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Research paper

Effect of icing as a non-structural mass on the variation
of natural frequency of a lightweight lattice structure

Wiesław Kowalski1, Mateusz Richter2, Katarzyna Tokarczyk3

Abstract: This paper analyzes the effect of additional masses for lattice structures on the nature of
changes in the natural frequencies of the structure. An attempt to mathematically describe this nature
and the scale of the effect with a known thickness of the icing layer was also made. The discussion
concerns a structure with a sacred purpose – the Gate of the Third Millennium, located in the Lednickie
Fields, in the KiszkowoMunicipality, Gniezno Poviat. The icing of structural bars (frost, rime) is treated
as a source of additional masses, although the origin of non-structural mass is of secondary importance
for the analysis in question. The analysis was carried out by Finite Element Method (FEM) modeling
of the structure, assuming a single-parameter variation of its mass (that is, the additional mass of all
elements of the test object varies proportionally to a single parameter, which is the outer surface of
the element on which the ice layer is deposited). By solving the vibration eigenproblem for successive
models, representing different intensities of icing of the object, the values of successive frequencies
and descriptions of the corresponding eigenmodes were determined. The results obtained allow us to
formulate a postulate that the possibility of a change in the mass of the analyzed object resulting from
icing or other causes should be taken into account in strength analyses, wherein the dynamic properties
of the structure play an important role, such as in assessing the susceptibility of the structure to dynamic
loads.
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1. Introduction

In structural theory, the term “dynamic load” has become accepted for certain compo-
nent loads on structures. We say that an object (a structure or a part of it) is dynamically
loaded if the satisfaction of the equilibrium condition for the system of forces acting on
this object requires the inclusion of inertia forces in the equilibrium equations (without
inertia forces, the equilibrium equations cannot be satisfied). Thus, a dynamically loaded
structure is a body “in motion”, because one can speak of inertial forces only under such
circumstances. Nevertheless, since structures are restrained bodies (structures and their
parts have external ties), the motion of a structure should be understood as oscillation
around an equilibrium position, or in other words – vibration in a broad sense. Other forms
of movement are difficult to imagine for structures, although they can occur with vehicles
and other machinery proposed by Urbański et al. [1], Urbański and Richter [2].
The term “resonance” is used when talking about dynamic loads on structures. What

we mean here is the relationship in which the frequency at which the “load” applied to the
structure appears, to the frequency that characterizes the object dynamically (the frequency
of its free vibration). Resonance occurs when the two frequencies have values equal or
at least close to each other; the amplitudes of all oscillation parameters (displacements,
velocities, accelerations, inertia forces, etc.) increase then, up to a state referred to as
failure. It can be destruction or damage to the structure, interference for the operation of
machinery installed in the building, harmful effects on the health of its users, sometimes
only inconvenience of use (such as unpleasant noise) – still, resonance is always an adverse
phenomenon. The designer of a structure subjected to dynamic loads always aims to
eliminate resonance. It is therefore necessary to design such a relation of the structure
mass to the stiffness of its elements that the free vibration frequencies that result from this
relation are as distant as possible from all the frequencies that characterize the dynamic
load. Such a process is referred to as “structural tuning” in professional jargon.
In order to complete such “tuning”, the designer must know the amplitude-frequency

characteristics of the vibration excitation to which the structure will be exposed and the free
vibration frequencies of the structure. The extraction of information in the two aforemen-
tioned data groups requires special computational procedures, which is often difficult and
sometimes fails. The reason for failures may be the difficulty in unambiguously determin-
ing the frequency characteristics of the vibration excitation, which is often the case with
kinematic excitation of natural (tectonic) origin. For example, successive earthquake events
in a given region may have completely different characteristics, which are, after all, depen-
dent on the mechanisms governing how energy is released at the foci of tremors and how
seismic waves propagate. These mechanisms cannot be controlled or predicted by humans.
The effects of such a situation occurred during the great earthquake in Kobe, Japan, on
January 17, 1995, devastating to many structures that were, after all, designed with seismic
loads in mind, but with insufficient characteristics in terms of dynamic performance, and
failed (Fig. 1).
The reason for errors in proper dynamic “tuning” may also be the difficulty of estab-

