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Varying coefficients in parallel shared-memory
variational splitting solvers for non-stationary
Maxwell equations
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Abstract. Direction-splitting implicit solvers employ the regular structure of the computational domain augmented with the splitting of the
partial differential operator to deliver linear computational cost solvers for time-dependent simulations. The finite difference community originally
employed this method to deliver fast solvers for PDE-based formulations. Later, this method was generalized into so-called variational splitting.
The tensor product structure of basis functions over regular computational meshes allows us to employ the Kronecker product structure of the
matrix and obtain linear computational cost factorization for finite element method simulations. These solvers are traditionally used for fast
simulations over the structures preserving the tensor product regularity. Their applications are limited to regular problems and regular model
parameters. This paper presents a generalization of the method to deal with non-regular material data in the variational splitting method. Namely,
we can vary the material data with test functions to obtain a linear computational cost solver over a tensor product grid with non-regular material
data. Furthermore, as described by the Maxwell equations, we show how to incorporate this method into finite element method simulations of
non-stationary electromagnetic wave propagation over the human head with material data based on the three-dimensional MRI scan.
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1. INTRODUCTION For the stiffness matrix the splitting is not possible
The alternating directions method solver was originally pro- y )
posed for finite difference implicit simulations [3,4]. The method ,/ oBY 9B} Y . px 33 0 Bl
. . . o = —B] By +B; —B dQ
delivers solutions to time-dependent problems in linear compu- ox 7 ox dy 6
tational cost. This alternating directions method has been ap-
plied to the non-stationary Maxwell problem in the context of / 0B, 0By dx [B;B dy+ / B.B, dx dB; 0B, 9B1 4,
the finite difference method [1, 8]. As shown in [10-13], the Ox Ox 3 By
alternating direction solver can also be applied to the variational Qy Qx Qy
form employed by the finite element method computations. It = e7 QM+ M S (2)

uses tensor product grids and higher order and continuity B-
spline basis from the isogeometric analysis [2]. These varia- but the implicit time integration schemes suitable for direction
tional splitting solvers based on the tensor products, as detailed ~ Splitting [5-7], they mix the mass matrices with stiffness matri-
in [10-13] also allow for linear computational cost higher-order ~ €€8 and introduce sub-steps, e.g.
and continuity time-dependent simulations. vokH2_ y
Namely, for the mass matrix .# we can decompose the matrix S eMu MO u 3)
into the Kronecker product of two (in 2D) or three (in 3D) one- MR .Uk = Yo 4V k+1/ 2 4
dimensional mass matrices .#~ ® .Z”
The problem with is that material data coefficient must also pre-
M = (Bij,Bri)2 = / B;jBydQ serve the Kronecker product structure, and thus application of
o this scheme on arbitrary structure is not possible. Petar Minev [9]

= (B (0B (MBX B (v da = [(B.B B.B 4o introduced the alternating direction solver in the context of the
=[Bi (x) J(y VB (x)B; (y)dQ = [(BiBi)(x) (B;B1) () finite difference method allowing for local varying of mate-

Q Q rial data while preserving the linear computational cost of the
solver. We show that the linear cost of the variational splitting
= / B; By dx / BBy |=.#" .. (1)  solver and the method stability is also preserved for the finite

element method. We show that we can vary arbitrary material
data coefficients with test functions. In this paper we employ
the implicit time integration scheme with variational splitting
for the non-stationary Maxwell equations [14]. We design our

Q, Q,
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to illustrate the concept. In this paper, we do not focus on the
interpretation of the numerical results and detailed design of
the electromagnetic wave antennas since this is a challenging
problem itself. We instead present the method for incorporating
non-regular material data, and we test it on a simple model prob-
lem. We implement the Maxwell solver in the parallel shared-
memory IGA-ADS code [15]. We verify the computational cost
of the solver using non-linear material data with scalability ex-
periments. The novelty of our paper with respect to [14] is the
introduction of the method allowing for changing the material
data with test functions.

The structure of the paper is the following. In Section 2,
we describe the idea of the varying coefficient in the alternating
direction solver. Section 3 presents the strong and weak formula-
tions of the non-stationary Maxwell equations with non-constant
coefficients. Section 4 is devoted to numerical experiments, the
manufactured solution problem, and the problem of propaga-
tion of EM waves over the human head. Section 5 presents the
scalability measurements of the parallel code.

