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Abstract. To improve the dynamic adaptability and flexibility of the process route during manufacturing, a dynamic optimization method of the
multi-process route based on an improved ant colony algorithm driven by digital twin is proposed. Firstly, based on the analysis of the features of
the manufacturing part, the machining methods of each process are selected, and the fuzzy precedence constraint relationship between machining
metas and processes is constructed by intuitionistic fuzzy information. Then, the multi-objective optimization function driven by the digital twin
is established with the optimization objectives of least manufacturing cost and lowest carbon emission, also the ranking of processing methods
is optimized by an improved adaptive ant colony algorithm to seek the optimal processing sequence. Finally, the transmission shaft of some
equipment is taken as an engineering example for verification analysis, which shows that this method can obtain a process route that gets closer
to practical production.
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1. INTRODUCTION

With the rapid development of a new generation of informa-
tion technology, communication technology, and the Internet of
Things technology, the manufacturing industry is leaping for-
ward in the direction of digitalization, networking, and intelli-
gence [1]. The traditional high-volume and large-scale manufac-
turing mode has been gradually eliminated, and the upgrading
of new products is becoming increasingly frequent. The recent
market demand is facing severe challenges such as diversifica-
tion and personalization, small batches and multiple varieties,
short cycles, and fast response [2]. The process route of the
product stipulates the entire process of transforming the blank
part into the finished product by using the workshop manufac-
turing resources. A scientific and reasonable process route is an
important means to shorten the production cycle, reduce man-
ufacturing costs, and improve processing quality. At the same
time, it also has an important impact on reducing resource and
energy consumption, mitigating environmental pollution, and
promoting green and low-carbon development [3–5]. Therefore,
it has attracted wide attention and is a technical difficulty that
needs to be solved in the process of technological transformation
and upgrading of manufacturing enterprises.
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The optimization decision of the process route is not only
affected by manufacturing resources (such as machine tools,
cutting tools, checking fixtures, and measuring instruments) but
also restricted by processing methods, process constraints, and
other factors. At the same time, it is related to product types,
product batches, design level of technicians, and even the limi-
tation of enterprise process habits. So that it becomes an overly
complex and constrained non-linear multi-factor planning prob-
lem [6,7]. The traditional methods (such as the Newton method,
integer programming method, gradient descent method, and
graph theory method) are used to conduct process route op-
timization with defects such as low efficiency, time consump-
tion, poor consistency, and easily falling into local optimal so-
lution [8–10]. Moreover, this single static process route cannot
adapt to the dynamic change of manufacturing resources of an
enterprise, resulting in greatly reduced or even invalid efficiency
of process planning. In addition, the environmental impact on
the manufacturing process is insufficiently considered, which
cannot meet the development needs of low-carbon flexible man-
ufacturing [11]. In recent years, with the development of artifi-
cial intelligence, scholars at home and abroad have proposed a
variety of optimization algorithms, such as the Hopfield neural
network, genetic algorithm, grey correlation method, ant colony
optimization algorithm, tabu search, particle swarm optimiza-
tion algorithm, etc., and achieve a large number of research
results [12–15]. However, due to the defects of each algorithm
itself, as well as the comprehensive impact of product diversity
and dynamic changes in manufacturing resources, the use of
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a single optimization algorithm has certain limitations, and it is
difficult to achieve the desired results. So, it is needed to adopt a
mixture of multiple algorithms or the complementation between
different optimizing algorithms to improve the optimization ef-
ficiency.

With the widespread application of digital manufacturing
technology, digital twin technology, as synchronous interactive
feedback between physical entities and virtual space, provides
a feasible way for the dynamical adjustment and optimization
of process routes to adapt to manufacturing resource changes
during production and improve production management. Dig-
ital twin technology provides a scenario-aware means for col-
lecting and utilizing dynamic information of process routes,
expands the dynamic optimization decision-making capability
of process routes through high-fidelity mapping evolution, data
fusion analysis, and iterative optimization for decision-making,
and meets the production management needs of enterprises.

During process planning, the process knowledge is complex,
fuzzy, and discrete, and there are fuzzy constraint relationships
among the process of different processing methods, which are
suitable for analysis by the fuzzy mathematics theory. Intuition-
istic fuzzy set, as an important extension and supplement of
fuzzy set theory, comprehensively considers the information
of membership, non-membership, and hesitation degree of el-
ements [16], which is more flexible and objective in analyzing
fuzzy and uncertain problems. Ant colony algorithm, which sim-
ulates the foraging behavior of ants, has strong local search abil-
ity, information positive feedback, distributed computing, and
other features, and has significant advantages in solving com-
binatorial optimization problems. Given the features, this paper
proposes a multi-process route dynamic optimization method
based on digital twin technology, integrating intuitionistic fuzzy
information and an improved ant colony algorithm. Intuitionis-
tic fuzzy information is utilized to construct the fuzzy constraint
relationship between machining metas and processes, and then
the multi-objective optimization function driven by the digital
twin is established with the minimum manufacturing cost and
the least carbon emission as the optimization objectives. After
that, the sorting efficiency of processing methods is optimized
by an improved ant colony algorithm, and the convergence speed
is effectively improved. Finally, the effectiveness and availability
of this method are verified by engineering examples.

