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Abstract. This article examines in depth the most recent thermal testing techniques for lithium-ion batteries (LIBs). Temperature 

estimation circuits can be divided into six divisions based on modeling and calculation methods, including electrochemical 

computational modeling, equivalent electric circuit modeling (EECM), machine learning (ML), digital analysis, direct impedance 

measurement, and magnetic nanoparticles as a base. Complexity, accuracy, and computational cost-based EECM circuits are 

feasible. The accuracy, usability, and adaptability of diagrams produced using ML have the potential to be very high. However, 

both cannot anticipate low-cost integrated BMS live due to their high computational costs. An appropriate solution might be a 

hybrid strategy that combines EECM and ML. 
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1. INTRODUCTION 
Due to their high voltage (>4V/cell), high energy density (265 

(W h) L-1), and longer lifespan, LIBs are frequently employed 

in electric vehicles (EVs), reliable grid-connected energy 

storage systems, and various other consumer gadgets. The 

usage of LIBs in the transportation and aerospace sectors has 

resulted in more giant cells and battery packs with longer 

ranges and more demanding charge and discharge cycles. 

However, thermal instability and temperature-dependent 

nonlinear behavior frequently hampered LIB systems' safe 

and dependable functioning. The performance of the Li-ion 

battery, including its longevity, efficiency, dependability, and 

safety, is directly impacted by using the battery outside of its 

safe operating temperature. The ideal working temperature 

range for LIBs, according to studies on their thermal 

efficiency, is between 25°C and 40°C [1,2]. According to [3], 

profound charging circumstances and varied charging current 

requirements can cause the internal temperature and surface 

temperature to diverge by more than 10°C in real applications. 

Thermal shock, explosion, and fire can result from an 

excessive temperature difference and a high-temperature 

concentration inside the battery [4]. To properly monitor 

battery parameters (current, voltage, and temperature) and 

evaluate battery health (state of charge (SOC), state of health 

(SOH), remaining usable life (RUL), and state of temperature 

(SOT) [5], a battery management system (BMS) is required. 

Studies have demonstrated that SOC [6], SOH [7], and 

residual storage capacity [8] are functions of temperature; as 

a result, the temperature of a battery during charging and 

discharging has a significant impact on the Coulombic 

efficiency of the battery. Other standard BMS functions 

include cell balancing [9] and fault detection/diagnosis [10], 

which frequently require knowledge of cell and individual cell 

temperatures for optimal energy usage, operational safety, 

reliability, and long battery life. 

As a result, accurate core and surface temperature knowledge 

is crucial for effective thermal control and the security of LIB 

cells. Heating the battery to the proper limits to ensure 

adequate performance at low temperatures can also drastically 

diminish battery capacity in areas with a cold climate [11,12]. 

Additionally, research has revealed that the battery 

deteriorates by about 5% for every 0.1°C increase outside of 

the safe operating range [13,14]. According to the research, 

the discharge process—particularly the rapid discharge 

process—is when most of the heat is emitted. Therefore, 

accurate temperature estimation is crucial for good thermal 

management and safety when the battery is quickly depleted 

and heated to prevent energy loss.  

For LIBs’ thermal management and safety, precise battery 

temperature information is unquestionably a crucial 

cornerstone. Although each cell can have a temperature sensor 

placed inside of it to monitor the surface temperature, it is 

challenging to use a physical probe to measure the inside 

temperature directly. The thousands of batteries and modules *e-mail: ahmedabdelbaset2016@gmail.com 
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contained within each high-capacity battery used in EVs and 

grid-connected systems make it impractical to install 

temperature sensors on every surface of the battery. This has 

an impact on system cost, footprint, and weight. To create an 

intelligent battery, researchers have also combined multi-

dimensional (MD) sensing and self-healing capabilities into a 

single battery [15–18]. Intelligent batteries measure variables 

and evaluate the battery's health, including temperature. 

Accurate temperature estimation is still required in intelligent 

batteries despite the modular deployment of BMS, as placing 

sensors in each cell would increase operational expenses and 

complexity. To create a low-cost car BMS, researchers tried 

to create a highly accurate, exact, easy-to-implement, and 

computationally cheap online temperature estimating 

algorithm. To measure temperature, academics have put out 

several different approaches thus far. 

Regarding the qualities mentioned above of an ideal BMS, 

each of the various types of techniques has its benefits and 

drawbacks. To choose the best technology for a given need, 

researchers and developers can benefit greatly from having a 

broad overview of all currently used technologies as a starting 

point for further investigation. However, there needs to be a 

synopsis of the literature that outlines the developments and 

explains the present issues, difficulties, and potential for 

further study. This work covers the research gap by 

thoroughly examining the most recent temperature-estimating 

techniques published in the literature. 

2. GENERIC TEMPERATURE ESTIMATION STRATEGY 

 

Regardless of the battery's chemistry, heat is generated inside 

the battery during charge/discharge cycles and while it is at 

rest. This heat is generated through chemical, electrochemical, 

and predominantly exothermic transport processes. 

Insufficient heat flow from the battery to the surroundings can 

cause heat to accumulate inside the battery, raising internal 

and surface temperatures and the possibility of thermal shock. 

Batteries with rigid insulation, which are utilized in EVs and 

have quick charge/discharge rates and high operating 

temperatures, are the ones where this effect is most visible. 

The heat conductivity of cylindrical lithium batteries, 

frequently utilized in big lithium batteries, could be more 

substantial. So, exothermic and heat transport models make 

up a standard heat estimating system [19]. While other models 

use mathematical forms of battery chemistry to compute heat 

generation, the Bernard heat generation model (HGM) [20] is 

typically also used to estimate the total heat produced. The 

battery temperature is a function of the battery condition, so 

the adaptation algorithm also considers the effects of different 

battery conditions like SOC and SOH. The predicted total 

temperature is then used to anticipate the battery temperature 

using a heat transfer model (HTM) and additional outside 

measurements like ambient temperature. Measured or 

estimated temperature is used as feedback in feedback scoring 

systems to increase forecast accuracy. Figure 1 depicts a 

schematic representation of a general LIB temperature 

evaluation scheme. 

3. CLASSIFICATION OF TES 

 

A temperature estimation system typically comprises a heat 

release model and HTM, as shown in Fig. 1. Heat source-

based approaches and modeling can be used to broadly 

categorize the heat release patterns that have been described 

in the literature. Three types of simulation strategy-based 

heating models may be identified: EECM [22,23], physics-

based electrochemical models [24-27], and black-box models 

[28-30]. According to various heat sources, these models can 

be divided into centralized, distributed models [31], and 

heterogeneous models [25, 32]. Geothermal models typically 

assume that all heat is produced solely in the core, which is 

assumed to simplify the simulation. While heterogeneity 

models capture variable heat generation in distinct cell layers, 

frequently leading to temperature and current density within 

the cell, diffusion heating models provide for homogenous 

heating across the cell shape. 

