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Can data processing algorithms ensure sufficient
accuracy to estimate human body pose

via wearable systems with use of IMU sensors?
– an experimental evaluation
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Abstract. Background: The aim of the study was to answer two questions: 1 – Can data processing algorithms ensure sufficient accuracy for
estimating human body pose via wearable systems? 2 – How to process the IMU sensor data to obtain the most accurate information on the
human body pose? To answer these questions, the authors evaluated proposed algorithms in terms of accuracy and reliability. Methodology: data
acquisition was performed with a tested IMU sensors system mounted onto a Biodex System device. Research included pendulum movement
with seven angular velocities (10–120◦/s) in five angular movement ranges (30–120◦). Algorithms used data from accelerometers and gyroscopes
and considered complementary and/or Kalman filters with adjusted parameters. Moreover, angular velocity registration quality was also taken
into consideration. Results: differences between means for angular velocity were 0.55÷1.05◦/s and 1.76÷3.11%. In the case of angular position
relative error of means was 4.77÷10.84%, relative error of extreme values was 2.15÷4.81% and Spearman’s correlation coefficient was 0.74÷0.89.
Conclusions: the algorithm calculating angles based on acceleration-derived quaternions and with the implementation of a Kalman filter was the
most accurate for data processing and can be adapted for future work with IMU sensors systems, especially in wearable devices that are designated
to support humans in daily activity.
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1. INTRODUCTION

Wearable electronics are very promising tools in fields con-
cerning human activity such as clinical gait analysis [1], sport
biomechanics [2,3] or rehabilitation [4]. One of the prospective
uses of wearable devices is to monitor the elderly in their daily
environment [5], which can ensure inter alia the possibility of
remote fall detection. Recently, this equipment has becomemore
popular in the research on human daily physical activity [6] due
to its low-cost and size as well as – which is probably even more
important – the possibility to expand research space beyond the
laboratory.
There are several parameters that can be registered, analyzed

or transmitted via wearable electronics [7], among which one
can distinguish kinematic data, crucial in fall detection stud-
ies [8]. For the purpose of kinematic analyses, inertial mea-
surement unit (IMU) sensors are the most commonly used for
data acquisition [9, 10]. These sensors are used in the research
on human daily physical activity [11, 12] and allow to obtain
data directly connected with pose estimation, such as roll and
pitch angles [13]. However, IMU sensors are not able to di-
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rectly obtain data referring to a position of the examined object
without hardware calibration and implementation of advanced
numerical algorithms for indirect evaluation of a selected body
pose [14, 15].
IMU sensors are widely used in wearable electronics in order

to estimate human body behavior in activities of daily living
(ADL), orthopedics and rehabilitation, and they also help de-
tect falls. Most commonly the IMU sensors are placed in the
middle of the analyzed body segments. Basing on the kinematic
data registered this way, the movement of the skeletal system
can be simulated by a set of links connected together by joints
with an adjusted degree of freedom (DOF) to reflect anatomical
joints. Such kinematic models allow to analyze the motion of
the human body as well as its individual segments, which can be
treated as inverted pendulums. Such an approach was presented
by Lin and Kulić, among others, and they have used wireless
IMU sensors to estimate human leg posture and compared their
results with the Motion Capture system [16]. IMU sensors were
also used by Baldi et al. to estimate upper body pose to obtain
similar, promising results [17]. Nowadays, a noticeable increase
of interest in using IMU sensors for detecting falls can also be
noticed. Such systems were already presented by Ruiz et al. or
by Kim et al. [18, 19]. Even though they can be used to detect
falls, by relying on a single IMU sensor, they do not provide
information about kinematic parameters that, after appropriate
processing, could reveal the cause of the fall. This suggests a
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certain need of designing a more complex system that would al-
low for better understanding of events occurring during human
motion.
IMU sensor records are based on physical quantities mea-

sured by combinations of accelerometers (𝑔 – acceleration),
gyroscopes (𝜔 – angular velocity) as well as magnetometers (𝐵
– magnetic field), and only after combining these parameters it
is possible to receive desired information about the position and
orientation of the tested object. For this reason, appropriate data
processing is required as every sensor suffers from errors during
registration. Accelerometers’ records are characterized by noise
and are sensitive to linear acceleration. Amasay et al. proved this
statement in their research during static and dynamic tests with
accelerometers placed on a rotating vise [20]. In the case of gy-
roscopes’ records, data are susceptible to low-frequency drift,
which Feng et al. took into account during designing a new
quaternion-based Kalman filter [21]. The last type of the above-
listed sensors, i.e. magnetometers, is sensitive to hard and soft
iron distortions. De Vries et al. presented the study for IMU sen-
sors examination of influence of distortion of the earth magnetic
field on measurements. According to their conclusions, require-
ments such as laboratory “mapping” or the use of a Kalman
filter must be met to reduce magnetic disturbances [22].
These technical issues have a direct impact on data acqui-