lishing unambiguous values for the free vibration frequencies of designed (or diagnosed)
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Fig. 1. Failure of a flyover on the “Hanshin” expressway after the 1995 Kobe earthquake source:
https://www.japantimes.co.jp/opinion/2020/01/16/editorials/learned-enough-1995-kobe-quake/

structures. The free oscillator frequencies depend on the relationship between their mass
and stiffness (and their arrangement in the object). Thus, the ambiguity may be due to
the variability of both of these quantities (both as to value and location) over the life of
the structure. The change in stiffness can result from corrosion processes, changes in the
moisture content of materials (e.g., wood) or rheological processes taking place (aging of
the material, relaxation in the compression mechanisms of concrete), temperature changes
(e.g., during a fire), etc. While a change in the stiffness of a structure usually results from
rare and undesirable phenomena that have the character of failures, numerous structures
are subject to a change in mass. In addition, these changes occur repeatedly, sometimes
even many times a day; a significant part of the variable loads on structures is associated
with changes in their mass. Such a situation may be relevant to assessing the vulnerability
of a structure to dynamic influences if it is exposed to such influences.
Examples include lattice structures at great heights, such as cellular telephone relay

towers, religious buildings (the cross on Giewont – Fig. 2), cable railroad support poles.

Fig. 2. The cross on Giewont in the winter period. Source: https://gazetakrakowska.pl/giewont-zima-
olsniewa-krzyz-oblepiony-sniegiem-w-tatrach-o-tej-porze-roku-trzeba-jednak-uwazac-zdjecia/

ar/c1-15421329

https://www.japantimes.co.jp/opinion/2020/01/16/editorials/learned-enough-1995-kobe-quake/
https://gazetakrakowska.pl/giewont-zima-olsniewa-krzyz-oblepiony-sniegiem-w-tatrach-o-tej-porze-roku-trzeba-jednak-uwazac-zdjecia/ar/c1-15421329
https://gazetakrakowska.pl/giewont-zima-olsniewa-krzyz-oblepiony-sniegiem-w-tatrach-o-tej-porze-roku-trzeba-jednak-uwazac-zdjecia/ar/c1-15421329
https://gazetakrakowska.pl/giewont-zima-olsniewa-krzyz-oblepiony-sniegiem-w-tatrach-o-tej-porze-roku-trzeba-jednak-uwazac-zdjecia/ar/c1-15421329
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In a similar situation, we find structures that are significantly higher than those in their
neighborhood or located in open areas. In this situation, the structures become particularly
exposed to the wind, as there is no natural cover around them. The impact of air movement
on the object, in addition to static thrust, can be dynamic here. It is about rhythmic
gusts of wind or other effects caused by undisturbed airflow around the object. In such
a situation, the structural design process requires an analysis of the structure’s susceptibility
to wind gusts and, in special situations, it is necessary to analyze the dynamic response
of the structure, determined by its dynamic characteristics proposed by He [3], Fekr and
McClure [4], Clough and Penzien [5], Fengli et al. [6] which need to be determined. The
difficulty in conducting a correct analysis here is due to the periodic variation of mass
with the developing icing of the bars (freezing dew), the deposition of rime and sometimes
additionally freezing wet snow on the bars of the structure.
Ice deposition on parts of building structures, vehicles and machinery, as a constant

phenomenon in cold climate conditions, has been an area of interest to the world of
science and technology for many years (Macklin [7], List [8], Makkonen [9]). The problem
here is the issue of monitoring the facilities, for early prediction of dangerous conditions
associated with excessive ice accumulation proposed by Zaharov [10], Podrezov et al. [11],
Lehky et al. [12], Harstveit et al. [13], Lehky and Sabata [14], Vaculik and Rampl [15],
preventing excessive development of such phenomena, such as through the use of release
coatings (Shigeo et al. [16], Kimura et al. [17]), and developing procedures and calculation
techniques for reliable estimation of the extent of icing as an additional load on structures
(PN-87/B-02013 [18], ISO 12494 [19], Fikke et al. [20], Xie and Sun [21], Yang et al. [22]).
The problem of object icing is of practical importance in regions with cold climates,
including mountains, with high humidity, such as in marine conditions (Makkonen [23,24],
Gates [25] and Hørjen [26]).
In terms of dynamic issues considered here, in the general case, icing creates two types

of problems:
1) it represents a source of additional mass, affecting the change of dynamic character-
istics of the structure, and thus interfering with its “susceptibility” to resonance (e.g.,
due to wind gusts, as already mentioned) proposed by Eliasson and Thorsteins [27]
and Clough and Penzien [5],