Heterogeneous models are the most complex and require a 

great deal of modeling expertise, but they are also the most 

detailed and may make very accurate forecasts. Between 

centralized and heterogeneous models, the distributed heating 

model strikes a balance. Thermal resistance models (coupled 

or dispersed variables) [27, 33–36], finite element analysis 

(FEM) models [28, 37-40], and data-based techniques are 

three categories of HTMs. The capacitive-resistive thermal 

model uses an analogy between electrical and thermal 

systems. Thermistor resistors can be categorized into several 

groups, as shown in Figure 2. Coupled parameter models are 

straightforward and appropriate for grid systems. However, 

they can only forecast one or two average temperatures, and 

the distribution of the battery in space is not uniform, 

particularly for cylindrical lithium batteries with higher 

capacities. However, due to the difficulty of the calculations, 

sophisticated distributed models [41, 42] are not appropriate 

for networks even though they can precisely explain the 

temperature distribution within cells. Other intricate LIB 

models have been researched [43–48], considering the 

thermal characteristics of many layers. One-state/node models 

only provide information on the core temperature, whereas the 

two-state model (TSM)/node model provides core and surface 

temperatures. 

Battery heating models are a subset of HTMs that accept the 

total amount of heat produced as an input variable and 

estimate the total heat produced by the batteries. To create an 

estimated heat system, researchers used a variety of heat-

generating models and HTMs. Since LIB thermal modeling is 

a separate area of research, it is not included in this 

investigation. It only addresses the policy of temperature 

ratings. Most TES, however, strongly rely on thermal 

modeling; thus, for better comprehension, this page gives a 

brief description of each modeling technique and the 

accompanying TES. 

Consequently, it is challenging to classify various evaluation 

techniques. Electrochemical, thermal modeling-based 

systems, EECM-based systems, ML-based systems, 

numerical modeling-based systems, direct resistivity 

measurement-based systems, and magnetic nanoparticles-

based systems are the main categories of temperature 

estimation programs. Fig. 2 displays the LIB series' thermal 

model, heat transmission model, and method for estimating 

temperature. 
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Fig.1. Schematic layout of a generic temperature estimation strategy (TES) for a LIB cell [21]. 

 

4. METHODS FOR ESTIMATING TEMP. 

4.1. Electrochemical Thermal Modeling-Based 

To simulate battery temperatures under various operating 

situations, geometries, or cooling rates, researchers started 

developing thermal modeling in the early 1990s. These 

models were frequently integrated with electrochemical 

models. From straightforward 1D (radial) models to intricate 

three-dimensional (3D) thermal models [37,49-59]. To create 

mathematical models of the electrochemical behavior of 

batteries, scientists primarily use various analytical 

techniques. In one-dimensional (1D) models, isothermal flow, 

and the battery's thermophysical characteristics are assumed 

to have constant heat release rates.  

To account for temperature fluctuations brought on by ohmic 

resistance, chemical reactions, mixing processes, polarization, 

and electrical resistance, very complicated 3D models 

necessitate in-depth knowledge of the thermodynamic 

properties of battery materials and components—electrode 

kinetics. Very intricate models can be used to estimate 

temperature with a high degree of accuracy, but these precise 

models are crucial for battery construction. They are 

incompatible with low computing resource BMS temperature 

estimation. These sophisticated models can explain how 

batteries' nonlinear behavior changes over time. However, 

they frequently call for different system characteristics and 

operating settings, which necessitate significant experimental 

testing. However, other characteristics, such as those related 

to transport, thermodynamics, and thermal impacts, are very 

challenging to assess.  

To calculate the overall heat dissipation during 

charge/discharge, [60] devised a comprehensive LIB heat 

dissipation model based on electrochemical simulations. 

Thomas and Newman's basic equation for a LIB's overall 

temperature is: 

 

In (1), Q stands for the battery's heating or heat consumption 

rate, V and U stand for the battery's equilibrium voltage and 

potential, respectively, I for the charge or discharge current, 

and T for the battery's temperature. Hi is the reaction's change 

in enthalpy, and ri is its rate. The particle concentration is cj 

and Hj is the partial molar mass of the jth particle. The symbols 

for time and cell volume are t and v, respectively. Using a 

"responsible" index, all attributes are based on volume 

average concentration. While this study did not include 

temperature estimations, the model can only provide detailed 

information on temperature. Many other scientists frequently 

utilize his thermal model. Due to the high number of 

calculations required by the simulation's level of realism, it is 

complicated and unsuitable for online applications.  

The Doyle-Fuller-Newman model [37, 61], a popular 

electrochemical model, is frequently quoted and utilized in 

thermal modeling. The internal characteristics of a lithium-ion 

battery are described by a set of algebraic equations that are 

partially nonlinear. A different name for this is synthetic 

pseudo-two-dimensional  (P2D) modeling. This model's 

primary flaw is its heavy processing requirement, which 

restricts its capacity to evaluate the state of a car BMS 

network. A basic 1D local thermal model is sufficient for 

battery design, particularly for large-scale modeling of LIB 

thermal models, as demonstrated by [53]. Additionally, it does 

not thoroughly grasp how different battery parts—like 

electrodes, electrolytes, and separators—affect heat 

generation.  

Few researchers have investigated pulse power limiting to 

prevent thermal shock and create thermal management 

systems using such intricate electrochemical models [62, 63]. 

They are mostly employed in the creation of LIB batteries and 

cells. Fan and co. A coupled local electrochemical-thermal 

model is applied to forecast LIB thermal properties and 

specific electrode properties at various operating 

temperatures. [64]. The model only offers outcomes from lab 

tests, not real-world usage scenarios, and is validated based on 

experimental data of a stationary hybrid vehicle (HEV) and 

impulse response. [65] investigated how the charging current 

impacted the interior temperature. To create a MD 

electrochemical, thermal model of LIBs that allowed for a 

more thorough investigation of thermal properties and 

thermal conductivity, [66] combined more comprehensive 

data and battery parameters. The models' complexity and 

processing cost prevent them from being applied outside of 

𝑄 = 𝐼(𝑉 − 𝑈𝑎𝑣𝑔) +  𝐼𝑇
𝜕𝑈𝑎𝑣𝑔

𝜕𝑇
− ∑ ∆𝐻𝑖

𝑎𝑣𝑔
𝑟𝑖

𝑖

− ∫ ∑ (𝐻𝑗
̅̅ ̅ − 𝐻𝑗

𝑎𝑣𝑔̅̅ ̅̅ ̅̅ ̅)  
𝜕𝐶𝑗

𝜕𝑡
𝑑𝑣 

𝑗
 

(1) 
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the BMS, despite the accuracy of the estimates. Not all heat 

sources are often modeled or taken into consideration due to 

the absence of a thorough understanding of the 

electrochemical processes occurring in LIBs and the 

accompanying mathematical equations to decrease the 

computing cost. Big mistakes in temperature estimates can 

result from this non-replicable heating activity. [67] created a 

two-site thermal model without prior information on thermal 

parameters using discrete and inverse modeling techniques. It 

is not necessary to heat model each heat source because the 

model can predict the overall heat produced by battery cells. 