2. VARYING COEFFICIENTS IN ALTERNATING
DIRECTIONS SOLVER

We show that varying material data with test functions do not
alter the linear computational cost of the direction-splitting al-
gorithm. To focus our attention, we derive 2D heat transfer,

0
V(e = f: 5)
ou n+l _ ,n
where we discretize the time derivative T ~ to obtain
T
the weak formulation
(u"+1,v)+‘r(8Vu"+1,Vv) =(tf+u",v)Vv 6)

We discretize with B-splines
un+1 ~ un+1BXBy. MO ~ MO BXBY. v = BXBy (7)
~Up BBy ~U;p BBy = PPy

to obtain the equations of the left-hand side of the weak form,
one for each test function Bz,Bi. We assume that the material
data g ; varies with test functions.

LHS:Z(/ Bj‘B;BzBly+‘/sk,lc’)xBj.‘BfaxBiBly
iy
+ /sk,lBj‘ayBiBzayBly) ufjl Vk,1 8)

and the right-hand side terms, one for each test function B;(‘ Bly

RHS:Z(/TfB)k‘BlH/B;‘BiB;jBly)u?J Vk,I.  (9)
i,j

We separate directions on the left-hand-side

/ ;‘B;/B§31y+r/ax3fax3;§/gk,lBiBly
y x y

X

LHS = Z
i

V. (10)

X X y y n+l
+ T/Bi Bk/sk,lﬁyBjayBl Ui
x y

We consider the following approximation of the left-hand side

> /B;‘B;Hsk,l/axB;‘axB;; /Bjy.Bly

LJ\% % )¢

y y |, n+l
+ TEK /6yBj6yBl ui;

y
=Z /Bl).ch/B;Bly+/BfB;§T/¢9k,layB§ayB;]
i,j x y X y

+ T/axBfaxB;j/ak,lB;Bly
x ¥

2.2 X X y y n+l
+ 7€ /ﬁxBi Ox By, /sk,layBjé‘yBl up;
x y

~ > /B;“B;;/B;Bly+Tgk,l/Bg‘B;§/ayB§ayBly
A E y x y

+ Tek,lfaxBj‘aszfBzBly W™l =LHS Vk,l. (11)

iL.Jj
x y
We consider a linear B-splines over 2D mesh, presented in Fig. 1.

The basis is defined as a tensor product of two-knot vectors
[00122]x[0012 2]

BB
B:B i
2-1

1.0 BB

20 0.0
Fig. 1. 2D linear B-splines defined by [0 0 1 2 2]x[0 0 1 2 2]

In this simple example, we employ linear B-splines. Thus
some matrix entries are equal to zero (the integrals involve
multiplications of B-splines that do not have common support).
We do not cancel out the terms that are equal to zero to illustrate
the global structure of the matrix. Instead, we denote by colors
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the repeating terms in each of the blocks. Due to the size of the
matrix, we print each row in a few lines.

of =

(/BXBxHal,ljaxBxaxBX) [B)B{+te11 [0,B)0,B)
X X y

1

y
---(/BZBxHaujaxBZaxBX) (
X

X

[B)B+te1, [0,B)0yBY |-
y t

(/BXBXHSLI/aXBanBX) .
X X

y

'ByB+te1,1 [0yB30y B]’) e

( / BB +1e) ) [ aszaxBX) /‘1;:;‘13}‘+m|.| / <7_\'B§'<7\-BI')
X X y y

(/BXBZ+T€3,1 /GxBxasz) (/BTBT"'T‘%" /HYB?H)‘BT’)
X Y y

X

-~-(/BZBZ+TS3,1/axBZaxBZ)

X

[ B B{+te3,1 [0,B)0,B]
y y

y

.”(/BXBZ-I-TSS’I /axBxasz) _/.BV;‘B';‘-FTE}.I ‘/v(‘)_\vB;(’)_\-B;‘)
X X 5 J

/b’;’b"l\#n:g_] /d\B:d\B;)
] 5

-~-(/BZBZ+183,1/axBZaxBZ)
X X

|

(/BXBX+T81,3 /8xBx8xBx)

[B)By+te13 [0,B)0yB) |-
y

/B{B§+rgl,3 /ayB{ayBg‘)m
y y

y
e ([BZBX+181,3jaxBZaxBX) (

(/BXBX+T81’3 /E)XB"()XBX) ,/'B;B';?Té?l_} ‘/ii)).Bg{)).B;)...
X X g

y y

(/Bz3x+ml,3/ax3zaxBX) [ByBy+te13 [0yB30y B)
X X y y

(/BXBZ+T83,3 faxBxasz) (/
y

X X

By Bj+te33 / 0yB0yB ) e
y

( [BiB*+1e3;3 [ GXBZHXBZ) [ B By+te33 [0,B 0, B,
X X y

1
y

= (jBXBZ+m3,3 /axBxaxBZ)