2) cracking and falling masses of ice are excitation the structure to vibrate. The phe-
nomenon is of particular importance for power lines, where falling ice is a kind
of impulse, triggering free vibration of catenary lines, further amplified by gusts
of wind which leads to vibration of pylons forced by swaying catenary wires Fekr
and McClure [4], Battista et al. [28], Havard and Dyke [29], Kálmán et al. [30],
Marzaneh [31], Fengli et al. [6], Chen et al. [32].

In this paper, simulation calculations were carried out to determine the degree of
reduction in the natural frequency of a lightweight lattice structure, as its mass increases
due to the increasing layer of icing on the structure’s bars. The results obtained in the
course of the work have cognitive significance. First of all, they are a contribution to the
discussion of the susceptibility of structures to wind gusts and the risk of error in assessing
them under variable mass conditions. The problem is of particular importance in the design
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and technical diagnostics of lightweight lattice structures, for which icing can represent
a significant increase in mass in relation to their own weight; especially structures located
at high altitudes or in open terrain. The location in a harsh climate results in structures
encountering particularly favorable conditions for ice deposition; they are also particularly
exposed to wind in such conditions.

2. Materials and methods

2.1. Model specificity

The structure analyzed in the paper is the Gate of the Third Millennium, located in the
Lednickie Fields in the Kiszkowo Municipality, Gniezno Poviat. The structure is located
in an open area and is not shielded by other structures. Its shape resembles a fish (often
referred to as a “fish gate”); therefore it can hardly be called a “tower object”. However, it
has numerous features typical of quasi-truss tower designs:
– is a structure of considerable size (height 12.5 m; length 38.5 m);
– is largely “saturated” with bars, with a significant lateral area where ice can be
deposited (about 170 m2);

– has a low dead weight (the mass “participating” in the vibration – about 5158 kg),
which means that the effect of icing on its percentage increase can be significant;

– is a structural type with low damping (for steel frames and lattices, a critical damping
fraction of 𝜍 = 5% or less is frequently being assumed [5,33–36], so the problem of
resonance associated with wind gusts is of particular importance here.

The tower’s support structure is made of 952 tubular bars, with a total length of about
1240 m, welded at nodes to steel “balls” stamped from sheet metal. It was designed by
Anna Boryska (architecture) andWiktor Dziembay (construction) in 1997, and is a unique,
one-of-a-kind structure. For the sake of clarity in the text and to protect the reader from an
excess of information, a detailed description of the characteristics of successive bars and
nodes was abandoned. Here, the structural bars are connected by welding to steel sheet
“balls” that act as gusset plates (Fig. 4), which is a rigid assembly that does not allow
mutual displacement of the bars – so it is a departure from the postulates for lattices and
requires, at the stage of creating the numerical model, treating the structure as a spatial
frame.
The shape of the “gate-fish” is shown in Fig. 3. A FEM model of the structure was

built (using Robot Structural Analysis software), utilizing technical documentation of the
facility provided courtesy of the LEDNICA 2000 Community. In doing so, the following
assumptions were made:
– Subsequent variants of the model are framework-based, giving freedom to model
connections. In the actual structure, the bars were connected at the nodes by welding,
which does not provide freedom for rotation and is a deviation from lattice postulates.

– The additional, non-structural inertia of the object, associated with the node plates
used, extruded into the shape of a sphere, is taken into account in themodel in the form
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of concentrated masses (due to the small dimensions of the spheres, an assumption
was made about their lack of rotational inertia) at the nodes of the structure.

– The additional, non-structural inertia of the object, associated with structural icing,
is included in the model in the form of mass distributed uniformly along the bars (it
therefore has rotational inertia).