Instead, aberrant heating can be identified using the results. 

Extra heat and fast-loading circumstances verify the model's 

validity and dependability. Although this method was created 

for self-heating batteries, it might also be used with other 

lithium-ion battery types. Therefore, an additional study is 

advised in this case. High-accuracy electrochemical models 

and integrated measurements like voltage and current were 

used by [68] to calculate the battery temperature during 

charge/discharge at various C rates. Additionally, to relate 

terminal voltage to cell temperature and Li+ concentration, 

they employed a dual ensemble Kalman filter (DEKF), 

combining individual events' extended dynamics. Accurate 

lithium (Li+) concentration determination is challenging due 

to computationally expensive models and model complexity. 

Therefore, it is debatable whether to apply this model to actual 

network predictions. [69] used a dual de-aromatic soft-narrow 

Kalman filter and P2D electrochemical model to approximate 

the spatial distribution of temperature in LIBs (DUKF). The 

cost of simulation and calculation is very high, and its primary 

purpose is to estimate Li+ concentration. The technique can be 

expanded to estimate temperature, however. A 1D spatial 

electrochemical-thermal model was created by [62] to 

investigate LIB cells' pulse power restriction and thermal 

behavior. Table 1 provides rapid access to the temperature 

estimating techniques based on the electrochemical-thermal 

model put out by various authors. Any model-based 

electrochemical technique generally has two key drawbacks: 

simulation complexity and high computational cost, which 

renders these models unsuitable for online prediction and low-

cost airborne BMS. 

4.2. EECM-Based TES 

Using power system characteristics to create a thermal battery 

model based on capacitors and resistors, an EECM captures 

LIB thermal behavior. First-order and second-order models 

(SOM) are the two categories of models that have been 

established in the literature based on the number of heat sinks 

(number of energy storage elements). The thermal energy 

storage component is part of the first-order model (FOM). The 

second-order thermal model also contains two heat sinks, 

typically one for the battery's core heat capacity and surface 

[13]. SOM can attain more momentum than first-order ones. 

Figures 3a and 3b represent thermal models of first-order and 

second-order LIB batteries, respectively. In Fig. 3, Q 

represents the rate of heat release, Cc and Cs the respective 

heat capacities of the cell and surface, and Tin and Tout are 

ambient temperatures of the cell and surface Tamb's 

temperatures. 

Additionally, EECM can be further broken down into local 

and distributed models depending on the intricacy of the 

modeling. For reasons of simplicity, LP models are more 

efficient computationally than comprehensive sparse models. 

While some studies use battery surface and core temperatures 

to generate local thermal models, computationally efficient 

local thermal models have been developed utilizing a single 

temperature as input to obtain model parameters [70]. Some 

have also used thermal modeling to examine the connection 

between battery shape and other physical characteristics [71]. 

In contrast to accurate temperature calculations, several 

assumptions made throughout the simulation resulted in 

erroneous temperature predictions. 

Additionally, a thermal model that can predict both surface 

and core temperatures are referred to as a TSM 

temperature/node [67], as opposed to a model that can only 

predict core temperature [72]. Various experimental studies, 

such as electrochemical impedance spectroscopy (EIS), or 

outside measurements, such as voltage, current, and 

temperature, are used to determine the EECM characteristics.  

 
TABLE 1. Summary of electrochemical-thermal modeling-based TES. 

 
Model  Synopsis 

The electrochemical model 
with only 1D [60] 

Not used to estimate temperature. 

P2D model [37,61] Used by several other studies but not for 

temperature estimation. 

A transient 1D thermal 
model with lumped 

parameters (LP) [53] 

Specific information about the electrodes, 
electrolytes, and separator was considered 

in the heat generation mode. 

LP electrochemical-thermal 
coupled model [64] 

It can estimate one or two average 
temperatures, performs well for each 

electrode at different operating 

temperatures and considers 
characteristics of constant current and 

pulsing situations. 

Thermal energy generation 

model, multiphase micro-
macroscopic electrochemical 

model [41] 

Temperature-dependent Under varied 

charging settings, physicochemical 
characteristics and thermal behaviors 

were considered. Numerical simulations, 

the volume-averaging technique, and the 
ability to estimate the average cell 

temperature and the temperature 

distribution inside a cell. 

1D thermal model [42] The thermal influence of various model 

parameters on various discharge patterns 

was evaluated using simulation and 
experiment data. 

Two-dimensional modeling 

+ Finite element method 
(FEM) [65] 

With the aid of MATLAB and the results 

of experiments and simulations, it is 
possible to generate temperature 

distribution based on potential and current 

density distribution. 

MD electrochemical-thermal 
model [66] 

Each cell layer's thermal characteristics 
are considered and empirically verified. 

High-fidelity 

electrochemical model + 
onboard measurements + 

dual ensemble Kalman filter 

(DEKF) [68] 

Wide range of C-rates during the charging 

and discharging time, validated in 
MATLAB using results from simulations 

and experiments. 

P2D electrochemical model 
and soft-constrained dual 

unscented Kalman filter 

(DUKF) [69] 

MATLAB Simulation can provide details 
regarding the spatial distribution of 

internal temperature. 

1D electrochemical lumped 

thermal model [62] 

Adaptable to various drive cycles; 

empirically verified, tested, and validated 

using FUDS and HWFET drive cycles. 
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Fig.2. Shows (A) HGM, (B) HTM, (C) TES [21]. 

 

 
 
Fig.3. LIB cell thermal model (a) FOM, (b) SOM. 

 

To strengthen the models, some research also considered 

various SOC, SOH, and predicted surface/core temperature 

scenarios. Cluster models are utilized for one-state and TSM 

simulations, and the models might be first or second order, 

making it challenging to categorize these thermal models. As 

a result, the literature is split between systems for estimating 

temperature at the cell- and packet levels, as explained below. 

In general, these EECM models determine Q values using 

equation (2) proposed by [20]. 

 

Vocv is the battery's open circuit voltage, and 
𝑑𝑉𝑜𝑐𝑣

𝑑𝑇𝑐
 denotes the 

entropy coefficient. Finally, Tc and Ts are calculated using the 

thermal model's mathematical representation illustrated in 

Fig. 3. (3) and (2) provide the mathematical equations for 

estimating temperature using first- and second-order thermal 

models (4). 

𝑄 = 𝐼(𝑉 − 𝑉𝑜𝑐𝑣) + 𝐼𝑇𝑐

𝑑𝑉𝑜𝑐𝑣

𝑑𝑇𝑐

  (2) 
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4.2.1. EECM-Based Cell TES  

Any EECM-based strategy has its share of issues, and the 

variable identification model is one of them. To raise the 

internal temperature, [43] built a local heating model. They 

used a short test to ascertain the model's parameters, including 

heat transfer coefficient and capacity. In this investigation, a 

2 Hz current pulse was employed to raise the interior 

temperature while determining parameters using EIS. The 

surface temperature recorded by a local temperature model is 

used to estimate Tc. Entropy changes are also considered in 

the simulations. Figure 3a, which they created, is a first-order 

thermal model. [43] presented a first-order mathematical 

formulation of the thermal model. 