sition and their reliability. That is why applications of these
sensors, among data fusion, require also implementation of
properly selected filters. The most popular include the com-
plementary filter [23] and the Kalman filter [24, 25], which can
be used separately, combined or in appropriate sets. Correctly
chosen parameters of these filters are decisive in establishing
procedure, allowing to obtain results with desired accuracy and
sensitivity. The crucial part of data processing is defining op-
timal calculation algorithms and in the case of filter usage –
appropriately chosen parameters. Gui et al. used both comple-
mentary and Kalman filters to improve IMU’s tilting measure-
ments basing on 6-DOF and confirming their efficiency [26]. Yi
et al. proposed their own complementary filter and compared its
performance with others, such as the Kalman filter. IMU sen-
sors were used and validation of an improved complementary
filter was done during movement simulated with the usage of a
4-DOF test machine [27]. Ligorio et al. focused in their study
on establishing a human body pose with the use of a tri-axial
accelerometer and tri-axial-gyroscope. A wrist-worn IMU was
tested during dynamic tasks and body pose was evaluated with
the usage of a linear Kalman filter [28].
Above-described research aswell as several other studies used

different data processing methods in wearable electronics. As
the most efficient data processing approach was never defined,
certain questions can be asked: 1 – Can data processing algo-
rithms ensure sufficient accuracy for estimating human body
pose via wearable systems? 2 – How to process the IMU sen-
sor data to obtain the most accurate information on the human
body pose? Answers to these questions are crucial for designing
appropriate equipment to e.g. detect and prevent falls or at least
support personswith balance disorders. Therefore, themain pur-
pose of the presented research was the evaluation of algorithms
proposed by the authors to process the data obtained via an IMU

sensor in order to estimate human body pose. Algorithms were
evaluated in terms of accuracy and reliability with the use of
parameters designated by the authors.

2. MATERIALS AND METHODS

2.1. Data acquisition
The test device collecting data was based on usage of IMU
sensors (MPU6050 modules, IvenSense, San Jose, USA) which
consist of a three-axis accelerometer and three-axis gyroscope.
Seven of them have been wire-connected with an Arduino Due
board based on a 32-bitARMcoremicrocontroller, and then pro-
grammed with Arduino Software (IDE). Communication of the
modules was performed with an Inter-Integrated Circuit (I2C)
bus, which allowed to collect data with specific timing. On the
level of registers of sensors, sensitivity of accelerometers and
gyroscopes was defined and ranges of measurement were set as
−16 g÷+16 g for accelerometers and −2000◦/s÷+2000◦/s for
gyroscopes. Threshold values were set on the basis of sensors’
documentation as appropriate for the simulated type of move-
ment. The device was powered by a USB cable from a portable
battery or computer, in the first case recording data on a portable
storage medium and in the second case simultaneously sending
recorded data via serial port to a text file. Scheme of the test
device, powered by a portable battery, is presented in Fig. 1a.
Collected and saved data included direct readings, such as:

time based on microcontroller timer, accelerations along the
𝑋 , 𝑌 , and 𝑍 axis of the sensor (Fig. 1b) and angular velocities
around them, as well as those calculated by program parameters:
components of quaternions calculated from accelerations aswell

(a)

(b)

Fig. 1. (a) Scheme of the test device; (b) Axes of the sensor
in module MPU 6050
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as roll, pitch and yaw (RPY) angles (roll as tilt around 𝑋 axis,
pitch – around 𝑌 axis and yaw – around 𝑍 axis) calculated from
readings of both accelerometers and gyroscopes.
Biodex System 4 PRO was used as a reference device, be-

cause of its ability to perform movement with set angular ve-
locity and within an adaptable angular range. This allowed to
obtain controlled and, most importantly, objective conditions,
needed during the presented evaluation. Biodex System was set
to move the attachment, which was placed on the dynamometer,
without assistance (passive mode) – the attachment was moving
rotationally, with the center of rotation in the dynamometer. The
procedure was designed to test sensors in simulated human-like
motion, and then tests were carried out for seven angular veloc-
ities: 10, 20, 30, 45, 60, 90 and 120◦/s, every one of them in five
angular movement ranges (AMR): from 0 to 30, 45, 60, 90 or
120◦. Every test consisted of ten repetitions of pendulum move-
ment (a single repetition was the movement away and towards)
and was repeated 3 times with 5 seconds’ break in between. To
perform series of described tests, sensors were rigidly fixed to
the attachment in three configurations – each enabling examina-
tion of the sensor in terms of movement around one of its axes
(Fig. 1b), which can provide different results.
Considered configurations referred to the same movement of

the attachment with sensors in different orientations. Configura-
tionswith orientation of the sensorwere presented schematically
in Fig. 2: A – orientation of sensors to record movement around
𝑍 axis; B – orientation of sensors to record movement around
𝑌 axis; C – orientation of sensors to record movement around
𝑋 axis.
Finally, in the research 105 tests were carried out (movement

around each of the three axes of the sensor multiplied by 7 tested
angular velocities multiplied further by 5 angular movement
ranges) and three repetitionswere done in all cases. Additionally,
in all trials 7 sensors were tested, as it was described above.

2.2. Data processing
For the research, four different data processing procedures for
pose estimation were considered. Pose of the objects was an-
alyzed as changing angular position during its movement. All
procedures included different use (by order or in different set)
of several variables, calculated on the basis of angular veloci-
ties and linear accelerations, such as: RPY angles, quaternions
and angular position in general, with or without filtration (com-
plementary and/or Kalman filter). Angular velocity and angular
position of the attachment were analyzed and compared with
the data recorded by a reference device. Data were analyzed
depending on their type – angular velocity (𝜔) or angular posi-
tion (𝛼). Angular velocity was collected directly from the sensor
component – gyroscope, that is why data were not modified for
the sake of comparisons. In the case of angular position, as it is
influenced by the pose of the moving object, it required a set of
calculations.
Angular position was calculated on the basis of linear ac-

celerations and angular velocities. To obtain RPY angles, roll
and pitch were calculated from readings of the accelerometer
according to formula (1) and (2) [29], and yaw was obtained
from the gyroscope, calculating the angle for current time and
for every next step summing previous values with the currently
calculated ones (formula (3)):