2. PROBLEM DESCRIPTION

The optimization of the process route is extraordinarily com-
plex, and its optimization variables are sequential rather than
regular numerical optimization. Meanwhile, the constraints and
optimization objectives are difficult to express by explicit an-
alytical expressions, which further increases the difficulty of
solving.

2.1. Part features and constraints

The optimization decision of the process route is essentially
the decomposition and extraction of part manufacturing fea-
tures and the sequencing optimization of the manufacturing

process. As a carrier of various information in the product
development process, manufacturing features not only involve
geometric topology information of parts but also contain non-
geometric information required for design and manufacturing,
such as material information, tolerance information, heat treat-
ment information, tool information, surface quality information,
etc. Usually, part features are divided into several categories,
such as key features, auxiliary features, and management fea-
tures [17]. There is usually an interrelationship between each
basic feature, and the part can be represented by a feature set as
𝐹 = { 𝑓1, 𝑓2, · · · , 𝑓𝑚}, 𝑚 is the number of features.

During the part machining process, each part feature can be
achieved by multiple operations, and the processes that com-
plete the machining of all part features constitute a processing
sequence, in which each machining node is called a machining
meta and can be described as a six-tuple:

𝑃𝑖 𝑗 =
{
𝑃𝐼𝑒, 𝑃𝐹𝑖 , 𝑃𝑆 𝑗 , 𝑃𝑀𝑙 , 𝑃𝑊𝑟 , 𝑃𝐷

}
, (1)

where 𝑃𝐼𝑒 is the machining meta number; 𝑃𝐹𝑖 is the part feature;
𝑃𝑆 𝑗 is the machining stage 𝑗of feature 𝑖; 𝑃𝑀𝑙 is the method 𝑙

available for the feature 𝑖 in the machining stage 𝑗 ; 𝑃𝑊𝑟 is
the manufacturing resource𝑟 available for the feature 𝑖 in the
machining stage 𝑗 ; 𝑃𝐷 is the clamping position of the feature 𝑖
in the machining stage 𝑗 .

Therefore, the set of machining meta in each machining stage
of a part can be expressed as 𝐴 =

{
𝑃1 𝑗 , 𝑃2 𝑗 , · · · , 𝑃𝑛 𝑗

}
, for ease of

presentation, the machining stages are expanded and constituted
as 𝐴 = {𝑎1, 𝑎2, · · · , 𝑎𝑛}, 𝑛is the total number of machining meta.
When each machining meta performs a reasonable allocation
and sequencing of manufacturing resources under certain con-
straint conditions, a process route will form. A typical process
route generation process is shown in Fig. 1 below.

Fig. 1. Generation steps of process route

The sorting of each machining meta in the process route
is not arbitrary, it is necessary to consider the constraints of
processing methods, processing stages, process rules, and other
factors to ensure the effectiveness of the optimization efficiency.
Constraints include the following aspects:
1. Benchmark and location constraints: the machining features

used as the benchmark should be processed first. If there
are multiple precise data, the principle of reference surface
transfer order and gradually improving machining accuracy
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should be abided by for machining processes; when there is
a location relationship between the machining features, the
locating feature shall be dealt with first.

2. Processing stage constraints: from coarse to precise, from
primary surface to secondary surface. That is, in the order
of roughing → semi-finishing machining → finishing →
smoothing. At the same time, the main surfaces (working
surface, assembly surface, etc.) are processed first, and the
secondary surface (non-working surface, auxiliary surface,
etc.) should be post-processing.

3. Non-destructive constraints: the features of post-processing
cannot destroy the properties generated by the previous pro-
cessing. For example, chamfering is earlier than thread pro-
cessing, and groove is processed after cylinder processing.

4. Constraints formed by the feature properties: the hole ex-
pansion or reaming of an inner hole must be processed after
the drilling of it.

5. The uniqueness constraint of a machine tool and cutting
tool: each processing can only be conducted on one machine
tool, and only one cutting tool can be selected for machining
operation.

6. Constraints of energy-saving and consumption-reduction:
under the premise of ensuring machining quality, as many
as possible machining features should be dealt with for one
clamping, and the tool path of each processing should be the
shortest, which not only shortens the processing time but
also reduces tool consumption and machine tool wear.

Among them, 1 to 5 are mandatory constraints, which must be
satisfied during the dynamic optimization of the process route;
6 belongs to selective constraints, which are maximally satisfied
during the dynamic optimization process of the process route.
Due to the overlapping and fuzziness of the constraint relation-
ship between the part features, to accurately express this state
between machining metas, the intuitionistic fuzzy information
introduced below will be adopted to establish the precedence
constraint relationship of the machining metas.

2.2. Objective functions

Usually, in a certain manufacturing environment, the manufac-
turing resources of the actual production process are unchanged,
that is, under the condition that the machine tool, cutting tool,
and fixture are known. Their variation will cause changes in
processing time, production cost, carbon emission, and product
quality.