– In successive variants of the model, the increase in mass resulting from icing, is
single-parametric, that is, the additional mass of all elements changes in proportion
to a single parameter, which is the external surface area of the element on which the
ice layer is deposited.

– The value of specific gravity of icing was adopted based on PN-87/B-02013 [18].
– The flexibility of the subsoil at the foundation level of the analyzed object was
neglected.

– The material of the structure works in the linear-elastic range.
– The design is not analyzed to meet ultimate limit states (ULS) and serviceability
limit states (SLS).

Fig. 3. Shape of the analyzed structure.
Source: https://tenpoznan.pl/gniezno-zaczyna-sie-lednica-2000/

More than a dozen variants of the model were prepared, corresponding to the system’s
weight gain due to icing of different intensities. The thickness of the icing layer included
in the modeling of the subsequent models was characterized in Table 1.
The thickness of the icing layer was treated here purely formally, with no research as

to the extent of the practically achievable thickness of the icing layer. The purpose of the
analysis carried out in this paper is to evaluate the nature of the changes in the natural
frequencies of the structure as a result of the computational procedure being used, as well
as the mathematical description of this nature. It is not the purpose of the analysis to assess
the probability of a structural icing load of a certain value. The shape of the FEM model
of the structure is shown in Fig. 4–6.

https://tenpoznan.pl/gniezno-zaczyna-sie-lednica-2000/
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Table 1. Characteristics of bar icing in subsequent structural models

Model
number

Thickness
of ice
layer
[cm]

Total
weight of
the model
[kg]

Model
number

Thickness
of ice
layer
[cm]

Total
weight of
the model
[kg]

Model
number

Thickness
of ice
layer
[cm]

Total
weight of
the model
[kg]

1 0 5158 6 2.5 9761 11 5 17772

2 0.5 5806 7 3 11091 12 6 21930

3 1 6590 8 3.5 12557 13 8 31881

4 1.5 7511 9 4 14159 14 10 44014

5 2 8568 10 4.5 15897 15 20 137384

Fig. 4. Photograph of a typical node ball in a structure

Fig. 5. Model of the analyzed structure and its relation to the axis of the adopted
reference system
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Fig. 6. One of the support nodes of the structure

2.2. Natural vibrations

The theoretical basis for describing the free vibration problem (Clough and Penzien [5])
is most easily presented on the basis of the so-called “displacement method”, starting from
the free vibration equation of a system (with multiple dynamic degrees of freedom):

(2.1) [𝑀] · ¥𝑦 + [𝐶] · ¤𝑦 + [𝐾] · 𝑦 = 0

wherein: [𝑀], [𝐶], [𝐾] – quadratic matrices characterizing the dynamic properties of the
vibrating system (inertia, damping and stiffness matrix respectively), ¥𝑦, ¤𝑦, 𝑦 – vectors:
acceleration, velocity and displacement (relative) of the oscillating system.
The dynamic eigenproblem, in structural dynamics, boils down to determining the

circumstances under which the free vibration equation of a system, lacking an element
representing damping, can have a non-zero solution. Thus, the equation (2.1) does not
include the damping, and the recipe takes the form:

(2.2) [𝑀] · ¥𝑦 + [𝐾] · 𝑦 = 0

Assuming a harmonic form of oscillatory motion:

(2.3) 𝑦 = 𝐴 · sin(𝜔 · 𝑡 + 𝜙) → ¥𝑦 = −𝜔2·𝑦

wherein: 𝐴 – amplitude of vibration, 𝜔 – the circular frequency of the vibration in rad/s;
𝜔 = 2𝜋 · 𝑓 , 𝑓 – frequency of the vibration in Hz, 𝜑 – phase shift angle, 𝑡 – time, as a variable
in the vibration process.
We get the relationship:

(2.4) − 𝜔2 · [𝑀] · 𝑦 + [𝐾] · 𝑦 = 0
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By multiplying both sides by the flexibility matrix of the system [𝐹] (left-hand side),
we get:

(2.5) − 𝜔2 · [𝐹] [𝑀] · 𝑦 + [𝐹] [𝐾] · 𝑦 = 0

However, since [𝐹] · [𝐾] = [𝐼] we get
{
[𝐹] · [𝑀] − 1

𝜔2
· [𝐼]

}
· 𝑦 = 0 or in another

form, taking 𝜆 =
−1
𝜔2
we get:

(2.6) {[𝐹] · [𝑀] − 𝜆 · [𝐼]} · 𝑦 = 0

It is a dynamic eigenproblem. The task here comes down to solving a system of
homogeneous linear equations. For all variants of the model of the analyzed structure, it
is a system of 1,800 equations, which corresponds to the number of 300 nodes with an
assigned mass, with six independent degrees of freedom each.