𝛷 = arctan
©­­«

𝐴𝑌√︃
𝐴2
𝑋
+ 𝐴2

𝑍

ª®®¬ , (1)

𝛩 = arctan
©­­«

−𝐴𝑋√︃
𝐴2
𝑌
+ 𝐴2

𝑍

ª®®¬ , (2)

𝛹𝑛 =𝛹𝑛−1 +
d𝜔
d𝑡

, (3)

(a) (b)

Fig. 2. Research setup: (a) scheme of configuration of axes of the sensors (1A – Biodex System, 1B – dynamometer, 2 – attachment, 3 – sensors);
(b) Biodex System with sensors mounted according to configuration B
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where: 𝐴𝑋 – acceleration along 𝑋 axis [m/s2], 𝐴𝑌 – acceleration
along 𝑌 axis [m/s2], 𝐴𝑍 – acceleration along 𝑍 axis [m/s2],
𝛷 – roll (tilt around 𝑋 axis) [◦],𝛩 – pitch (tilt around𝑌 axis) [◦],
𝜔 – angular velocity [◦/s], 𝛹𝑛−1 – yaw (tilt around 𝑍 axis) in
previous moment of time [◦],𝛹𝑛 – yaw (tilt around 𝑍 axis) in
present moment of time [◦].
Formula (3) was applied to calculate roll and pitch as well,

in order to fuse data between accelerometers and gyroscopes.
Angles were then obtained by the use of a complementary filter,
which is presented in formula (4):

𝛾 = 𝑥 · angleacc + (1− 𝑥) · anglegyro , (4)

where: angleacc – angle calculated based on acceleration [◦],
anglegyro – angle calculated based on angular velocity [◦], 𝑥 –
constant ∈ 〈0,1〉, 𝛾 – angle calculated with the use of the com-
plementary filter [◦].
Quaternions, more specifically versors that are unit quater-

nions, were calculated strictly based on accelerations. This was
done to provide information about body pose in the form of the
vector with four elements. Quaternions represented by acceler-
ations in the form of a vector are presented in (5) [30, 31]:

𝑞acc =



[√︂
𝐴𝑍+1
2

− 𝐴𝑌√︁
2 (𝐴𝑍+1)

𝐴𝑋√︁
2 (𝐴𝑍+1)

0

]𝑇
if 𝐴𝑍 ≥ 0 ,[

− 𝐴𝑌√︁
2 (1−𝐴𝑍 )

√︂
1−𝐴𝑍

2
0

𝐴𝑋√︁
2 (1−𝐴𝑍 )

]𝑇
if 𝐴𝑍 < 0,

(5)

where: 𝑞acc – quaternions calculated based on accelerations.
Quaternions have been converted into RPY angles and used

in this study, because of the aforementioned fusion of angles
obtained from accelerometers and gyroscopes – body pose rep-
resented by 8 quaternions cannot be included in the calculations
of a complementary filter in its form used in the study. Conver-
sion from quaternion to RPY angles was performed according
to formulas (6), (7) and (8) [32]:

𝛷 = atan2
(
2 (𝑞2𝑞3− 𝑞0𝑞1) ,2𝑞20−1+2𝑞

2
3

)
, (6)

𝛩 = −arctan
©­­«

2 (𝑞1𝑞3− 𝑞0𝑞2)√︃
1− (2𝑞1𝑞3 +2𝑞0𝑞2)2

ª®®¬ , (7)

𝛹 = atan2
(
2 (𝑞1𝑞2− 𝑞0𝑞3) , 2𝑞20−1+2𝑞

2
1

)
, (8)

where: atan2 – function which returns the value of arctan in
the range from −𝜋 to 𝜋 [rad]; 𝑞0, 𝑞1, 𝑞2, 𝑞3 – elements of the
quaternion’s versor.
In their transformed form, angles fromquaternionswere fused

with those from gyroscopes by a complementary filter. The use
of values from both types of sensors minimized the influence of
their errors on results.

Kalman filters were considered another method for minimiz-
ing the influence of errors from sensors on the results obtained.
Establishing the state extrapolation equation was the first step in
designing a Kalman filter for this case of calculating an angular
position (formula (9)):

𝑥𝑘 = 𝐹𝑥𝑘−1 +𝐺𝑢 =


1 0 −𝑑𝑡
0 0 −1
0 0 1



𝜃

𝜔

𝑔bias

 𝑘−1 +

𝑑𝑡

1
0

 𝑢, (9)

where: 𝐹 – state transition matrix, 𝐺 – control matrix, 𝑥 –
state vector, 𝜃 – angle [◦], 𝜔 – angular velocity [◦/s], 𝑔bias –
gyroscope’s bias [◦/s], 𝑢 – control variable.
Defining matrices, crucial for the prediction and update parts

of the Kalman filter, was the second part of the operation. The
Kalman filterwas used in two of the algorithms,which served for
obtaining an angular position from the recording of the sensors.
Finally, therewere 4methods of data processing (Table 1) and for
each method statistical measures were calculated and compared
with the angular position obtained from Biodex System.
This comparison led to selecting a data processing algorithm

characterized by the best accuracy and relevance (with the lowest
differences between the values obtained from sensors and the
reference device).
The difference between angular velocity values as well as

Spearman’s correlation coefficients between angular velocity in
time, registered by use of the tested and reference systems, were
analyzed, to evaluate accuracy of angular velocity registration
with the use of the tested system. In the case of differences be-
tween angular velocity values, firstly absolute values from every
test were summed and divided by the number of samples in the
test (schematic representation in Fig. 3 and (10)). Calculation of
both stable maximum values and increasing/decreasing values
was intentional in order to compare results from sensors and
Biodex System. Parameters for each filter (Kalman and/or com-
plementary) were individually set in each algorithm in order to
obtain the best values of Spearman’s correlation coefficients for
each selected algorithm (A1–A4), among others. Such a pro-
cedure was performed in order to objectively compare the data
processing methods being evaluated.