 

 

There needs to be a quantitative investigation of the [43] 

strategy's impact on temperature. Compared to the extremely 

low currents utilized in EIS, the operational current is 

significantly higher. Therefore, a whole thermodynamics 

study cannot be done using the model parameters generated 

by EIS. They also assumed a constant internal temperature; 

however, the same investigation found that the battery's 

internal spaces varied by more than 10°C. This method makes 

a scale inefficient since it necessitates inserting a temperature 

sensor into each cell to measure the surface temperature. To 

shorten the design process and lower the price of battery 

packs, [73] created a thermal model of a portable LIB better 

to understand the thermal behavior under various operating 

situations. They demonstrate that whereas the temperature rise 

during discharge is primarily influenced by the heat produced 

inside the LIB battery, the temperature rise during charging is 

primarily influenced by the thermal conductivity of the 

electronics. Designing an effective thermal management 

system for LIB batteries should consider these linked factors, 

especially for fast charging that prioritizes health. Using KF, 

[13] created a second-order thermal model for a system that 

estimates the core's temperature. Here, the battery's thermal 

performance is calculated using the least squares (LS) 

algorithm. Although straightforward and precise, the 

modeling technique does not account for environmental 

uncertainty. They also presented simulation-based findings 

and fundamental low-current discharge curves for model 

validation, indicating that more study is needed to ensure the 

accuracy for real-world applications. The models have 

previously undergone testing with straightforward current 

curves for charging and discharging. 

However, the actual load curves deviate significantly from 

these short load curves. Therefore, two primary conductivity 

cycle experiments covering the range of SOC 25-100%, 

temperature 5-38°C, and C-line max. etc., were used to 

validate the second-order LIB cylindrical cell thermal model 

and the two-position ECCM thermal model. This C-rate is 22 

[74] in humans. [74] investigated how changes in temperature 

and SOC affected EECM parameters and how they affected 

battery thermal performance. The model's predictions are 

reliable and accurate. Testing has not, however, been done 

using the global reference standard driving cycles. Therefore, 

more research is needed to determine the actual scenarios' 

accuracy and dependability. [75] discussed the effects of 

aging and heat transfer circumstances on thermophysical 

model parameters because battery aging influences EECM 

characteristics. [75] uses the forgetting factor recursive least 

squares (FFRLS) technique to alter the augmented model 

online.  

This study by [45, 76] raises questions concerning the validity 

of the findings and the impact of battery aging on network 

deployment. The popular LS technique adapts the model to 

battery aging and other uncertainties and adds a novel non-

uniform forgetting factor to monitor time-varying internal 

parameters. Due to the significant geographical and temporal 

temperature distribution, [77] only uses two lumped models 

to simulate internal and surface temperature, which may not 

be appropriate for large LIBs. Only a rough estimate of the 

battery core temperature is given because of entropy changes 

on heating. In order to estimate solely the interior temperature, 

[78] created a second-order temperature model using LP (one 

state). Using an ECCM-based heat dissipation model, they 

numerically modeled the overall heat accumulation produced 

in the battery core. This study, which is an upgrade over 

earlier research, looks at the impact of entropy modifications 

and improvements on battery thermal performance and 

conducts a quantitative analysis to create software for online 

internal temperature estimation. When loading and unloading, 

this approach estimates the ambient temperature using surface 

and ambient temperatures, and KF is utilized for adaptive 

estimation with a quick real-time update procedure. On the 

accuracy of temperature estimation, [79] studied the effects of 

unmeasured simulation errors, initialization mistakes, and 

external thermal factors that could change over time. This 

study created a second-order cluster thermal model for 

adaptive core temperature prediction based on KF. This model 

is depicted in Fig. 3b. Additionally, the network's internal 

temperature and time-varying external thermal resistance are 

estimated simultaneously using a single Kalman filter (JKF). 

The mathematical formula (4) [79] can be used to express the 

interior temperature as an estimate: 

 

Where s is the Laplace operator, other parameters are the same 

as in Fig. 3.  

[79] study's accuracy increased by creating distinct thermal 

models for the battery's core and shell and accounting for how 

the external heat transfer coefficient changes over time. A 

portion of the temperature model was also tuned using the LS 

algorithm based on experimental data. The proposed method's 

computational efficiency is all that the authors mention; 

however, they do not detail the hardware or computing time 

needed. Additionally, the simulation makes some assumptions 

that result in incorrect estimations for real applications. 

A compromise between LP technique and detailed thermal 

modeling was considered by [80] and [71]. To forecast the 

surface and core temperatures of LIBs, they created a Two 

state thermal model. The new objective is to reduce the 

computational cost while providing more information than 

𝑇𝑖𝑛 = 𝑇𝑠 (1 +
𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

) − 𝑇𝑎𝑚𝑏

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡

  (3) 

𝑇𝑖𝑛(𝑠)

=
(1 +

𝑅𝑖𝑛

𝑅𝑜𝑢𝑡
+ 𝐶𝑆𝑅𝑖𝑛𝑠)

𝐶𝑠𝐶𝑐𝑠2 + (𝐶𝑠 + 𝐶𝑐 +
𝑅𝑖𝑛𝐶𝑐

𝑅𝑜𝑢𝑡
) 𝑠 +

1
𝑅𝑜𝑢𝑡

𝑄(𝑠) 
(4) 
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pooling parameter models. Reduced-Order Model (ROM) is 

also known as lumped by particular academics. Even though 

the fundamental goal is the same, it is to simplify a complex 

thermal problem with many thermal parameters into a more 

straightforward heat transfer problem. Using a joint 2RC 

(second order) ECCM and a core and surface temperature 

estimate scheme based on a joint Kalman filter, [72] suggested 

a combined two-site thermal model (JKF). To ensure that the 

model is adequate for accounting for variations in temperature 

and SOC, simulations and experimental tests are run. Finally, 

the prediction's correctness is also assessed. Additionally, it is 

demonstrated that the suggested model outperforms the 

EECM stated above in terms of prediction accuracy. The 

model also demonstrates excellent resistance to the automated 

surface thermal conductivity correction. 

[81] created a 1D (radial) parametric thermal model with two 

Kalman filters to learn more about heat dissipation in a 

cylindrical LIB (DCF). The model can also give data on the 

temperatures at three separate battery sites based solely on 

core and surface temperatures. The three-node thermal model 

is the name given by the researchers for this simulation. To 

increase the precision and dependability of the forecast, this 

study additionally considered the anisotropy of heat 

conduction when determining internal resistance and SOC in 

the temperature estimating procedure. Different relevant 

payment and payment conditions' effects are not taken into 

consideration. Additionally, a 1 RC ECCM heating model was 

considered, suggesting that a 2 RC ECCM heating model 

would further boost accuracy. [35] used particle swarm 

optimization to estimate online parameters for pulse discharge 

studies at various ambient temperatures. To obtain more 

precise temperatures in a large prismatic LIB, a 2RC ECCM 

was integrated with a multi-site heat transfer model based on 

cell shape in this study. According to studies, hybrid models 

can achieve outcomes comparable to those of the finite 

element method (FEM) while utilizing around 90% fewer 

calculations. Additionally, it was discovered that battery 

geometry significantly influenced battery temperature. This 

study created a case-level thermal model and was highly 

accurate, although it ignored the impacts of battery aging. 