3. Results
For the adopted models of the analyzed structure, the ten lowest natural frequencies

were determined successively. The results of the calculations are summarized in Table 2.

Table 2. Ten lowest determined natural frequencies of structure models

Model
number

Consecutive, determined natural frequencies of the models [Hz]
𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 𝑓8 𝑓9 𝑓10

1 3.6601 4.3355 5.5489 6.0043 11.170 11.759 13.992 14.268 15.931 16.477

2 3.4487 4.0871 5.2338 5.6632 10.525 11.075 13.184 13.443 15.011 15.522

3 3.2363 3.8364 4.9159 5.3185 9.8767 10.387 12.370 12.613 14.085 14.561

4 3.0311 3.5936 4.6077 4.9840 9.2491 9.7241 11.584 11.810 13.189 13.634

5 2.8378 3.3644 4.3166 4.6680 8.6577 9.0994 10.843 11.053 12.345 12.760

6 2.6587 3.1518 4.0462 4.3743 8.1094 8.5208 10.157 10.352 11.563 11.951

7 2.4943 2.9565 3.7976 4.1043 7.6062 7.9902 9.5271 9.7089 10.846 11.209

8 2.3444 2.7782 3.5705 3.8577 7.1472 7.5066 8.9523 9.1219 10.191 10.532

9 2.2079 2.6160 3.3635 3.6331 6.7296 7.0668 8.4295 8.5880 9.5957 9.9171

10 2.0838 2.4685 3.1752 3.4287 6.3501 6.6674 7.9543 8.1029 9.0544 9.3577

11 1.9710 2.3344 3.0039 3.2428 6.0051 6.3044 7.5223 7.6620 8.5623 8.8493

12 1.7746 2.1010 2.7053 2.9191 5.4047 5.6731 6.7706 6.8949 7.7061 7.9646

13 1.4722 1.7419 2.2450 2.4205 4.4812 4.7026 5.6141 5.7153 6.3890 6.6040

14 1.2533 1.4821 1.9115 2.0596 3.8131 4.0010 4.7775 4.8625 5.4364 5.6198

15 0.7098 0.8382 1.0828 1.1648 2.1574 2.2632 2.7035 2.7500 3.0756 3.1802
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Figure 7 summarizes the degrees of reduction of successive natural frequenciesΘ1 due
to a change in the mass of the tower’s vibrating system caused by 1 cm thick ice. Figure 8
shows the degree of reduction of successive natural frequencies Θ2 due to a change in the
mass of the tower’s vibrating system induced by 2 cm thick ice; similarly, in Fig. 9, the
parameter Θ4 describes the change in the mass of the tower’s vibrating system induced by
4 cm thick ice. It should be noted here that the determined natural frequencies were related
to the corresponding results for model No. 1 in all cases.
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Fig. 7. Degree of reduction of natural frequencies in the tower model Θ1 with ice thickness of 1 cm
in relation to the structure with no icing; for the first form of vibration Θ1 = 11.58%
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Fig. 8. Degree of reduction of natural frequencies in the tower model Θ2 with ice thickness of 2 cm
in relation to the structure with no icing; for the first form of vibration Θ2 = 22.466%

An attempt was made to mathematically describe the relationship between the natural
frequency and the mass of the structure, for successive forms of vibration. Due to the
peculiarities of this relationship, the results obtained were approximated by a hyperbolic-



EFFECT OF ICING AS A NON-STRUCTURAL MASS . . . 47

39

39,2

39,4

39,6

39,8

40

1 2 3 4 5 6 7 8 9 10

form of vibrations

fr
eq

u
en

cy
 r

ed
u

ct
io

n
 Θ

4
  
 [

%
]