Therefore, the order optimization of processing methods can
be conducted by taking the lowest manufacturing cost and the
least carbon emission as objective functions, namely:

min𝐶 (𝑥) = 𝑀𝐶 (𝑥) +𝐶𝐸 (𝑥), (2)

where 𝑀𝐶 (𝑥) is manufacturing cost, which mainly includes the
machining costs of machine tools and cutting tools, as well as
the changing costs caused by changes in machine tools, cutting
tools, and fixtures, can be expressed as follows:

𝑀𝐶 (𝑥) =
𝑛∑︁
𝑖=1

𝐽𝐶 (𝑥) +
𝑛∑︁
𝑖=1

𝐷𝐽 (𝑥) +
𝑛∑︁
𝑖=1

𝐽𝐶𝑑 (𝑥)

+
𝑛∑︁
𝑖=1

𝐷𝐽𝑑 (𝑥) +
𝑛−1∑︁
𝑖=1

𝐽𝐽𝑑 (𝑥)

= 𝐽𝐶

𝑛∑︁
𝑖=1

𝑡𝑖 +𝐷𝐽

𝑛∑︁
𝑖=1

𝑡𝑖 + 𝐽𝐶𝑑

𝑛−1∑︁
𝑖=1

𝛿(𝐽𝐶𝑖 , 𝐽𝐶𝑖+1)

+𝐷𝐽𝑑

𝑛−1∑︁
𝑖=1

𝛿(𝐷𝐽𝑖 , 𝐷𝐽𝑖+1)

+ 𝐽𝐽𝑑

𝑛−1∑︁
𝑖=1

[1− 𝛿(𝐽𝐶𝑖 , 𝐽𝐶𝑖+1)] 𝛿(𝐽𝐽𝑖 , 𝐽𝐽𝑖+1), (3)

where 𝐽𝐶, 𝐷𝐽 are the unit machining cost coefficients of ma-
chine tools and cutting tools, respectively. 𝐽𝐶𝑑 , 𝐷𝐽𝑑 , 𝐽𝐽𝑑 are
the unit variable cost coefficients of machine tools, cutting tools,
and fixtures, respectively. 𝛿(𝑥𝑖 , 𝑥𝑖+1) is the discriminant func-
tion [18], which can be expressed as:

𝛿(𝑥𝑖 , 𝑥𝑖+1) =
{

1 (𝑥𝑖 ≠ 𝑥𝑖+1),
0 (𝑥𝑖 = 𝑥𝑖+1).

(4)

𝐶𝐸 (𝑥) is the carbon emission, which mainly contains carbon
emission from energy consumption of machine tools during ma-
chining, carbon emissions from tool wear, and carbon emissions
from chip fluid, which can be expressed as follows:

𝐶𝐸 (𝑥) = 𝑓𝑒

𝑛∑︁
𝑖=1

𝑃𝑖 · 𝑡𝑖 + 𝑓𝑑

𝑛∑︁
𝑖=1

𝑡𝑖

𝑇𝑖
·𝑚𝑖

+
𝑛∑︁
𝑖=1

𝑡𝑖

𝑇𝑦𝑖

(
𝑓𝑦𝑄𝑐 + 𝑓 𝑟𝑦𝑄𝑐/𝜌

)
, (5)

where 𝑓𝑒, 𝑃𝑖 , 𝑡𝑖 are the carbon emission coefficient of elec-
tric energy, machine power, and corresponding machining time
during machining, respectively; 𝑓𝑑 , 𝑇𝑖 , 𝑚𝑖 are the cutting tool
carbon emission coefficient, tool life, and weight, respectively;
𝑓𝑦 , 𝑓 𝑟𝑦 , 𝑇𝑦𝑖 , 𝑄𝑐, 𝜌 are the carbon emission coefficient of chip
fluid, carbon emission coefficient of chip waste disposal, cutting
fluid replacement cycle, cutting fluid dosage and cutting fluid
concentration, respectively.

In the optimization process, these two objective functions
will be constrained by each other, and it is difficult to meet their
optimal conditions simultaneously. The multi-objective problem
can be transformed by a weighted combination according to the
importance of a single objective function. The objective function
can be expressed as:

min𝐶 (𝑥) = 𝛾1 min𝑀𝐶 (𝑥) +𝛾2 min𝐶𝐸 (𝑥), (6)

where 𝛾1, 𝛾2 are weight coefficients, and 𝛾1, 𝛾2 ∈ [0, 1], 𝛾1 +
𝛾2 = 1.