LIB thermal model includes radiation's impact on cell surfaces 

on heat conduction [82]. The internal temperature is then 

calculated using an Extended Unscented Kalman Filter 

(EUKF) that considers radiation's effects using a spatial 

temperature model. A new condition called sensor offset is 

incorporated to increase model robustness and prediction 

accuracy. Although load scenarios for domestic energy 

storage have been evaluated, it has yet to be determined 

whether they are suitable for commercial vehicles. 

Additionally, the model's parameters are taken for granted to 

remain constant in environmental uncertainty, which may not 

be the case if the operational environment changes 

dramatically. To predict surface and core temperatures by 

considering the thermal effects of nearby cells during 

simulation, [83] devised a two-stage thermoelectric model. 

The simulation model also incorporates an Extended State 

Observer (ESO) with surface temperature feedback to account 

for model error and time-varying parameters. This technique 

was created specifically for quickly heating self-heating 

batteries. The idea of a virtual model-based thermal sensor 

(VTS) was first proposed by [84]. It consisted of a thermal 

model adjusted using a KF observer, an online parameter 

determination technique. A single temperature sensor input is 

used to estimate surface and core temperatures. Since this 

technique still requires sensor feedback to account for 

environmental unpredictability, it cannot be deemed wholly 

useless. Although this lessens the need for sensors and 

enhances model fit, the idea is the same as that of other 

EECM-based approaches that use LP. Using a combination of 

the ECCM 1-RC, singlet thermal model, and KF to estimate 

core temperature, [14] demonstrated the impact of fast 

discharge on LIB core temperature. They used an iterative 

least squares (RLS) approach to determine the model's 

thermal parameters. However, more study is advised to create 

a reliable BMS suitable for quick charge/discharge. 

4.2.2. EECM-Based TES of LIB Pack 

Most studies only provide a single battery's estimated 

temperature. Rarely are LIB battery thermal modeling and 

thermal estimation described. Using the LIB package ROM, 

which considers the battery's internal resistance 

characteristics, [85] carried out core temperature estimation. 

Here, temperature parameters are determined using RLS. 

Several assumptions were made when building the ROM 

battery to ensure that each battery's specifications and the 

thermal behavior of each series of batteries were the same for 

this investigation. Because heat transfer between the wires and 

bulging cells is not considered, temperature estimation can be 

inaccurate. [86] simulation study and extension of the single-

cell thermal model were utilized to examine the thermal 

modeling of LIB. The single-cell model has been reported to 

be remarkably accurate. However, some assumptions have 

been made to extend it to battery cells, including 100% 

efficient discharge processes, constant environmental 

conditions, and uniform cell properties, which do not 

correspond to real-life conditions, and the scenes are very 

different. Therefore, additional research into the accuracy of 

the temperature estimating approach in real-world settings is 

required. As a result, as was clear from the prior discussion, 

package-level labeling schemes merit more research. For easy 

reader reference, Table 2 lists the EECM-based temperature 

estimating techniques put out by various writers. The 

requirement for online feedback from the sensor is one of the 

critical drawbacks of EECM-based temperature estimating 

techniques. Due to battery aging, operation, temperature, and 

other practical uncertainties, the accuracy of the assessment 

solely depends on the accuracy of the information provided on 

the thermal characteristics of the battery, the rate of heat 

release, and the limits of thermal conditions given in the form 

of electrical parameters. 

 
TABLE 2. An overview of temperature estimating techniques based 

on EECM. 
 

# Model  

[70] LP heat capacitance–resistance thermal model  

[43] LP, Single-State, FOM  

[13] LP, TSM, SOM + Kalman Filter (KF)  
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[74] LP, TSM, SOM  

[75] 
Extended LP, TS, SOM + Forgetting factor Recursive 
Least Square (FFRLS)  

[45] and [76] 
LP, Two-state model (TSM) + Least square (LS) 
algorithm + Nonuniform forgetting factors (NUFF)  

[77] LP model + Closed-loop observer  

[78] LP, SOM, Single state thermal model + KF  

[79] LP, SOM, TSM + JKF + LS algorithm  

[80] and [71] LP, TSM + Extended KF  

[72] LP, TSM + Joint KF (JKF)  

[19] 
LP, Second-order, multi-node model + particle-swarm 
algorithm  

[81] 1D (radial) LP, Three node model + Dual KF (DKF).  

[82] 
LP, single-state model + Extended unscented KF 
(EUKF)  

[83] LP, TSM + extended state observer (ESO)  

[14] 
LP, Single-state thermal model + KF + Recursive Least 
Square (RLS) algorithm  

[84] EECM-based virtual thermal sensors (VTS) + KF  

[85] and [86] 
ROM of a LIB pack for a central temperature of LIB pack 
+ Recursive least square (RLS)  

4.3. Numerical Analysis-Based TES 

The temperature of LIB cells and even LIB batteries with 

various chemical compositions and forms have been 

accurately estimated using numerical approaches. For 

estimating temperature thus far, the finite element method 

(FEM) [87–90] and the finite volume approach (FVM) [91] 

have been extensively employed. Methods based on 

numerical analysis try to use nonlinear partial differential 

equations (PDEs), such as those developed by [89], to 

mathematically explain the thermodynamics of a battery. 

Based on Bernard's equation and the rate of internal heating, 

a 3D model was employed in conjunction with FEM analysis. 

The boundary conditions for PDEs are frequently intricate and 

have infinite dimensions. The fundamental mathematical 

formula Equation can be used to express (5) [89]: 

 

 

The average density and specific heat of the battery are, 

respectively, and Cp among them. Is the battery's surface 

material's thermal conductivity, and Q is the same as formula 

(1). 

To comprehend the thermal performance of commercial LIBs 

under charge and discharge conditions, [87] integrated a 

transient thermoelectric model (TTM) with a porous electrode 

model and conducted numerical simulations. He proved that 

the temperature increase occurs more rapidly during discharge 

than during charging. He added that raising the C rate might 

help to lessen the temperature differential between charging 

and discharging. A better single-event LIB model was 

numerically simulated by [88] to comprehend the 3D 

temperature distribution in the battery. The transient behavior 

of LIBs during dynamic conduction cycles was numerically 

analyzed by [90]. Double-layer thermal capacitors are used to 

rectify short-term transient voltages in LIB chemical 

composition. In their study utilizing FVM, [91] demonstrated 

how temperature gradients in battery layers result in various 

current densities and local SOC imbalances in LIBs. These 

phenomena must be considered thoroughly when creating an 

effective thermal management system. Since a battery's 

thermal process is a typical system of distributed 

characteristics, this model is generally best suited for 

describing a battery's temporal and spatial thermal behavior. 