𝜔 =

𝑠∑︁
𝑖=1

|𝜔𝑖 |

𝑠
, (10)

where: |𝜔𝑖 | – absolute value of angular velocity [◦/s], 𝜔 – mean
value of angular velocity for a single test [◦/s], 𝑠 – number of
samples.
Mean values of angular velocity were calculated for values

registered by the IMU sensors system, separately for each sensor
for all 315 test repetitions. The obtained values were then aver-
aged for three repetitions of each test (𝜔𝑆). Averaging between
repetitions was also applied to the angular velocity generated by
the reference system (𝜔𝐵). For evaluation accuracy of the tested
system, the difference between averaged values of angular ve-
locity obtained from individual sensors and Biodex Systemwere
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Table 1
Classification of signal quality as a function of its power

No. Used sensors Description

A1 accelerometer

A2 accelerometer
+ gyroscope

A3 accelerometer
+ gyroscope

A4 accelerometer
+ gyroscope

Fig. 3. Changes in absolute angular velocity with its mean representation for a single test: 1 – maximum values; 2 – increasing values;
3 – decreasing values

determined for each test using the formulas below:

Δ𝜔 = 𝜔𝐵 −𝜔𝑆 , (11)

𝜀𝜔 =
𝜔𝐵 −𝜔𝑆

𝜔𝐵

·100%, (12)

where: Δ𝜔 – difference between angular velocity obtained from
individual sensors of the tested system and reference (Biodex)
system [◦/s], 𝜀𝜔 – relative difference between angular veloc-
ity obtained from individual sensors of the tested system and
reference (Biodex) system [%].
Next, these parameters were averaged for all analyzed val-

ues of angular velocities and angular movement ranges (AMR),

separately for every axis of movement (𝑋 , 𝑌 and 𝑍 axis):

Δ𝜔 =

𝑛∑︁
𝑖=1

(Δ𝜔𝑖)

𝑛
, (13)

𝜀𝜔 =

𝑛∑︁
𝑖=1

(𝜀𝜔𝑖)

𝑛
, (14)

where: Δ𝜔 – difference between angular velocity obtained from
individual sensors of the tested system and reference (Biodex)
system averaged for all angular velocities and AMR [◦/s],
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𝜀𝜔 – relative difference between angular velocity obtained from
individual sensors of the tested system and reference (Biodex)
system averaged for all angular velocities and AMR [%], 𝑛 = 35
(number of tested angular velocity multiplied by the number
of AMR).
Parameters presented above were calculated separately for

each of the seven IMU sensors and next averaged:

AVG
Δ𝜔

=

𝑛𝑠∑︁
𝑖=1

(
Δ𝜔𝑙

)
𝑛𝑠

, (15)

AVG𝜀𝜔
=

𝑛𝑠∑︁
𝑖=1

(
𝜀𝜔𝑙

)
𝑛𝑠

. (16)

Spearman’s correlation coefficients between values of angular
velocity in time, gathered from individual sensors and Biodex
System (𝐶SB𝜔

), respectively for every test, were calculated and
averaged for three repetitions (𝐶SB𝜔

) made for each test as well.
These mean values were next averaged for all analyzed values
of angular velocities and AMR, separately for every axis of
movement (𝑋 , 𝑌 and 𝑍 axis):

Mean
𝐶SB𝜔

=

𝑛∑︁
𝑖=1

(
𝐶SB𝜔𝑖

)
𝑛

, (17)

where:Mean
𝐶SB𝜔

–Spearman’s correlation coefficients between
values of angular velocity over time from tested and reference
(Biodex) systems averaged for all angular velocities and AMR.
Averaged values for all angular velocities and AMR Spear-

man’s correlation coefficients were calculated separately for
each of the seven IMU sensors and then averaged:

AVG𝐶SB𝜔 =

𝑛𝑠∑︁
𝑖=1

(
Mean

𝐶SB𝜔𝑙

)
𝑛𝑠

, (18)

where: AVG𝐶SB𝜔 – averaged for all IMU sensors Spearman’s
correlation coefficients between values of angular velocity over
time from tested and reference (Biodex) systems.
Additionally, for evaluation of the accuracy of angular posi-

tion estimation with the use of particular algorithms (Table 1),
three statistical parameters were used: relative error of means
(REM), error of Spearman’s correlation coefficient (SCC) and
relative error of extreme values (REE). REM and SCCwere also
used for additional angular velocity evaluation.
Mean values of angular position in the single test were calcu-

lated in a manner similar to the one described earlier for angular
velocity (Fig. 4, formula (10)) and averaged between three rep-
etitions of the test, using data taken from individual sensors and
obtained with the use of particular algorithms 𝛼𝑆 as well as the
reference system𝛼𝐵. Relative difference betweenmeasurements
from the tested and reference system was calculated as follows:

𝜀𝛼 =
𝛼𝐵 −𝛼𝑆

𝛼𝐵

·100%, (19)

where: 𝜀𝛼 – relative difference between angular position ob-
tained from individual sensors of the tested system and reference
(Biodex) system [%].
Averaged extreme values of angular position for 10 pendu-

lum movements in a single test (Fig. 4) were calculated and
next, again averaged between three repetitions of particular tests
(𝛼MAX).