To eliminate the influence of magnitude on the calculation
results, the smaller type of normalization is adopted for 𝑀𝐶 (𝑥),
𝐶𝐸 (𝑥), and then the objective function is converted to:
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min𝐶 (𝑥) = 𝛾1 min
𝑀𝐶 (𝑥) −𝑀𝐶 (𝑥)min

𝑀𝐶 (𝑥)max −𝑀𝐶 (𝑥)min

+ 𝛾2 min
𝐶𝐸 (𝑥) −𝐶𝐸 (𝑥)min

𝐶𝐸 (𝑥)max −𝐶𝐸 (𝑥)min
. (7)

Due to the dynamic nature of manufacturing, the uncertainty of
the pre-determined process route increases in practical applica-
tion. Therefore, based on information collection, the digital twin
technology is used to fully consider the influence of manufac-
turing processes and their changes on process route optimiza-
tion in the time dimension, such as manufacturing environment,
production scheduling, and workshop control, and to build a
dynamic process route optimization framework based on digital
twinning as shown in Fig. 2.

Fig. 2. Dynamic optimization framework of process route based on the
digital twin

3. HYBRID OPTIMIZATION ALGORITHM

3.1. Intuitionistic fuzzy information

The intuitionistic fuzzy set considers three aspects of ele-
ments information: membership, non-membership, and hesi-
tation, which is more flexible and practical in solving fuzzy and
uncertain decision problems. Usually, the intuitionistic fuzzy set
is defined as:

𝐵 =
{
⟨𝑥𝑖 , 𝜇𝐵 (𝑥𝑖), 𝜈𝐵 (𝑥𝑖)⟩

��𝑥𝑖 ∈ 𝑋
}
. (8)

𝐵 is an intuitionistic fuzzy set of 𝑋 (a given non-empty set),
where 𝜇𝐵 : 𝑋 → [0, 1], 𝜈𝐵 : 𝑋 → [0, 1] represents the mem-
bership and non-membership of 𝐵, respectively, and they sat-
isfy 𝜇𝐵 (𝑥𝑖) + 𝜈𝐵 (𝑥𝑖) ∈ [0, 1], ∀𝑥𝑖 ∈ 𝑋 . In addition, 𝜋𝐵 (𝑥𝑖) =
1− 𝜇𝐵 (𝑥𝑖) − 𝜈𝐵 (𝑥𝑖) ∈ [0, 1], ∀𝑥𝑖 ∈ 𝑋 is the hesitation degree
of𝐵. When 𝜋𝐵 (𝑥𝑖) = 0, it is obvious that 𝜇𝐵 (𝑥𝑖) = 1− 𝜈𝐵 (𝑥𝑖),
then the intuitionistic fuzzy set degenerates into a traditional
fuzzy set [19]. The elements of 𝐵 are called intuitionistic fuzzy
numbers and are abbreviated as follows for the convenience of
calculation:

𝑏 = ⟨𝜇, 𝜈⟩ = ⟨𝜇𝐵 (𝑥𝑖), 𝜈𝐵 (𝑥𝑖)⟩. (9)

When determining the constraint relationship between any ma-
chining meta 𝑃𝑖 𝑗 by intuitionistic fuzzy information, the intu-
itionistic fuzzy value corresponding to each semantic evaluation

information should be defined in advance. That is, according to
membership 𝜇𝐵 (𝑥𝑖) given by the semantic evaluation informa-
tion and the hesitation 𝜋𝐵 (𝑥𝑖) given by the technologist, the
intuitionistic fuzzy number is calculated:

𝑏𝑖 = ⟨𝜇𝐵 (𝑥𝑖) −𝛼 · 𝜋𝐵 (𝑥𝑖), 𝜇𝐵 (𝑥𝑖) + 𝛽 · 𝜋𝐵 (𝑥𝑖)⟩, (10)

where 𝛼 + 𝛽 = 1, and 𝛼, 𝛽 ∈ [0, 1], 𝛼 and 𝛽 are the higher and
lower levels of hesitation, respectively.

The precedence constraint relationship between machining
metas is divided into five categories, namely, extremely strong
constraint 𝐵1, strong constraint 𝐵2, general constraint 𝐵3, weak
constraint 𝐵4, and extremely weak constraint 𝐵5. Each constraint
type corresponds to an intuitionistic fuzziness with hesitation,
as shown in Table 1 so that technologists can easily find it.

Table 1
Fuzzy semantic information and its intuitionistic fuzzy value

Semantic information
of precedence

constraints

Intuitionistic
fuzzy value

The value of
𝛼 and 𝛽

extremely strong
constraint 𝐵1

1−𝛼𝜋, 1+ 𝛽𝜋 𝛼 = 1, 𝛽 = 0

strong constraint 𝐵2 0.75−𝛼𝜋, 0.75+ 𝛽𝜋 𝛼 = 0.5, 𝛽 = 0.5

general constraint 𝐵3 0.5−𝛼𝜋, 0.5+ 𝛽𝜋 𝛼 = 0.5 , 𝛽 = 0.5

weak constraint 𝐵4 0.25−𝛼𝜋, 0.25+ 𝛽𝜋 𝛼 = 0.5, 𝛽 = 0.5
extremely weak
constraint 𝐵5

0−𝛼𝜋, 0+ 𝛽𝜋 𝛼 = 0, 𝛽 = 1

For example, 𝐵2 (0.3) means that two adjacent machining
metas have strong constraints, and the hesitation given by a
technologist is 0.3, then the corresponding intuitionistic fuzzy
value is ⟨0.6, 0.9⟩. Therefore, it is easy to judge the prece-
dence relationship between machining metas, which provides
free operating space for decision-making and also conforms
to the actual status. Obviously, when the hesitation given by
a technologist is 0, there are two extreme situations, namely,
mandatory precedence constraint ⟨1, 1⟩ and no precedence con-
straint ⟨0, 0⟩.