X

[ByBy+te33 [0,B}0yB;

y

( [B*Bi+tess [ c’)xBZaxBZ) [BYBy+te33 [0,B}0,B;
X X y

v

(12)
where the whole system is
urg| |/ Fy)Bii(x)B1(y)dxdy
o 0= : (13)
usz| | F(x.y)Bsa(x)Bsa(y)dxdy
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Note that each of the nine blocks (denoted by different colors)

have a repeated matrix

JMk =
(jBXBXHsl,k/axBxaxBX).-~(/BZBX+rsl,kfaxBZaxBX)

(/BXBZ+TS3,,< /axBxaxBZ)---(/BZBZ+Tg3,k /aszaxBZ)
X X X X

(14)
We also define
/Bfegns],kfﬁyBT@yBi) 00
y y
«@l,k= 0 fBTBi+T82,k/ayB{3sz) 0, (13)
y Y
0 0 (foBi+Ta3,kf3y3{3sz
y Y
/B;B“Z'FTSl,k/ayB;a)’Bi) 00
¥ y
i - o (/B;Bzwez,k/ayszwz) o a6
y y
0 0 (/BgBZ+T83’k/0yB;3sz)
y Y -
(/Bf\;VB'/\\.JFTSI./\f")\'B;‘()\‘Bi) 00
B,k =0 (fBz?B?&m:./\fﬂvBﬁ‘f’A\-Bi‘) o amn
00 .[B-;Bi}raz.k./5),\-31‘;‘(’),\*82)

We re-write our system as multiplication of two-matrices:

A 0 0By By %] |Un Fi
0 o 0By $Bop Pzl |=|F]|,
0 0 wA||%s P P33]|Us F3
[ Fi1(x,y)B*B} [ F2.1(x,y)B'BY}
F = fFl,z(X,y)Bng , Fr= sz,z(X,y)ByB; , (18)
[ Fi3(x,y)B*B; [ Fr3(x,y)BB;
[ F3,1(x.y)B*B] Ui
F3=|[F3o(x.0)B*By |, Ui=|uin
[ F33(x,y)BB; Ui3
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and Fk,l:/TfBzBly+‘/ZBfB§u?jB;§Bly.We define

% B Py Bl |Ur
D|=|%12 PBrr Pzl |Us|. (19)
% By By PBaz||Us
In our solver, we solve
g 0 0|4 Z
0 o 0||%|=|%], (20)
0 0 A% F3
for 4, %, ¥4, and then we solve
By By B |Ui 9
Bro By Bio| |U2]| = |4 2D
By By B3| |Us| |%

Both systems (20)—(21) can be solved in a linear computa-
tional cost due to the banded structures of matrices build with
one-dimensional B-splines.

3. VARIATIONAL SPLITTING WITH NON-REGULAR
MATERIAL DATA FOR MAXWELL EQUATIONS

We utilize the alternating directions solver that delivers linear
computational cost factorization on tensor product grids. The
solver decomposes the system of linear equations related to the
three-dimensional mesh into three multi-diagonal sub-systems
related to one-dimensional grids with multiple right-hand sides.
The non-regular material data can be embedded into the solver
by local modifications to the rows and columns in the three sub-
systems. Namely, we can change the material data corresponding
to different equations, and these modifications do not break the
solver linear computational cost. We verify this method by run-
ning the example of the propagation of electromagnetic waves
on the human head. Petar Minev has proposed this method ini-
tially for finite difference simulations [9]. In the IGA context,
the modification is not point-wise but rather test-function-wise
since each equation in the global system is related to a single
test function rather than a point in the stencil.

3.1. Time integration scheme allowing for direction
splitting of Maxwell equations

Following [1,8] we employ the implicit time integration scheme
allowing for splitting of the Maxwell equations:

2

7]
+1 Z_gmﬂ » 260 1.0 ° +1
n+s T - n+s
E™2 - 0 ol 5 O E™>
2 ,,-10
0 0 tsoxk ax
9 Iél
— N n
=E +£ 72 0 -z H
-9 9 0
dy ox
a ,-10
209 a0
a ,,-19 n
— E ) 016 0 5_z/'l W E s (22)
90 0
1 T 0 O 9y T O 9z O 1
H"2=H"-—[2 0 O0|E'"+—|0 0 Z[E™2
2u 0z s 2u S x
o 2 o0 oy 0
29 ,-10
C[EEAE 0 0 1
+ a ,,-10 +
En 0 Z—sm,u Ox . 60 5 En
-1
0o -9 94
el T s dz 6)5 1
=E"2+—| £ 0 -—-L£|H™:
2¢ oz ox
-9 9 0
Jy ox
d,,-10
20,0 0 FEH a|
= m#_la 0 E"2, (23)
I o Lyt 0
6y'u oz
Hn+l:H”+%
4] 9
. 0 s 0 L. 0o 0 Iy
+—[0 0 ZIE"-—|2Z 0o o|E".
2u |, 2poz
Iy 0o 0 0 5% O

3.2. Variational splitting

for Maxwell equations

In this section, following [14], we derive the variational formula-
tions for the time-integration schemes described in the previous
section. We multiply by test functions (Vy, Vy, V) and integrate
by parts

1 1
(Exn+§’vx) (%M_I%Exn+7,vx) (Exn’vx)
n+l T d ,~10 p n+d _
(Ey +2’Vy) " e (a_z/‘ ' Ey +2’VY) = [(Ey".Vy)
(E;H%,Vz) (%M‘I%EZ””%,VZ) (E.",V2)

J ,-10 n
(2o V)
o ,-10
(@ﬂ la_zEzn’Vy)

(Fen V2

9 n 9 n
_(ﬁ_zHy ,Vx)+($Hz ,VX)
T d gy n i T
+£ ((9_sz ,Vy)—(aHzn,Vy) —E
~(&Hm V) + (ZH, V)
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1
(s vl] reve) [ (EV)
(Hyn+%,vy) = | (" vy) | - — (a%Ex",Vy) (24)

(Hzn+%7vz) (Hzn,VZ) (%Eyn’vz)

(s

|l

1

(et

1
(Ex"+1,Vx) ) (a%u’la%Ex"“,Vx) (Ex"‘“é,Vx)

T
(B, Vo) |- o (B & B )| = | (B4
_ 1
(%ﬂ I%EZVHI’VZ) (Ezn+2vvz)

T 1 1
o (200, ) - (& H W) (25)
—(%Hx"+%,vz)+(%11y"+%,vz)
1
N[CTRETECRA
T o ,-10 f n+l
1| (Fr EEY)
a ,,-19 n+i
(5’“‘ "By +2’VZ)
H n+% Vv ﬁE n+% Vv
(Han,Vx) x » Vx oz Ly s Vx
(Hynﬂ’vy) = (Hy'”%’vy) _ZL (%Ezm%’vy)
u
n+l 1 1
(HZ ?VZ) (Hzn+2,vz) (%Exrﬁz’vz)

(%EZYH—I,VX)

T 1o 1
_Z (8_zExn+ ,Vy)
(%Eyrwl,vz)

Integrating by parts, removing boundary terms, we obtain

1 1
] [(ametgn)
i T d i -
(Eymz,vy) ‘o (a—zEy"”,a—sz) -
1 1
(Ez'”z,VZ) (%EZ"U,%VZ)
8
(Exn,Vx) _(B_ZHY ,Vx +<$HZ”’VX)
T J 2 ]
(Eyn’Vy) +% (a_szn?V) (EHZH’V)))
] R WA P
dpn oy )|
| (FEn &)
.
o (2B 2%)| o
E 2V
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1
(Hx’”z,Vx) (Hxn,vx) %Ez",vx
1 T
(Hyn+2,Vy) = (Hyn,Vy) —Z (%Ex",Vy
(Hzn+%,vz) (Hzn,VZ) %Eyn,vz

(Ex v, (,%Ex”“,g—zvx) (Ex 7,Vx)
n 9 9 _ n+
(Ey™,Vy) T aen (EEynJrl’EVy) = (Ey +2»Vy)

n+l
(E."1V,) (%EZ"H,%VZ) (EZ'H%,VZ)
(%Hyn*-z’vx)'*'(%l—lzn*‘%,vx)
+i (2000, ) - (ZH W) 27)
(o) (i)
8 n+l 8y )]
L [fzeta,
9 n+l 8
2 (a gt g
o
(B_Ey Z*a_yvz)_
1
o] [n] ()
(Hynﬂ’vy) = (Hyn+%’vy) _2i (a% Zn+%’ y)
1
(HZMI’VZ) (Hzn+%’vz) (ai x"+%, z)

L (B%Ex"”,Vy) . (28)