Fig. 4. Schematic representation of extreme values of angular position
of every 10 pendulum movement in a single test

Averaged values described above were used to calculate rel-
ative difference between measurements of extreme values of
angular position from the tested and reference systems, basing
on the following formula:

𝜀𝛼MAX =
𝛼MAX𝐵

−𝛼MAX𝑆

𝛼MAX𝐵

·100%, (20)

where: 𝜀𝛼MAX – relative difference between extreme angular
position obtained from individual sensors of the tested system
and reference (Biodex) system [%].
The parameter calculated using (12) and (19) was calculated

for all angular velocities and all AMR, separately for each of the
seven IMU sensors, and next averaged:

REM𝜔 =

𝑛𝑠∑︁
𝑖=1

(
𝜀𝜔𝑖

)
𝑛𝑠

, (21)

REM𝛼 =

𝑛𝑠∑︁
𝑖=1

(
𝜀𝛼𝑖

)
𝑛𝑠

, (22)

where: REM𝜔 – relative error of means of angular velocity cal-
culated separately for each of 105 tests (movement around each
of the three axes of the sensor multiplied by 7 tested angular ve-
locities multiplied by 5 angular movement ranges) [%], REM𝛼 –
relative error of means of angular position calculated separately
for each of the four algorithms and each of 105 tests (move-
ment around each of the three axes of the sensor multiplied
by 7 tested angular velocities multiplied further by 5 angular
movement ranges) [%].
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In the case of angular position estimation, relative error of
extreme values (REE) was also calculated using (23):

REE =

𝑛𝑠∑︁
𝑖=1

(
𝜀𝛼MAX𝑖

)
𝑛𝑆

, (23)

where: REE– relative error of extreme values of angular position
calculated separately for each of the four algorithms and each of
105 tests (movement around each of the three axes of the sensor
multiplied by 7 tested angular velocities multiplied further by 5
angular movement ranges) [%].
Spearman’s correlation coefficients, described earlier for an-

gular velocities ((17) and (18)) were averaged firstly for all
tested angular velocity and AMR, and next averaged for all sen-
sors. However, for analysis of the influence of particular angular
velocity or AMR, another methods of analysis was proposed.
Spearman’s correlation coefficients, comparing data from tested
and reference systems, averaged between three repetitions of ev-
ery test, were calculated both for angular velocity (𝐶SB𝜔𝑖

) and
angular position (𝐶SB𝛼𝑖

), separately for particular values of the
tested angular velocities and particular AMR. Parameters pre-
sented above were calculated separately for each of the seven
IMU sensors and next averaged:

SCC𝜔 =

𝑛𝑠∑︁
𝑖=1

(
𝐶SB𝜔𝑖

)
𝑛𝑆

, (24)

SCC𝛼 =

𝑛𝑠∑︁
𝑖=1

(
𝐶SB𝛼𝑖

)
𝑛𝑆

, (25)

where: SCC𝜔 – Spearman’s correlation coefficient between an-
gular velocity over time from the tested and reference (Biodex)
systems, averaged for all sensors, SCC𝛼 – Spearman’s corre-
lation coefficient between angular position over time from the
tested and reference (Biodex) systems, averaged for all sensors.

3. RESULTS
3.1. Angular velocity
Angular velocity of the moving object was obtained using both
tested and reference systems. The differences between their in-
dications were evaluated using statistical measures described
earlier ((15) and (16)). Averaged values with standard devi-
ation (AVG

Δ𝜔
± STD

Δ𝜔
AVG𝜀𝜔

± STD𝜀𝜔
) and dispersion be-

tween minimum and maximum values (DIS
Δ𝜔
DIS𝜀𝜔

) for these
differences were compiled in Table 2.
Results of Spearman’s correlation coefficient between values

of angular velocity over time from tested and reference (Biodex)
systems (formula (18)) – averaged values with standard devia-
tion (AVG𝐶SB𝜔 ±STD𝐶SB𝜔 ) and dispersion between minimum
and maximum values (DIS𝐶SB𝜔 ) were presented in Table 3.
Tables 2 and 3 include results averaged for all angular veloc-

ities, angular movement ranges (AMR) and all sensors. Param-
eters REM𝜔 (equation (21)) and SCC𝜔 (equation (24)) were

Table 2
Statistical measures describing differences between angular velocity

measured by tested IMU system and reference system

𝑋 axis 𝑌 axis 𝑍 axis

AVG
Δ𝜔

±STD
Δ𝜔

[◦/s] 0.82±0.39 1.05±0.65 0.55±0.33

DIS
Δ𝜔

[◦/s] 3.20 4.40 2.27

AVG𝜀𝜔
±STD𝜀𝜔

[%] 2.76±1.27 3.11±1.87 1.76±1.02

DIS𝜀𝜔
[%] 4.96 7.08 4.11

Table 3
Statistical measures describing Spearman’s correlation coefficient be-
tween values of angular velocity in time from tested and reference

(Biodex) systems

𝑋 axis 𝑌 axis 𝑍 axis

AVG𝐶SB𝜔 ±STD𝐶SB𝜔 0.89±0.01 0.88±0.01 0.89±0.01

DIS𝐶SB𝜔 0.53 0.41 0.36

averaged only for all sensors and considered with a distinction
of axes of movement and of angular velocities. As a result, box-
whiskers plots were created: REM𝜔 in Fig. 5, SCC𝜔 in Fig. 6.

