. 14 a, b, and c, respectively,
that show the responses for the first, second, and third modes. Both the mass and
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stiffness levels have an impact on the dynamic response, and the response varies
depending on the appropriate mode. For the first mode, the maximum amplitude
at N23 (X/L = 0.5) (K3) can be significantly changed even by small changes in
the mass values at lower levels of applied stiffness. Minor variations have been
found for the second and third modes, on the other hand. The resonance-induced
alterations in the response are particularly pronounced in the second and third
modes (K1 and K2, respectively).

(a) (b) (c)

Fig. 14. The influence of mass on harmonic responsiveness for three mode shapes (a, b, and c)

4.2. Effect of stiffness on a harmonic response for different mass values

In Fig. 15, the harmonic response of the F-F beam is presented for the three
different mode shapes at various DVA stiffness values. The responses for the first,
second, and third modes are illustrated in Figs. 15a, b, and c, respectively. The values
of both springs and stiffness are crucial in determining the dynamic response, and
the response varies depending on the corresponding mode. For instance, in the
1st mode with a smaller mass value of 100 g, there is a significant variation in
the maximum amplitude node 23 (X/L = 0.5) with changes in stiffness values.
Conversely, minor variations are observed for the 2nd and 3rd modes. Meanwhile,

(a) (b) (c)

Fig. 15. The influence of stiffness on harmonic responsiveness for three mode shapes (a, b, and c)
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the most substantial change in the response is observed at 200 g and 300 g for the
second and third modes, respectively, due to the resonance of the three modes that
can be achieved at these specific mass values in this test.

4.3. Effect of DVA location on a harmonic response for different mass values

The harmonic response of the F-F beam for three mode forms at various DVA
positions is shown in Fig. 16. The response for the first mode with M = 100 g is

(a) (b) (c)

(d) (e) (f)

(y) (x) (s)

Fig. 16. The effect of DVA locations in harmonic response for three mode shapes; (a, b, and c) for
M = 100 g; (d, e and f) for M = 200 g; (y, x, and s) for M = 300 g
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shown in Fig. 16 (a, b, and c), (d, e, and f) for M = 200 g, and (y, x, and s) for
M = 300 g. The stiffness, mass, and position are some of the variables that affect the
dynamic response; the responses change depending on the corresponding mode. For
instance, the stiffness (K3–K1) and the lower value of applied mass (100 g–300 g)
for the first mode have a considerable impact on where the maximum amplitude
node 23 (X/L = 0.5) is located. For the second and third modes, however, small
alterations are seen. Due to the resonance of the three modes that can be achieved at
these values for the three masses and stiffness in this test, the most notable changes
in response for the second and third modes happen at (100 g–300 g with K2–K1)
and (100 g–300 g with K2–K1), respectively.

5. Overall amplitude change percentage and frequency shift

As noticed previously, the results showed that adding DVAs at specific loca-
tions affects the percentage change in the amplitude and makes a shift in the resulted
system frequency. The importance of frequency shift effect is that, in some circum-
stances, machinery may be built to function within a certain frequency range. The
effectiveness and efficiency of the machinery may be impacted if the inclusion
of a DVA causes the system frequency to shift outside of the required range. For
instance, a change in the system frequency could affect the critical speed of rotors,
which would result in excessive vibration, wear, and possibly failure. In addition, in
some applications, sensors may be employed to gauge a machine or vibration levels
of structures. The sensors may no longer reliably record the vibration amplitude if
the inclusion of a DVA shifts the system frequency, resulting in inaccurate results
and consequently incorrect maintenance or repair choices.

According on that, it is important that when constructing a DVA, a compro-
mise must be made between minimizing any frequency shift in the system and
reducing the vibration amplitude. In some circumstances, lowering the vibration
amplitude might be the main objective, and a DVA-induced frequency shift might
be acceptable or even desirable. In other circumstances, limiting the frequency shift
could be more crucial, especially if the system is sensitive to frequency changes
similar to those in our application in this work. Therefore, when building and in-
stalling a DVA, it is crucial to carefully evaluate the specific design and operating
circumstances of the system and to optimize the design to achieve the necessary
amount of vibration reduction while reducing any negative effect. The present work
proposes a novel mathematical expression for obtaining the optimal design of the
DVA, taking into consideration essential factors such as frequency shift, reduction
in beam amplitude, and achieving a trade-off between them. To the best of au-
thor’s knowledge, the proposed methodology stands as a unique contribution, not
previously explored by other researchers.

The authors suggested a simple, but efficient, mathematical expression based
on the numerical values of the results to make the trade-off mentioned above.
This expression involves the amplitude percentage change and the corresponding
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frequency shifting (
∑

APC% –
∑

shift frequency) for the three modes for all
presented cases in this work and illustrated in Table 7. The results showed for case-
1 that the condition C12 is the best selection based on the mathematical expression
above, whereas condition B13 produced the worst reduction value. In the second
scenario, condition M3 showed the best selection while condition G2 was the worst.

Table 7. The relationship between the reduction of vibration and shifting frequency
Condition

Case-1
∑

APC% –
∑

shift freq. Condition
Case-2

∑
APC% –

∑
shift freq.

A11 −14.981 D1 –11.231
A12 +823.519 D2 –120.401
A13 +275.396 D3 +81.709
B11 −19.781 E1 –40.754
B12 +1278.489 E2 –30.461
B13 +5784.999 E3 –68.001
B21 −17.821 G1 +114.219
B22 +3154.249 G2 +3654.689
B23 +3722.483 G3 –70.324
C11 +41.939 H1 –136.961
C12 −52.521 H2 –42.901
C13 +2896.149 H3 –102.721
C31 +251.959 M1 –120.241
C32 +415.086 M2 -121.171
C33 +5.339 M3 -164.961

Finally, future directions of the research will focus on improving the design and
manufacturing procedures to make them more effective and affordable, creating
more sophisticated models to accurately predict their performance, and looking into
new applications and industries where they can be used. The study of intelligent
materials and sensors in dynamic vibration absorbers is also of interest, since it
may help develop systems that are more adaptable and quick-reacting. Further
study may be successful in examining the usage of dynamic vibration absorbers
in combination with other vibration control strategies, such as active and passive
dampers.

6. Conclusion

Finite element analysis was used to explore the effect of tuned vibration ab-
sorber location on the beam structure. The results show that the placement of the
absorber, mass, and stiffness all have a substantial impact on the amplitude of the
beam vibration.

• The use of DVA could represent an effective method for vibration attenuation
of the beam structure.
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• The mass and stiffness of the DVA used in this work show a significant effect
on the harmonic response of the beam. Their effects depend on the mode of
vibration required to attenuate and the DVA location.

• Adding a DVA to the main system shifts the frequency of the harmonic
response to the left or right of the main system frequency without DVA,
depending on the combined effect of DVA mass and spring values.

• Optimal attenuation performance can be attained by choosing optimal values
for DVA mass, spring, and DVA location. That means that for every single
DVA location there are critical values of DVA mass and stiffness.

• The tuned absorber that exhibits a considerable amplitude at any frequency,
but no significant peak amplitude introduced by the beam, vibrates in its
mode.

The test findings clearly show a relationship between frequency shift and
vibration. Condition C12 produced the biggest reduction in vibration amplitude for
the first case with an average reduction of 54.33% for all three modes. In contrast,
condition M3 demonstrated the most substantial reduction in vibration amplitude in
the second case with an average reduction of 79.81% for all three modes. Vibration
amplitude can be reduced even further by adding more DVA units, but only if they
are placed properly.
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