3.2. Precedence constraint matrix

The precedence constraint matrix 𝑌 =
(
𝑦𝑖 𝑗

)
𝑛×𝑛 can be estab-

lished from the intuitionistic fuzzy values of machining metas.
Since the elements 𝑦𝑖 𝑗 in the matrix 𝑌 belong to the interval
[0, 1], it is necessary to use the relevant knowledge of fuzzy
theory to sort the intuitionistic fuzzy values to obtain the accu-
rate fuzzy precedence constraints of all machining metas. Let
𝑏1 = ⟨𝜇1, 𝜈1⟩, 𝑏2 = ⟨𝜇2, 𝜈2⟩ as any intuitionistic fuzzy value, the
probability 𝑃(𝑏1 ≥ 𝑏2) of 𝑏1 ≥ 𝑏2 is expressed as follows:

𝑃(𝑏1 ≥ 𝑏2) =



max(0, 𝐿1+𝐿2 −max(0, 𝜈2−𝜇1))
𝐿1 + 𝐿2

,

𝐿1 + 𝐿2 ≠ 0,
1, 𝐿1 + 𝐿2 = 0, 𝜇1 ≥ 𝜇2 ,

0, 𝐿1 + 𝐿2 = 0, 𝜇1 < 𝜇2 ,

(11)
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where 𝐿1 = 𝜇2−𝜇1, 𝐿2 = 𝜈2−𝜈1 [20]. In the obtained precedence

constraint matrix𝑌 , the modulus of its row vector ∥𝐻𝑖 ∥ =
𝑛∑︁
𝑗=1

𝑦𝑖 𝑗

is calculated to represent the number of processing constraints
provided by the machining meta 𝑖, and the modulus of its col-

umn vector
𝐿 𝑗

 = 𝑛∑︁
𝑖=1

𝑦𝑖 𝑗 is calculated to represent the number

of processing constraints accepted by the machining meta 𝑗 .
When ∥𝐻𝑖 ∥ ≠ 0 and ∥𝐿𝑖 ∥ = 0, the machining meta 𝑖 can be the
beginning of a processing route; when ∥𝐻𝑖 ∥ = 0 and ∥𝐿𝑖 ∥ ≠ 0,
the machining meta 𝑖 acts as the endpoint of a processing route.
If ∥𝐻𝑖 ∥ ≠ 0 and ∥𝐿𝑖 ∥ ≠ 0, the machining meta 𝑖 can be used
as the intermediate process of a processing route, interspersed
between the starting and ending operations.

3.3. Improved ant colony algorithm

The ant colony algorithm is a simulated evolutionary algorithm
proposed by Dorigo et al. [21]. It was adopted to solve combina-
torial optimization problems such as traveling salesman prob-
lems, job-shop scheduling, and quadratic programming prob-
lems, but it is apt to appear premature convergence or stagnation
behavior, moreover, it takes longer time than some other algo-
rithms. In this paper, the adaptability of the optimization process
is improved by improving the heuristic information function
and adjusting the volatile concentration of local pheromone and
global pheromone, to be used for the optimization decision of
the multi-process route. The search procedure is as follows.
1. Initialization

At the initial time, ants 𝑚 are randomly placed on any can-
didate machining meta corresponding to the roughing stage of
the manufacturing feature 𝑛, and the first element of the tabu
list is set as the current machining meta node. Currently, the
pheromone of each path is equal, which is a small constant,
namely, 𝑟𝑖 𝑗 (0) = 𝑐.
2. Path transition rules

When ants search all the machining meta, they need to de-
termine how to move from the current machining meta 𝑖 to the
next machining meta 𝑗 according to the transition probability
function 𝑃𝑘

𝑖 𝑗
(𝑡). The larger the function value, the greater the

probability of selecting the next machining meta 𝑗 , the formula
is as follows [22]:

𝑃𝑘
𝑖 𝑗 (𝑡) =


[
𝑟𝑖 𝑗 (𝑡)

] 𝛼 · [𝜂𝑖 𝑗 (𝑡)]𝛽∑︁
𝑠⊂allowed𝑘

(
[𝑟𝑖𝑠 (𝑡)]𝛼 · [𝜂𝑖𝑠 (𝑡)]𝛽

) 𝑗 ∈allowed𝑘 ,

0 others,

(12)

𝜂𝑖 𝑗 (𝑡) =
1

𝑑𝑖 𝑗 + 𝑑 𝑗𝑚

, (13)