Fig. 5. REM𝜔 for different values of angular velocity for movement
around 𝑋 , 𝑌 and 𝑍 axes

Fig. 6. SCC𝜔 for different values of angular velocity for movement
around 𝑋 , 𝑌 and 𝑍 axes
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Dispersions visible on the plots resulted from the fact that for
every direction of movement (around the 𝑋 , 𝑌 and 𝑍 axis) and
every value of angular velocity (10, 20, 30, 45, 60, 90, 120◦/s),
there were five values, both in the case of REM𝜔 and SCC𝜔 ,
obtained for every of five AMR (30, 45, 60, 90 and 120◦).

3.2. Pose estimation

Pose estimation of the moving objects was analyzed as changes
in angular position during movement around every axis (𝑋 , 𝑌
and 𝑍). REM𝛼, REE and SCC𝛼 of angular position were calcu-
lated as was described in (22), (23) and (25). Results for each
AMR and for every algorithm were presented in Fig. 7 (REM𝛼),
Fig. 8 (SCC𝛼) and Fig. 9 (REE), separately formovement around
the 𝑋 , 𝑌 and 𝑍 axis. The dispersions visible on plots resulted

(a)

(b)

(c)

Fig. 7. REM𝛼 for every algorithm (A1, A2, A3, A4 – Table 1) and for
all AMR in movement around: (a) 𝑋 axis; (b) 𝑌 axis; (c) 𝑍 axis

(a)

(b)

(c)

Fig. 8. REM𝛼 for every algorithm (A1, A2, A3, A4 – Table 1) and for
all AMR in movement around: (a) 𝑋 axis; (b) 𝑌 axis; (c) 𝑍 axis

(a)

(b)

(c)

Fig. 9. REE for every algorithm (A1, A2, A3, A4 – Table 1) and for all
AMR in movement around: (a) 𝑋 axis; (b) 𝑌 axis; (c) 𝑍 axis
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from the fact that for every value of AMR (30, 45, 60, 90 and
120◦), for each analyzed algorithm, there were seven values of
particular parameters obtained for different angular velocities
(10, 20, 30, 45, 60, 90 and 120◦/s).

4. DISCUSSION

The results obtained for angular velocity were analyzed sepa-
rately for every axis. Maximum averaged difference between an-
gular velocity from tested and reference systems stood at 1.05◦/s
for absolute values and at 3.11% for relative values obtained for
movement around the𝑌 axis, whichmeans the worst accuracy of
these type of data. Registration around the 𝑍 axis indicated the
best results – averaged difference of 0.55◦/s for absolute values
and 1.76% for relative values. Additionally, analyzing the rela-
tive error of means for every angular velocity (REM𝜔), the best
accuracy was obtained for registering data for the 𝑍 axis (from
0.36% to 3.19%), while the worst for the 𝑌 axis (from 0.31%
to 6.33%). What is more, no dependency between the accuracy
and the value of angular velocity was noted. Differences in val-
ues of the error of Spearman’s correlation coefficient (SCC𝜔)
were noticeable – the lowest values of SCC𝜔 occurred for an-
gular velocity equal to 90◦/s (0.45) and 120◦/s (0.56) for all the
axes. Due to the fact that SCC𝜔 is a parameter used to com-
pare compliance of time waveforms, it is sensitive to differences
such as phase shifts, which appeared for higher velocities, es-
pecially when they are combined with small angular movement
ranges (AMR). Observed differences between the values might
be caused by inertia in the sensors used, which was already
observed and confirmed by Shaeffer et al. [33].
The results obtained in the case of an angular position were

also analyzed separately for every axis. REM𝛼 for all AMR,
suggests the necessity of individual choice of the data process-
ing algorithm, depending on the axis being analyzed. Average
value and dispersion of the box-whiskers plots were taken into
consideration in the decision-making process of the algorithm
with the best accuracy. For data recorded for the 𝑋 axis, the best
results were obtained by calculating angle values on the basis of
accelerations with the use of quaternions (algorithm A1). In this
case, average REM𝛼 was equal to 7.55%. This confirmed earlier
literature reports about the usefulness of quaternions in estimat-
ing positions in three-dimensional space [34]. For data recorded
for the 𝑌 axis, according to the presented distribution (Fig. 7b),
the best results were obtained by calculating angle values di-
rectly from accelerations with the use of quaternions (algorithm
A1) or from accelerations while using quaternions and applying
the Kalman filter (algorithm A3). In the first and second cases,
average REM𝛼 was equal to 22.78% and 21.7%, respectively,
which was considered too high. Both algorithms, which used the
data from gyroscopes, delivered worse results, which is directly
correlated with the highest inaccuracies of angular velocity reg-
istration in the case of movement around the 𝑌 axis. What is
more, all algorithms failed when for movement around the 𝑌
axis, AMR was equal or greater than 90◦, which results from
Euler angles limitations. Failure is caused by the necessity of
changing quaternions into Euler angles, when a basic form of