Despite their incredible accuracy and in-depth understanding 

of battery temperatures, these numerical temperature 

estimation approaches are not appropriate for online 

temperature estimation due to their high computing costs. 

Complex mathematical analysis calls for both specialized 

expertise and in-depth subject understanding. Furthermore, 

due to variations in cell chemistry and physics that have an 

impact on mathematical modeling, generality is not attainable. 

The numerical approach for estimating temperature is 

summarized in Table 3. 

 
TABLE 3. Summary of numerical methods-based TES. 

 
Model Synopsis 

A TTM with a porous 
electrode model + 

finite element method 
(FEM) [87] 

various driving scenarios, simulation using 
COMSOL Multiphysics (COMSOL Inc., 

Stockholm, Sweden), and experimental 
verification. 

Enhanced single-

particle model + FEM 

[88] 

Validation of the 3D temperature distribution 

within the cell, as well as the cell geometry and 

current profile, through experimentation. 

3D model  + ECM-

based HGM + FEM 
[89] 

Variable temperature, various current profiles, 

COMSOL Multiphysics modeling, and 
experimental validation. 

TTM + FEM [90] momentary actions during a dynamic driving 
cycle validated through experiment. 

3D model + FVM 
[91]  

Simulations in MATLAB and experimental 

confirmation of inhomogeneities non-current 
density and local SOC over many cell layers. 

4.4. Direct Impedance Measurement-Based Temperature 

Estimation 

There are several issues with estimating internal battery 

temperature using local and coarse-grained thermal models. 

First, it is challenging to calculate the model's thermal 

qualities, such as its thermal conductivity and the battery's 

thermal conductivity. The operating current, voltage, and 

internal resistance of the battery—which are also functions of 

SOC, internal battery temperature, and SOH—are typically 

used to determine the amount of heat produced in batteries. 

Furthermore, the thermal contact resistance between layers of 

a battery made of various materials that have been integrated 

into a layered structure is frequently unknown. Surface 

temperature measurements are used in TES. Even a 

combination of surface temperature sensors and thermal 

ρCP

𝜕𝑇

𝜕𝑡
= 𝜆𝑥

𝜕2𝑇

𝜕𝑥2
+ 𝜆𝑦

𝜕2𝑇

𝜕𝑦2
+ 𝜆𝑧

𝜕2𝑇

𝜕𝑧2
+ 𝑄 (5) 
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models frequently fails to detect the temperature because 

rapid changes in internal temperature are challenging to 

capture with surface sensors because of inter-core heat 

conduction. This is time-consuming [92]. Regarding 

manufacturing complexity and system cost, it is nearly 

impossible to include a small temperature sensor in a battery 

[93, 94] for high-capacity LIB batteries. Therefore, using 

physical sensors to measure room temperature is 

inappropriate for industrial applications. The phase of 

electrochemical resistance in the frequency range of 40 to 100 

Hz is sensitive to temperature, but not to changes in other 

parameters like SOC and SOH, according to [95, 96]. Based 

on these findings, they present an electrochemical barrier-

based technique to gauge the interior temperature of batteries. 

However, the categorization approach is only applicable in the 

temperature range of -20 to 66 °C, and they assume that the 

internal temperature is constant as proved by [97]. 

investigated temperature calculations that consider non-

uniform temperature effects on electrochemical resistance. 

Based on the guidelines provided by [98]. However, in real-

world applications, especially for cylindrical batteries with 

high charge and discharge currents, the difference between the 

maximum internal temperature, surface temperature, and 

average temperature is very significant. We can only estimate 

the average cell temperature. To precisely establish the 

internal temperature distribution, [3] expanded the 

investigation. They created a thermal resistance model by 

fusing single frequency EIS data with surface temperature 

measurements. Figure 4 illustrates a fundamental procedure 

for temperature estimation based on direct resistivity 

measurements by [3]. According to [3], the critical constraint 

is determining each battery's linear resistance, which is highly 

challenging. It is optional to know the thermal parameters of 

the battery, thermal conductivity, or thermal conditions. 

Additionally, each cell would need a surface temperature 

sensor, which is currently impractical without environmental 

variability. Additionally, looking at the systematic analysis of 

resistance measurements when direct current is present is 

essential. Although several techniques for employing onboard 

electronics in EVs to determine impedance spectra online at 

various frequencies have been disclosed [99], the use of these 

techniques to estimate the temperature in real-time has yet to 

be studied. 

Impedance Temperature Detection (ITD), a sensor less online 

TES based on EIS that considers battery age and uncertainty, 

was proposed by [100]. This approach combines surface 

mount sensors with ITD to precisely estimate network 

temperature because TGD alone cannot offer a complete 

answer [3]. However, it is necessary to attach a temperature 

sensor. Based on this research, they combined ITD with an 

electrothermal model and DEKF to estimate a LIB battery's 

core temperature online, even without a known heating factor. 

Additionally, they demonstrated that the TGD with surface 

temperature sensors functioned virtually and the ITD thermal 

model. Despite these benefits, the principal downsides of this 

approach are the requirement for precise electrothermal 

modeling and online resistance calculation, which share the 

same shortcomings as conventional thermal modeling 

techniques. Furthermore, this work needs to show a way for 

batch-level estimation, even though this method can estimate 

individual cells' basal and surface temperatures. 

The impact of battery temperature, SOC, and SOH on the 

impedance spectra, transmission frequency, and precision of 

internal battery temperature estimation was studied by [101]. 

Here, a matrix analysis of the impedance response created by 

EIS measurements is used to estimate the temperature. 

Although precise, it needs to account for the impact of varying 

battery temperatures and maintenance techniques. It is 

challenging to identify the proper frequency and other EIS 

parameters, and the accuracy of the estimation is heavily 

dependent on these factors. Additionally, extensive 

experimental research and significant computational 

resources are needed for the simulation. As a result, it is 

challenging to apply this method online. 

Additionally, it is exceedingly challenging to distinguish 

between the real and imaginary components of resistance. 

Using a different definition for the two components can result 

in estimations of temperature off. To determine the battery 

temperature, [102] proposed combining a multi-objective 

observer-based method and a thermal acceleration model 

(LPV). [3, 103–106] have also utilized EIS-based techniques 

to estimate interior temperatures. Despite the excellent 

accuracy, the key restriction is the need for time-consuming 

preliminary experiments to determine the precise temperature 

and resistance characteristics. Additionally, their heat 

resistance changes when batteries age, causing SOH 

degradation and erroneous projections. The TES based on 

direct resistance measurement is summarized in Table 4. 

 

 
Fig.4. Basic procedures for determining temperature using direct 

impedance measurements. 

 
TABLE 4. Summary of direct impedance measurement-based 

strategies. 
 

Model  Synopsis 

The direct electrochemical 
impedance measuring [95, 96] 

Experimental verification using 
information from the EIS. 