𝑎𝑘 = {1−Tab(𝑃𝐹𝑘)} , (14)

where 𝑟𝑖 𝑗 (𝑡) is the pheromone between machining meta 𝑖 and
𝑗 at the moment 𝑡; 𝛼 is the information heuristic factor, which

indicates the relative importance of the trajectory; 𝛽 is the ex-
pected heuristic factor, which represents the relative importance
of the heuristic factor; 𝑎𝑘 is the set of optional machining meta
nodes for ant 𝑘 at the current moment. 𝜂𝑖 𝑗 (𝑡) is the heuristic in-
formation function, it is usually taken as the inverse of distance
transferred from 𝑖 to 𝑗 . In this paper, it is taken as the reciprocal
of the sum of manufacturing cost and carbon emission between
two adjacent machining metas, i.e., 𝑑𝑖 𝑗 = 1/(𝑀𝐶𝑖 𝑗 +𝐶𝐸𝑖 𝑗 ). This
search method does not consider the relationship between the
current node and endpoint and is easy to fall into the local opti-
mum. Therefore, the distance 𝑑 𝑗𝑚 between the machining meta
𝑗 and the final machining meta 𝑚 is introduced into the heuris-
tic information function to improve the pertinence of the search.
If 𝑑𝑖 𝑗 < 𝑑 𝑗𝑚, 𝑗 is defined as a closer node; otherwise, it is a
remote node. When the ant searches, it only calculates several
nodes near the closer node, to reduce the calculation amount
and accelerate the convergence rate.

At the same time, when the ant𝑘moves from the current ma-
chining meta𝑖to the next machining meta 𝑗 , it will put the nodes
that meet the tabu criteria into the tabu list Tab(𝑃𝐹𝑘), and re-
move them when selecting. There are two types of tabu nodes:
one is the processed machining meta node, and the other is that
does not meet process constraints.
3. Pheromone update rules

After each step, the ant 𝑘 locally updates the path pheromone
to avoid falling into the local optimum. Meanwhile, the
pheromone concentration is limited to the interval [𝑟min, 𝑟max]
to prevent it from increasing indefinitely. The local update rule
of pheromone is as follows:

𝑟𝑖 𝑗 (𝑡 +1) =


𝑟min , 𝑟𝑖 𝑗 ≤ 𝑟min ,

(1− 𝜃1)𝑟𝑖 𝑗 (𝑡) + 𝜃1𝑟max , 𝑟min < 𝑟𝑖 𝑗 < 𝑟max ,

𝑟max , 𝑟𝑖 𝑗 ≥ 𝑟max ,

(15)

where 𝜃1 is the volatilization coefficient of the local pheromone,
𝜃1 ∈ (0, 1).

When the ant 𝑘 traverses all the machining meta nodes of
the process route once, the pheromone of each path is globally
adjusted to avoid the pheromone remaining too much to anni-
hilate the heuristic information and to make better use of the
existing optimal solution. The pheromone global update rules
are as follows:

𝑟𝑖 𝑗 (𝑡 +1) = (1− 𝜃2) 𝑟𝑖 𝑗 (𝑡) + 𝜃2

𝑚∑︁
𝑘=1

Δ𝑟𝑘𝑖 𝑗 (𝑡), (16)

Δ𝑟𝑘𝑖 𝑗 (𝑡) =
𝑄

min(𝐿𝑘)
, (17)

where 𝜃2 is the global pheromone volatilization coefficient, 𝜃2 ∈
(0, 1); Δ𝑟𝑘

𝑖 𝑗
(𝑡) is information left on the path by the ant𝑘 during

this traversal; 𝐿𝑘 is the path of the ant 𝑘 between time 𝑡 and 𝑡+1.
𝑄 is pheromone intensity, it usually is a constant.

In summary, the flow chart of process routes optimization by
hybrid ant colony algorithm with intuitionistic fuzzy informa-
tion is shown in Fig. 3.
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Fig. 3. Flow chart of process routes optimization

Table 2
Feature properties and machining methods of part

Feature
number

Dimensions and
tolerances

Machining
methods Machining chain Optional

machining tools
Optional

cutting tools
Lamping

points

f1 20 turning rough turning a1; semi-finish turning a2 M1, M2 T1, T2 6

f2 𝜙 20+0.023
+0.002 turning, grinding rough turning a3; semi-finish turning a4; rough

grinding a5; fine grinding a6
M1, M2, M5 T1, T2, T5, T6 6

f3 𝜙 260
−0.021 turning, grinding rough turning a7; semi-finish turning a8; rough

grinding a9; fine grinding a10
M1, M2, M5 T1, T2, T5, T6 6

f4 M36 turning rough turning a11; semi-finish turning a12 M1, M2 T1, T2 6

f5 𝜙 280
−0.021 turning, grinding rough turning a13; semi-finish turning a14; rough

grinding a15; fine grinding a16
M1, M2, M5 T1, T2, T5, T6 2

f6 𝜙 20+0.023
+0.002 turning, grinding rough turning a17; semi-finish turning a18; rough