complementary filter is used. This suggests that orientation of
an IMU based system should prevent the 𝑌 axis of sensors from
overlapping with the direction of the largest AMR, if transfor-
mation of quaternions into Euler angles is performed. However,
Valenti et al. performed fusion that was similar in purpose, using
data directly in the form of quaternions and proposing a novel
quaternion based complementary filter, allowing to avoid Euler
angles limitations [30]. After exclusion of data registered for
AMR equal or greater than 90◦, algorithm A1 and algorithm A3
still provided the highest accuracy, and average REM𝛼 was re-
spectively lowered to 7.47% and 7.86%. In the case of data
recorded for the 𝑍 axis, the best results were obtained by cal-
culating angles from accelerations with the use of quaternions
and angular velocity through integration and then application of
a complementary filter (algorithm A2). In that case the average
REM𝛼 was equal to 4.78%. This confirmed earlier literature
reports that sensor data fusion and proper choice of filter pa-
rameters can increase reliability and accuracy of results. Guo et
al. confirmed this observation in their research with the use of
a Kalman filter and information fusion, which allowed to im-
prove the detection accuracy of the gyroscope [35]. Although
registration of angular velocity around the 𝑍 axis ensures high
accuracy, the use of additional filters is not necessary and could
generate higher computational cost. Similar conclusions were
presented by Gui et al., who stated that results from both filter
types (complementary and Kalman) can work effectively. How-
ever, because of computational complexity of the Kalman filter,
it is not always a suggested tool to be used [26].
Except for REM𝛼, distribution of SCC𝛼 was taken into con-

sideration as well. As SCC𝛼 depends on the compliance of time
waveforms, the SCC𝛼 results suggested a different approach in
selecting an appropriate data processing algorithm. The best re-
sults, for every axis, were obtained for angles calculated from
quaternions and filtered with the use of a Kalman filter (al-
gorithm A3). Average SCC𝛼 was equal to 0.89 for results in
the case of the 𝑋 axis, 0.77 for the 𝑌 axis and 0.86 for the 𝑍
axis. The accuracy of the algorithm in terms of SCC𝛼 highly
depends on the shape of the waveform. As the Kalman filter
allows to smooth curves obtained on the basis of data from
sensors, by eliminating noises characteristic for accelerometer
recordings, it led to obtaining high accuracy for the algorithm
being described. This effect is correlated with the Kalman fil-
ter parameters, which influence its dynamics characteristic and
have the impact of inertia in estimated signals [36]. Finally,
it must be stated that extreme values of the angular position
reached by a moving object (Fig. 4) have a special meaning for
pose evaluation. Therefore, its relative errors of extreme values
(REE) of angular position were considered most important for
the examination of human body movement. Calculated values
of REE for all AMR for the 𝑋 axis suggested that while cal-
culating angles from accelerations with the use of quaternions
and the Kalman filter (algorithm A3), it allows to obtain the
best results (average REE was equal to 2.15%). However, other
algorithms also ensured similar results – maximum of average
REE was equal to 4.81% (algorithm A2). The results obtained
for the 𝑌 axis suggested to calculate angles directly from accel-
erations with the use of quaternions (algorithm A1) – in that
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case average REE was equal to 11.1% or 4.81% after exclud-
ing results for AMR equal or greater than 90◦. For the 𝑍 axis,
the best results were obtained again by calculating angles from
accelerations with the use of quaternions and the Kalman filter
(algorithm A3) – average REE was equal to 2.38%. In the case
of the 𝑍 axis, taking into consideration the values of REE, ev-
ery algorithm would be acceptable for application, because the
maximum value of averaged REEwas relatively small and equal
to 3.04% (algorithm A1).
The results obtained after calculating REE show relatively

the best accuracy independently of the type of algorithm used
for two of the three axes (𝑋 and 𝑍 axis). This suggests that the
use of any of the proposed algorithms would ensure a proper
performance of the system for these axes during the monitoring
of body pose, if significant changes of body position are taken
into consideration. This can be crucial in the case of human
locomotion to identify threatening situations.
Analysis of angular position with the use of REM𝛼, SCC𝛼

andREEprovided information about the distribution of obtained
values, time waveform and extreme values. Efficiency of evalu-
ated algorithms depended on the above-described parameters.
Table 4 presents acceptable algorithms, which were chosen

on the basis of all parameters (REM𝛼, SCC𝛼, REE) for every
axis, while Table 5 presents the most efficient ones. Algorithms
were considered as acceptable when:
• REM𝛼 values were lower than 10%;
• SCC𝛼 values were higher than 0.7 (strong dependence) [37];
• REE values were lower than 5%.

Table 4
Algorithms classified as acceptable for movement around particular

axis

Algorithm
A1

Algorithm
A2

Algorithm
A3

Algorithm
A4

REM𝛼:

𝑋 + + + +
𝑌 + +
𝑍 + + + +

SCC𝛼:

𝑋 + + + +
𝑌 + + + +
𝑍 + + + +

REE:

𝑋 + + + +
𝑌 +
𝑍 + + + +
SUM 9 7 8 7

An algorithm was classified as the most efficient one when
the smallest values in the case of REM?? and REE and the high-
est in the case of SCC?? were obtained. Ranking parameters
(REM𝛼 < 10% and REE < 5%) resulted from their aforemen-

Table 5
The most efficient algorithms for movement around particular axis

Algorithm
A1

Algorithm
A2

Algorithm
A3

Algorithm
A4

REM𝛼:

𝑋 +
𝑌 +
𝑍 +

SCC𝛼:

𝑋 +
𝑌 +
𝑍 +

REE:

𝑋 +
𝑌 +
𝑍 +
SUM 3 1 5 0

tioned characteristic. In the case of REM𝛼, both steady maxi-
mum and increasing/decreasing values were taken into consid-
eration for comparison, which made this parameter less stable.
REE was correlated only with the highest changes of position
and the set of values placed in a specific, extreme range of
registered data, stabilizing this parameter.
According to acceptable (Table 4) and the most efficient (Ta-

ble 5) algorithms:
1) in the first case:

• two out of the four algorithms (algorithm A2 and A4)
were acceptable 7 out of 9 times;

• algorithm A3 was acceptable 8 out of 9 times;
• algorithm A1 was acceptable 9 out of 9 times.

2) in the second case:
• algorithm A4 was the most efficient 0 out of 9 times;
• algorithm A2 was the most efficient 1 out of 9 times;
• algorithm A1 was the most efficient 3 out of 9 times;
• algorithm A3 was the most efficient 5 out of 9 times.

Results in Table 4 allowed to state that in terms of acceptabil-
ity, all algorithms allowed to obtain satisfying results. While
taking into consideration the results in Table 5, it is possible to
indicate algorithm A3 as the most efficient one.
Registration of kinematic parameters was performed for cer-

tain values of angular velocity and angular position, which was
correlated with human locomotion. However, it is possible that
directly registered angular velocity and calculated angular po-
sition would have presented different results during higher or
lower angular velocity. For this reason, for further evaluations,
the tested system and proposed algorithms should have been
used in multi-planed and dynamic movement – with simultane-
ous changes of body pose around every axis.
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As shown in the results, establishing an algorithm which
presents properly registered values of angular position for every
axis during AMR equal or greater that 90◦ was out of reach with
the proposed method, which resulted from physical and math-
ematical principles of sensors operations. An algorithm calcu-
lating angular position only based on the gyroscope readings
would be resistant to limitations, but because of the generated
drift, which occurs during integration of registered angular ve-
locity into angular position, it was not included in the research
presented herein. Moreover, during calculations of the comple-
mentary filter, values of angular position obtained from angular
velocity were set as having lower influence on the results and
were mostly used for smoothing rather than correcting final
results.
Change of sensitivity through hardware calibration and more

precise programmed calibration will be considered in future
work over the system with IMU sensors, in order to attempt
to avoid the negative impact of drift and, with the use of the
angular position calculated from the gyroscope, overcome the
limitations of Euler angles.
Obtained results can be directly used to process the data in

mechatronic devices with systems for i.e. fall detections. How-
ever, appropriate placement of sensors is crucial for obtaining
viable kinematic parameters. In Fig. 10a, we have suggested a
positioning of sensors to monitor the human body pose, that
is visualized in Fig. 10b directly on human body. Simplified
version of the system in the form of a flexible vest, allowing to
monitor body falls, was presented in Fig. 10c. All suggestions
and designs are a matter of future studies.
Suggested placement of sensors finds justification in the mod-

els already presented and validated in the literature [38,39]. An
appropriate model used to create a mechatronic device consist-
ing of inter alia IMU sensors with an implemented algorithm

to efficiently process kinematic data can allow to e.g. monitor
falls of the elderly during ADL. This can lead to obtaining data
that are crucial for diagnosis as well as designing individual
treatment to increase the quality of life.

5. CONCLUSIONS

According to the results obtained, the answers to the questions
defined in the introduction are the following: 1 – Wearable sys-
tems can estimate human body pose with sufficient accuracy
while using appropriate data processing algorithms; 2 – From
all analyzed algorithms, the one calculating angles based on
acceleration-derived quaternions and with implementation of
the Kalman filter was classified as the most efficient. In the sit-
uation of ranking relative error of means (REM𝛼) as the most
important and only parameter taken into consideration during
evaluation, it would be advisable to omit Kalman filter imple-
mentation and to consider the angles from quaternions calcu-
lated on the basis of acceleration as sufficiently accurate. How-
ever selection of an appropriate method should be made con-
sidering calibration, data type and filtration. While designing a
wearable system, there is a necessity of conducting an attempt to
adjust the data processing method. It is crucial among others in
systems for detecting and preventing falls or any other wearable
device that is designated to support humans in daily activity.
Evaluating pendulummovement might be considered as over-

simplification when conducting at attempt to estimate the use-
fulness of selected algorithms in data processing of real human
motion. However, the differences obtained and presented within
the manuscript have a direct impact on the performance of the
algorithms being considered, allowing to conduct a statement
of increased quality of selected data processing methods over
different ones.

(a) (b) (c)

Fig. 10. Suggested sensors setup on human body: (a) sensors positioning, (b) direct placement of sensors on human body, (c) a prototype of the
flexible vest for monitoring body falls – sensors on limbs were neglected for simplification purposes in initial version of the system (more sensors

can be added in future studies)
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Even though the obtained results directly present the influ-
ence of selected factors on the obtained data, it is important
to remember that there are several different factors that have
a significant impact on the accuracy of the results while using
sensors in wearable robotics. The optimized number of sensors
used to record the data or their symmetrical orientation can be
distinguished among them. However, the research was designed
to reduce the impact of non-analyzed factors and focus only on
the data processing issue. Nevertheless, the evaluation of the
influence of the other factors remains the goal for future studies.
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