The direct electrochemical 
impedance measuring [97] 

Temperature fluctuation was not 
considered; experimentally confirmed. 

Thermal-impedance model + 

EIS measurement at single 

Experimental validation utilizing EIS 

data can be performed regardless of 

the thermal characteristics of the cell, 
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frequency + surface 
temperature feedback [3] 

the amount of heat generated, or the 
thermal boundary conditions. 

Online EIS measurement 
(impedance-temperature 

detection (ITD) + dual-

extended Kalman filter (DEKF) 
[100] 

Considering a convection coefficient 
that is unknown to us, this theory has 
been verified empirically. 

Measurements from an EIS 

were used to generate an 
analysis of the impedance 
response matrix [101] 

Impedance spectroscopy: temperature, 

state-of-charge, and state-of-health-
cell influences, experimental 
confirmation using EIS data. 

4.5. ML-Based TES 

The thermodynamic behavior of a battery varies significantly 

from its core to its surface due to its exceedingly intricate 

electrochemical reactions and its sensitivity to environmental 

uncertainty. The spatial and temporal distribution of LIBs, 

particularly large-capacity batteries, cannot be accounted for 

by most distributed thermal models and spatial thermal 

models now in use. Additionally, depicting these space-time 

interactions with a single physical model is challenging. Here, 

local dynamics are frequently preserved using ML approaches 

to increase the modeling precision of nonlinear systems like 

LIBs. Figure 5 displays a schematic representation of a 

temperature estimation system based on ML. 

[107] created a local thermodynamic LIB model to precisely 

estimate the interior temperature distribution using a hybrid 

EECM model and neural network (NN)-based learning 

techniques. The data driven NN model employs standard 

BMS metrics to correct trade model inconsistencies brought 

on by spatial nonlinearity and other model errors. [109] 

examined LIB based on NN [108] and the Support Vector 

Machine (SVM). To determine the internal temperature of 

LIBs, [110] introduced a hybrid radial basis function neural 

network (RBFNN) and EKF model. These models' primary 

objective is to predict SOC or SOH, not to estimate battery 

temperature, even if they consider how temperature affects 

battery performance. Generalization is one of the critical 

issues with systems that only use ML. By merging 

electrochemical thermal, feed-forward neural network 

(FFNN), and UKF, [111] created an effective 

electrochemical-thermal-neural network (ETNN). The 

technique performs admirably in SOT prediction over a broad 

temperature range and in high-current environments. The 

simulation is intricate and has yet to be tested to see how 

accurate different charging currents and driving cycles are. 

Additionally, web applications' efficacy and usability are in 

doubt. The electrochemical model on ETNN's reverse has the 

same drawbacks as the electrochemical model. ML-based 

diagrams are generally computationally efficient, but 

gathering data and building a model is difficult and time-

consuming. Additionally, accurate battery test data still needs 

to be addressed in the available literature when training ML-

based models; as a result, the accuracy of current ML-based 

solutions is still debatable. The approaches based on ML 

presented by researchers are compiled in Table 5. 

4.6. Magnetic Nanoparticles-Based TES 

The relationship between the third and fifth harmonic 

responses can be used to measure the internal temperature of 

magnetic nanoparticles (MNPs), whose magnetization is 

nonlinear in an alternating magnetic field [112-113]. 

Additionally, [114] investigated the thermal sensitivity of 

MNPs to an increase in a constant magnetic field. It was 

discovered that as the constant magnetic field increased, the 

thermal sensitivity of MNPs decreased. Based on the findings 

of this study, [115] created an advanced magnetic nanoparticle 

thermometer (MNPT) that uses magnetic nanoparticle 

thermometry to determine the LIB core temperature (MNP). 

They also recommended a range of DC magnetic field 

strengths to provide the highest possible temperature 

sensitivity and the lowest possible MNPT temperature 

inaccuracy. Keep in mind that this kind of evaluation topology 

is quite costly and massive. Additionally, the utility of online 

forecasts has yet to be assessed. 

 
Fig.5. Schematic layout of ML-based TES. 

 
TABLE 5. Summary of ML-based TES. 

 
Model Type Synopsis 

EECM + neural network 

(NN)-based learning 
approach [107] 

Inaccurate representation of the plant in 

the model due to spatial nonlinearity and 

other modeling problems; the NN-model 
was verified by experimental data. 

NN + Support vector 
machines [109] 

Using real-world data, the effects of 
environmental factors such as temperature, 

charging current, Python (Python Software 

Foundation, Wilmington, DE, USA), 
neural networks, and support machines 
(SVMs) were examined. 

RBF neural network 
(RBNN) and the extended 
Kalman filter (EKF) [110] 

The effect that temperature has on the 
behavior of cells, as proven by simulation 
data. 

Electrochemical-thermal-

neural network (ETNN) + 

Unscented Kalman filter 
(UKF) [111] 

Python settings covering a wide 

temperature range and a considerable 

amount of current, proven using data from 
experiments. 

5. DISCUSSION 

 

Depending on the amount of accuracy required and the 

accuracy of the prediction findings, the LIB temperature 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



 

  11 

 

estimate system can be put together in various ways. 

Comprehensive simulation results and the most precise 

projections are required for the BMS to operate safely and 

dependably. However, adding more specific battery 

phenomena to the model eventually makes it more complex, 

costs more money to run, and limits site forecasts and BMS 

use for low-cost flights. For instance, the computation model 

becomes more complicated if the temperature of each cell 

layer is considered rather than the core's high heating. Second, 

rather than just radial for simplicity, heat movement into and 

out of the battery can be thought of in both axial and radial 

directions. 

Furthermore, while simpler models consider conductive heat 

transfer, complex models typically consider several 

mechanisms of heat transmission, including conduction, 

convection, and radiation. Significant parameters are needed 

to include more phenomena in a thermal simulation, which 

increases the need for experimental data, simulation time, and 

solid-area knowledge. A detailed and thorough understanding 

of battery design, material qualities, and composition is also 

necessary. However, because the design data is proprietary, 

getting this information from battery makers is challenging. 

From the preceding explanation, while intricate models can 

give an exact and thorough representation of battery 

thermodynamics, their computational complexity may make 

them unsuitable for live and airborne BMS prediction. In 

general, physical sensor readings are needed for most 

evaluation methods. However, large LIBs with thousands of 

individual cells make it nearly hard to place a physical sensor 

in every cell.  

Additionally, embedding a sensor to gauge the temperature of 

the battery core is quite challenging. Various rating systems 

use surface temperature sensors to infer inside temperatures. 

This is entirely incorrect, though, as heat moves slowly from 

the core to the surface. Most research to date has concentrated 

on Li-ion battery temperature rating techniques. Calculating 

the temperature of LIB batteries is more challenging. 

Therefore, extensive additional research is advised in this 

area. In-depth research has yet to be done on how quick 

charge/discharge affects battery temperature—highly advised 

for the growth of BMS with a focus on health. The issues, 

difficulties, and recommendations for the following research 

for the research community are summarized in Table 6.