grinding a19; fine grinding a20
M1, M2, M5 T1, T2, T5, T6 2

f7 20 turning rough turning a21; semi-finish turning a22 M1, M2 T1, T2 2
f1-1 B2.5 turning/drilling drilling a23 M1, M6 T1, T7 6
f2-1 1×45◦ turning rough turning a24; semi-finish turning a25 M1, M2 T1, T2 6
f2-2 2×1.5 turning rough turning a26; semi-finish turning a27 M1, M2 T1, T2 6
f3-1 8N9 milling rough milling a28; fine milling a29 M3, M4 T3, T4 6, 2
f3-2 2×1.5 turning rough turning a30; semi-finish turning a31 M1, M2 T1, T2 6
f4-1 – turning turning screw a32 M1, M2 T2 6
f4-2 2×1.5 turning rough turning a33; semi-finish turning a34 M1, M2 T1, T2 6
f5-1 3×45◦ turning rough turning a35; semi-finish turning a36 M1, M2 T1, T2 2
f6-1 1×45◦ turning rough turning a37; semi-finish turning a38 M1, M2 T1, T2 2
f7-1 B2.5 turning/drilling drilling a39 M1, M6 T1, T7 2

4. CASE STUDY AND DISCUSSION

4.1. Transmission shaft machining information

In this paper, a transmission shaft part produced by an enterprise
is considered as an example for analysis and verification. The
main structure shape, physical dimensions, and machining ac-
curacy of the part drawing are shown in Fig. 4, and its material
is 40 MnB. Based on analyzing the manufacturing features of
this part, the processing methods and available manufacturing
resources corresponding to each manufacturing feature are se-
lected by comprehensively considering factors such as machin-
ing quality, processing accuracy, and manufacturing cost. Fea-
ture properties and machining methods of this part are shown in
Table 2, and the available manufacturing resources of machining
metas are shown in Tables 3 and 4.

Table 3
Machine tool information

Machine tool
number

Machine tool
type

Power
[kW]

Coefficient
JC

M1 ordinary lathe 7.5 10
M2 CNC lathe 11 15
M3 vertical miller 10 13
M4 CNC miller 15 20
M5 grinder 5.5 30
M6 driller 2 10
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Fig. 4. The model of a transmission shaft

Table 4
Cutting tool information

Cutting tool
number

Cutting tool
type

Weight
[g]

Tool life
[min]

Coefficient
DJ

T1 lathe tool 9 60 11
T2 lathe tool 10 110 9
T3 milling cutter 8 240 12
T4 milling cutter 40 180 15
T5 grinding tool 650 24 15
T6 grinding tool 800 15 25
T7 drilling bit 325 55 8

In this figure, 1, 7: end face, 2, 3, 5, 6: cylindrical face, 4:
thread face, 1-1, 7-1: center hole, 2-1, 5-1, 6-1: chamfer, 2-2,
3-2, 4-2: withdrawal groove, 3-1: flat keyway, and 4-1: external
thread.

In this case, the unit variable cost coefficients of machine
tools, cutting tools, and fixtures are set as: 𝐽𝐶𝑑 = 7 ,𝐷𝐽𝑑 = 1,
𝐽𝐽𝑑 = 4, respectively. At the same time, the carbon emission co-
efficient of electric energy with machine tool in the machining
process is 𝑓𝑒 = 2.41 kgCO2e/kWh, the carbon emission coeffi-
cient of chip fluid is 𝑓𝑦 = 2.86 kgCO2e/L, the carbon emission
coefficient of chip waste disposal is 𝑓 𝑟𝑦 = 0.2 kgCO2e/L, the cut-
ting fluid replacement cycle is 𝑇𝑦𝑖 = 3.6 · 104 min, the cutting
fluid dosage is 𝑄𝑐 = 15 L, and the cutting fluid concentration is
𝜌 = 0.04.

4.2. Analysis of optimization results

According to the fuzzy priority constraint relationship between
machining metas, the precedence constraint matrix is estab-
lished, and then the improved ant colony algorithm is applied
for iterative optimization. This algorithm is programmed by
MATLAB R2016b. The computer configuration used for simu-
lation is as follows: Windows 7 system, Intel (R) Xeon (R) CPU
@3.07 GHz, and 8GB RAM. In this experiment, the ant colony
number 𝑚 = 25, the machining meta number 𝑛 = 39, the cycle
number 𝑁max = 250, the information heuristic factor 𝛼 = 1.0, the
expected heuristic factor 𝛽 = 1.5, and the pheromone volatiliza-
tion coefficient 𝜃1 = 0.9, 𝜃2 = 0.9. At the same time, to compare
the process route optimization method proposed in this paper

with the conventional method that only focuses on manufactur-
ing cost or carbon emissions, five groups of different weight
combinations are set, and the optimized results are shown in
Table 5.