Fig. 9. Degree of reduction of natural frequencies of the tower model Θ4 with ice thickness of 4 cm
in relation to the structure with no icing; for the first form of vibration Θ4 = 39.676%

type function:

(3.1) 𝑓𝑁 (𝑚) = 𝐴

𝑚𝐵

modified, after establishing the dependence of the mass of the oscillating system on the
thickness of the icing layer (see Fig. 10) to the form:

(3.2) 𝑓𝑁 (𝑑) = 𝐴(
272.5707 · 𝑑2 + 1159.8726 · 𝑑 + 5158.4821

)𝐵
wherein: 𝑑 – thickness of the ice layer in cm, 𝑚 – total mass, participating in the vibration
of the structure in kg, 𝐴, 𝐵 – coefficients of the model [–].
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Fig. 10. Dependence of the total weight of the structure on the thickness of the icing layer (deter-
mination coefficient [37] 𝑅2 = 1). It should be emphasized here that the obtained relationship is
inseparable from the assumption of a one-parameter variation of mass, proportional to the lateral

area of the bars
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The hyperbolic type relationship has the important property that an increase in the
thickness of the ice layer is always accompanied by a decrease in the value of the frequency
(at infinity – an asymptotic decrease to zero), which corresponds to the physical interpre-
tation of the phenomenon. It is possible to make a polynomial-typeapproximation, using
simple polynomials, of the third or fourth order, with very good results, but the best-adapted
polynomials are often increasing functions on certain sections, which corresponds to the
situation when an increase in mass causes an increase in the natural frequency. More-
over, many functions of this type take negative values in certain ranges (yet they denote
frequency, a non-negative quantity). Mathematically, such a description is correct, but it
is absurd on physical grounds. For presentation purposes, an example of this situation is
shown in Fig. 11–13, for the basic form of vibration.
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natural frequency for large values of the argument (icing layer thickness)
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Fig. 13. The fundamental natural frequency of the model and its hyperbolic dependence
on the thickness of the ice layer (also marked with a red line in Fig. 12)

The dependence of frequency on icing thickness, shown in Fig. 13, can be expressed
in the form:

𝑓1=
261.807320462682

(272.570666626969·𝑑2+1159.872623938860·𝑑+5158.482112452680)0.499608384553

The foregoing figures show the strongly nonlinear dependence of the structure’s fun-
damental natural frequency on the thickness of the ice layer. However, for small values of
icing thickness, the foregoing relationship can be expressed, with fairly good (technical)
accuracy, through a linear relationship (see Fig. 14), which simplifies calculations in en-

ƒ = -0,39111321×d + 3,63914411
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2
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Fig. 14. Linear description of the dependence of the structure’s fundamental natural frequency on the
thickness of the ice layer in the 0–2 cm and 0–3 cm ranges; in both cases, the high degree of linear

function adjustment to the determined frequency values is noteworthy
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gineering analyses. Such an approach, however, requires a case-by-case assessment of the
accuracy of the calculations, which may be questioned.
Table 3 summarizes the values of parameters 𝐴 and 𝐵 for equation (3.2),which describes

the relationship of successive, determined natural frequencies to the thickness of the icing
layer. It should be clarified here that the parameters in the table are not assigned units which
does not mean that they are dimensionless quantities. To avoid unnecessary complications
in this regard, the authors propose treating the determined parameter values as empirical,
inseparable from the form of formula (3.2), and the assumption made that the thickness
of the icing layer in the foregoing formula is expressed in centimeters and the determined
frequency – in Hertz.

Table 3. The determined values of parameters 𝐴 and 𝐵 for equation (3.2)

Number of the next
form of vibration 𝐴 [–] 𝐵 [–]