 
TABLE 6. Summary of major issues, challenges, and research recommendations 

 
Strategy Major issues and challenges Recommendations 

Electrochemical 
Model-based 

• Very accurate modeling is possible. Therefore, it can provide very 

accurate predictions but at a very high computational cost. 
Therefore, it is not suitable for online BMS prediction. 

• In addition to mathematical modeling expertise, detailed 

knowledge of LIB chemistry is required, allowing one to rely on 
industry experts. 

• Extensive testing is required to gather detailed information on 

battery properties. 

• Modeling is complicated. 

• Designing adaptive signaling systems is exceptionally complex. 

• Low ability to generalize 

• Offers meaningful future research opportunities to 

reduce modeling complexity and computational cost. 

• It provides the best predictive results to date, so it can 

be widely used to test other models and provide data for 
data-driven models. 

• LIB chemistry is susceptible to temperature, battery 

conditions, and other uncertainties. Therefore, further 
study of adaptive models is recommended. 

 EECM Model-
based 

• Most used today, high accuracy, easy to use, but with an increase in 

the order of the models, the number of points (nodes) of temperature 
measurements and the distribution of parameters, the complexity of 
modeling, and the increase in the cost of calculations. 

• Accurate EECM parameters are difficult to determine, especially 
online parameter estimation. 

• Parameter setting with external measurements is complex and time-

consuming. 

• Very few researchers also use electrochemical analysis to detect 

and define variables, which present the same difficulties as 
electrochemical methods. 

• Prediction is heavily affected by measurement noise and often 

requires too many physical sensors. 

• Until now, smaller/minimum models have been widely used for 

online forecasting due to their accuracy and detailed analysis. 

• Trade-offs between accuracy requirements and model 

detail can control simulation complexity and 
computational cost. 

• Adaptive skills are complex, but by incorporating 

advanced algorithms (e.g., ML-based methods), 
adaptive strategies can be developed. 

• These models can provide very accurate results in the 

laboratory and can therefore be used to generate data 
and validate models for other methods. 

• Combining this strategy with other methods, such as 

ML methods, can improve accuracy and computational 

performance. 

• Instead of traditional filters, advanced adaptive filtering 

techniques can be used to improve performance. 

ML-based. • Data-driven black box policy, i.e., the predictions are based solely 

on external measurements, so little or no domain knowledge is 

• Although it is relatively easy to develop adaptive 

models, more effort has yet to be made. 
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required. However, the main challenge is to collect quality data for 
in-depth training. 

• No complex iterative mathematical calculations are required, so the 

computational cost is sufficient for online applications. However, 

the computational cost increases for more information with more 
extensive data (high resolution) and many feature vectors. 

• High-resolution data collection, primarily manufacturer and error 

data, is complicated. This data is essential for accurate and adaptive 
forecasting. 

• Generalization is difficult. 

• Not currently used in automotive BMS due to long learning times, 

complex algorithm development, and computation time, given that 
little has been done so far. 

• External measurement of physical sensors is usually required as 

feedback for online parameter setting, so it is still necessary to 
install physical sensors. 

• Battery properties are greatly affected by uncertain 

factors such as temperature and aging, so further 
investigation of adaptive modeling is recommended. 

• Generalization is difficult but possible with 

sophisticated adaptive algorithms. 

• With proper design, it can be used for web forecasting 

and implemented in BMS with low processing power. 

• Very promising methodology for next-generation 

sensor less TES. So far, little has been attempted; 
therefore, further research is recommended. 

Numerical 

Model-based 
• These methods use FEA and FVA. The TES based on FEA and 

FVA was the most accurate and computationally expensive. 

• Its computational cost is high due to complex and repetitive 

mathematical calculations, so it is unsuitable for online prediction. 

• Significant research and development work is needed to 

reduce the computational cost and adapt it to online 
predictions. Because it is the most accurate, it can 
validate the model further and collect accurate data. 

Direct 

Impedance 
Measurement-

based 

• The effect of temperature on battery resistance is used to estimate 

internal temperature. However, it is challenging to measure 
resistance directly online using integrated electronics. 

• Since the change in battery resistance due to temperature changes 
is small, it is difficult to determine this small change accurately. 

• The current program is pervasive. 

• Little research has been done to date, and no real action has yet been 
taken. 

• Therefore, promising technologies and significant 

additional research and development are recommended 

to reduce the program's scope and evaluate the practical 
utility of airborne BMS. 

• The need to assess accuracy in practical use 

• Further research into using embedded electronics to 
determine line resistance is also recommended. 

• The cost of current solutions is very high and must be 

considered. 

Magnetic 

Nanoparticle-

based 

• Very recent technology; too soon to make any judgments. • Onboard low-cost BMS's practical usefulness has yet to 

be researched. Overall, extensive additional research is 

needed. 

6. CONCLUSION 

 

The most recent thermal testing techniques for LIBs are 

covered in detail in this article, along with the need for the 

best test procedures, the methods that are already in use, any 

issues they may present, and suggestions. Accurate LIB 

temperature estimation is crucial for BMSs' effective thermal 

management, operational safety, and various other activities 

(BMS). Physical sensors are nearly useless for determining 

each cell's temperature, particularly in large-capacity batteries 

that include hundreds of different cells. It is essential to 

concentrate on some aspects while creating an ideal 

temperature estimate circuit, including high precision, high 

adaptability, small size, real-time estimation, distribution 

(battery assembly temperature monitoring), low cost, and 

simplicity of use. A temperature estimation system typically 

consists of two models: one for heat release and the other for 

heat transport. Temperature estimation circuits are classified 

into six types based on their modeling and calculation 

techniques: electrochemical computational modeling, EECM, 

ML, digital analysis, and direct impedance measurement. 

Magnetic nanoparticles serve as a basis. The most precise 

methods are based on numerical analysis, followed by 

electrochemical models. Unfortunately, because of the high 

computational costs of both methods, none can forecast low-

cost integrated BMS live.  

Additionally, there are very high needs for complicated 

simulation and experimentation, as well as a need for subject 

expertise. Different levels of EECM-based circuit complexity, 

precision, and computational expense are possible. In both 

literature and practice, minimal simplified EECM diagrams 

are frequently utilized. Diagrams created using ML have the 

potential to be very accurate, simple to use, and adaptable. 

Reduce or even demand the use of modeling and related field 

experts. However, obtaining feature vectors necessitates a 

substantial amount of high-quality data, which is frequently 

challenging. A hybrid approach fusing EECM with ML might 

be an appropriate resolution in this situation. Direct resistivity 

measurements and magnetic nanoparticle-based techniques 

have recently been established. It is still too early to judge its 

suitability for online prediction and implementation in 

automotive BMS and its capabilities. As a result, the 

systematic alignment of active research fields and potential 

future research directions are emphasized in this work. 

Additionally, it should be emphasized that while most papers 

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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include TES for individual LIB cells, temperature estimation 

for LIB batteries is more complicated. 
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