Table 5
Comparison of optimization results

Optimized values
Weight coefficients (𝛾1, 𝛾2)

(1, 0) (0.6, 0.4) (0.5, 0.5) (0.4, 0.6) (0, 1)

MC
Convergence 148.72 153.56 157.43 162.47 168.13

Iterations 53 65 76 92 0

CE
Convergence 3.87 3.64 3.49 3.27 3.16

Iterations 0 94 81 70 50

As can be seen from Table 5, when the lowest manufacturing
cost is taken as the optimization objective, the machine tool and
cutting tool with low machining cost coefficient are preferred,
and the number of machine tool changes and the change times of
the cutting tool are reduced as much as possible, to shorten the
processing time accordingly. However, reducing the machining
time will inevitably increase the cutting amount or the spindle
speed of the machine tool, which leads to an increase in tool
wear and machine power consumption, resulting in increased
carbon emissions. When the lowest carbon emission is taken as
the optimization goal, the machine tool with less power con-
sumption and the processing route with less tool wear and less
cutting fluid usage during the machining process is preferred,
but it also causes frequent switching of machine and cutting
tool and increases the machining time and auxiliary time, which
leads to higher manufacturing cost. In the process route that con-
siders both manufacturing cost and carbon emission, the weight
coefficients of manufacturing cost and carbon emission can be
comprehensively evaluated according to product batch, order
urgency, and workshop production conditions, to meet the dual
demands of economic and environmental benefits in the pro-
duction process. However, under normal production conditions,
when the weighting coefficients of the two are equal, the process
result is the best. The optimal process route of this case is shown
in Table 6, in which the machine tool changes twice, the cutting
tool changes three times, and the clamping position changes ten
times. It is better than the existing process route of the enter-
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prise, and the priority order of each optimized processing meta
is as follows.

𝑎21 ≻ 𝑎17 ≻ 𝑎13 ≻ 𝑎11 ≻ 𝑎22 ≻ 𝑎39 ≻ 𝑎1 ≻ 𝑎3 ≻ 𝑎7 ≻ 𝑎2 ≻ 𝑎23 ≻
𝑎18 ≻ 𝑎14 ≻ 𝑎12 ≻ 𝑎33 ≻ 𝑎35 ≻ 𝑎37 ≻ 𝑎38 ≻ 𝑎36 ≻ 𝑎4 ≻ 𝑎8 ≻ 𝑎30 ≻
𝑎26 ≻ 𝑎24 ≻ 𝑎25 ≻ 𝑎27 ≻ 𝑎31 ≻ 𝑎34 ≻ 𝑎32 ≻ 𝑎5 ≻ 𝑎9 ≻ 𝑎15 ≻ 𝑎19 ≻
𝑎6 ≻ 𝑎10 ≻ 𝑎16 ≻ 𝑎20 ≻ 𝑎28 ≻ 𝑎29 .

Table 6
The optimal process route of low cost and low carbon emission

Feature
number Process content Machine

tool
Cutting

tool

f7, f6, f4 rough turning of the right end
face and outer circle surface M2 T1

f7, f7-1 semi-finish turning of the right
end face and center hole M2 T1

f1, f2, f3 rough turning of the left end
face and outer circle surface M2 T1

f1, f1-1 semi-finish turning of the left
end face and center hole M2 T1

f6, f5, f4 semi-finish turning of the outer
circle surface M2 T1

f4-2, f5-1,
f6-1

rough turning of run-out
groove and chamfer M2 T1

f6-1, f5-1, f2,
f3

semi-finish turning of chamfer
and outer circle surface M2 T1

f3-2, f2-2,
f2-1

rough turning of run-out
groove and chamfer M2 T1

f2-1, f2-2,
f3-2, f4-2

semi-finish turning of chamfer
and run-out groove M2 T1

f4-1 turning thread M2 T2
f3-1 milling key slot M4 T4

F2, f3, f5, f6 cylindrical grinding M5 T6

The process route of this scheme includes the main processes
of that part, according to the specific processing conditions
and technical requirements, some auxiliary processes (such as
material preparation, blanking, and the scribing process in the
previous stage, the intermediate heat treatment process, inspec-
tion and storage in the later stage) just need to add in the scheme
to constitute an acceptable process route that meets the manu-
facturing cost and carbon emission demands.

5. CONCLUSIONS

The dynamic optimization decision of the process route is a
nonlinear programming problem with multiple constraints and
multi-objective. Considering the diversity and ambiguity be-
tween processes, as well as the subjectivity of a technician
in decision-making, the digital twin technology is adopted to
fully consider the influence of the manufacturing process and
its changes on the process route optimization in the time di-
mension. Taking the least manufacturing cost and the minimum
carbon emission as the optimization objectives, an improved ant

colony algorithm integrating intuitionistic fuzzy information is
used to conduct the global optimization of multi-process routes.
Finally, the transmission shaft of equipment is taken as an engi-
neering example to verify the effectiveness and feasibility of this
scheme, which can provide a reference for manufacturing enter-
prises to make process optimization decisions and has practical
application prospects.

In addition, this method can also be used to solve other simi-
lar multi-objective optimization problems. However, due to the
wide categories and various structural shapes of parts, the ex-
pansibility of this method needs to be verified by more types
of parts. At the same time, the excessive feature information
and constrained relationship of parts may reduce the applicabil-
ity of this method, which still needs more thorough follow-up
research and verification in the future. In addition, the process
route optimization should also be combined with process param-
eter selection and production scheduling management to adapt
to the dynamic change of production conditions.
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