1 261.807320462682 0.499608384553

2 313.621640382496 0.500788821529

3 391.706078778539 0.497811862192

4 431.061336929762 0.499762427381

5 809.041522340077 0.501045235776

6 858.524674036729 0.502096539412

7 1011.97810387954 0.500893556092

8 1039.29857357226 0.501726014591

9 1155.00290027442 0.501169891307

10 1194.19423319644 0.501193104112

4. Final conclusions

Subsequent determined natural frequencies “increase” quite slowly, which is a charac-
teristic of “lattice” slender structures. For example, in case of a model without additional
mass, the tenth natural frequency is only 4.5 times higher than the base frequency. Due to
structural symmetry (slight “deviations”) – the values of natural frequencies are arranged
in groups of two or three, with similar values.
The relationship between the thickness of the icing and the change in the natural fre-

quency of the “gate” is strongly nonlinear, for each of the ten lowest frequencies determined.
This nonlinearity can be expressed, with satisfactory accuracy, through the shape of a hy-
perbola. For small thicknesses of the ice layer, of the order of a few centimeters, the effect
of icing on the change in the natural frequency of the “gate” can be treated as linear, with
technically satisfactory accuracy.
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Icing significantly alters the dynamic characteristics of the analyzed structure; with
a change in the thickness of the ice layer from zero to 2 cm, which does not seem an
exorbitant, unrealistic value, the subsequent natural frequencies are reduced by at least
22%. On the other hand, icing with a thickness of 4 cm results in a reduction of all
determined natural frequencies by at least 39%.
The conclusion above gives cause for concern about the situation of significant icing,

whether the analyzed “fish gate” will not become susceptible to wind gusts, especially
since it is a structural type with low internal damping. Nevertheless, a detailed analysis of
this problem is beyond the scope of this paper.
All conclusions, formulated above as a result of conducted analysis, refer to structure

under consideration only and should not be extrapolated to another cases.
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Wpływ oblodzenia jako masy niekonstrukcyjnej na zmianę
częstotliwości drgań własnych lekkiej konstrukcji

typu kratownicowego

Słowa kluczowe: oblodzenie, quasi-kratownica, rezonans wywołany wiatrem, struktura kratowni-
cowa, wieża transmisyjna

Streszczenie:

W pracy dokonano analizy wpływu dodatkowych mas dla konstrukcji typu kratownicowego na
charakter zmian częstotliwości drgań własnych tej konstrukcji. Przeprowadzono też próbę matema-
tycznego opisu tego charakteru oraz skali wpływu przy znanej grubości warstwy oblodzenia. Roz-
ważania dotyczą budowli o przeznaczeniu sakralnym – Bramy Trzeciego Tysiąclecia, zlokalizowanej
na Polach Lednickich w gminie Kiszkowo w powiecie gnieźnieńskim. Jako źródło dodatkowych
mas traktowane jest oblodzenie prętów konstrukcyjnych (szron, szadź), jakkolwiek pochodzenie
masy niekonstrukcyjnej ma dla przedmiotowej analizy znaczenie drugorzędne. Analizy dokonano
w drodze modelowania Metodą Elementów Skończonych (MES) konstrukcji, przyjmując założenie
o jednoparametrycznej zmienności jej masy (to znaczy, że dodatkowa masa wszystkich elementów
badanego obiektu zmienia się proporcjonalnie do jednego parametru, którym jest powierzchnia ze-
wnętrzna elementu, na której odkłada się warstwa lodu). Rozwiązując zagadnienie własne drgań dla
kolejnych modeli, reprezentujących różne intensywności oblodzenia obiektu, wyznaczono wartości
kolejnych częstotliwości i opisy odpowiadających im postaci drgań własnych. I tak, przyrost grubości
warstwy lodu na powierzchniach, od 0 do 1 cm spowodował redukcję wszystkich wyznaczonych
(dziesięciu podstawowych) częstotliwości drgań własnych o co najmniej 11%. Grubość oblodzenia
2 cm wpływa na redukcję częstotliwości, jak wyżej, o ok. 22% zaś 4 cm warstwa oblodzenia oznacza
redukcję przedmiotowych częstotliwości powyżej 39%. Są to istotne wartości, z punktu widzenia
zastosowań technicznych. Uzyskane wyniki pozwalają na sformułowanie postulatu, aby w analizach
wytrzymałościowych, w których istotną rolę odgrywają właściwości dynamiczne konstrukcji, np.
w ocenie podatności konstrukcji na obciążenia dynamiczne, uwzględniana była możliwość zmiany
masy analizowanego obiektu wynikająca z oblodzenia lub z innych przyczyn.
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