Expressing problem (26)—(28) in the matrix form we have

M, ®M,®M_E, " , [Mc®S, 0 M E ]
M @My ® M.y 42— | M, © My © 5.,
M, @M, ®M,E."*1 K Sy ®M, ®M,E"*} |
M,®M,®M_E,"]

= |M,®My®M_E,"

M ®M,®M,E."|

-M, @My @A H,"+M,®A, ® M _H_"]

.
tog | Mx®My@®AH" ~ A ® My® M. H."
~M,®Ay @ M H," +A; ® My ® M H,"

2 Ay ®Ay ®MzEyn
+H M, ®Ay ®AZEZn , (29
Ay ®My ®M,E "
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Me®My® M H,"E|  [M,®M,®M,H,"
My ® My ® M, H,"2 | = | M, ® My ® M H,"
1
Mx®My®Mszn+2 MX®My®MzHZn_
. M,®A,®ME,"]
~3 M. ®M,®AE"
Ac@My®ME\" |
My ®M, ®A_E "
.
o A @My @ M.E,™1 |, (30)
M_X®MA®MZE.X”+%
M, ® My ® M_E,"! 2 M,®M,®S,E, "
M, ® My ® M,E,""! *ien Sx®My® M E)"! | =
My®My® M E,"*! a M, ®Sy®ME."!
M, ®My®M.E,"*1
M, ® M, ®M_E,"*3 | +
Mx®My®MzEz"+%
. —Mx®My®AzHyn+%+Mx®Ay®Mszn+%-
| 1
75| Mx®@My®AH ™2 —Ac@ My ® MoH "™
1 1
M, A, @M H " +A, @M, ® M_H,"*1 |
2 Ax@My@’AzEzM%-
1
o [Are A @M E G
M, ®A,®A,E,"1)
M, ® M, ® M H,"*! My®M,® M_H,"™?
M ®My® M H,"* | = | M, ® My ® M H,"™
Mx ®My ®Mszn+1 Mx ®My ®MZHZn+%
M @M, @A E,"7 M, ®A, @M E,"!

T n+l
- 2— Ax®My®MZEZ 2

—21 M. @My@AE™|, (32)
Hlmeea, @M, B

K Ax®My®M_E,"*!

where M*, MY, M* are 1D mass matrices, S*, §¥, §¢ are 1D
stiffness matrices, and Ay, Ay, A; are 1D advection matrices.

We discover the Kronecker product matrices on the left-hand
sides, which can be factorized in a linear cost

> -
T 1

Mx® (My+HSy) ®MzExn+2
2

Mx®My®(Mz+4T—SZ)Ey"+% —RAHS,  (33)
e

2
(Mx + T—Sx) ® My ® M_E,"™*?
deu |

M,y @M, ® M H,"1]
M, ® My ® M H,"*
M, ®M,®M,H,"* |

=R, (34)

) .
M ®M,® (MZ + T—SZ) E
4ep

2
(Mx + 4T—SX) @My @ M.E," | =ZA.S,  (35)
e

2
T
1
M, ® (My+@Sy) ®MZEZ"+ _

M, ®M,®MH,"™*"]
M, ® My ® M H,"*!
M ®M,®M_H "'

=RBHS . (36)

3.3. Varying material data for Maxwell equations

Letus explain the idea of varying material data coefficients using
the first system of equations, in the weak form, solved in the even
sub-steps, to update the electric field. For other systems, the idea
is identical. In the problem matrix, for the even sub-steps, for
the electric field computations, we have

2 1
M, ® (My + ;Tﬂsy) ® M_E, "
2 1

M @My ® (M, + 5555 ) B, | =
(Mx + isx) ® M, ® M_E,"*

deu

M ®My®M,E"| |[-E=M ®@M,®A H,"

My @My ®M.E,) | +| =M @M, @A H" |+

M ®My®@M.E."| |-EM.®A, @ M H."

2

oM ®Ay® M H," T Ax®Ay® M E)"

5= Ax®@M, @M H." + [?Mx®Ay®AZEZ"
—EM @A @AMy @M H,"| | A, ®M,®ME,"

where My, My, M, are 1D mass matrices, Sx, Sy, S, are 1D
stiffness matrices, and A,, Ay, A, are 1D advection matrices.
Rewriting the equations in the matrix form with the B-spline
functions for trial and testing, we have
1
MIES = ME + FIH) + FLH + FES = RA S 1,
1
MYE)? = MHE + FyH + FIH + TS E = RA S,
1
ME = MRE + FLH " + FLH + FIE = RA S 5,

2 OB’ OB
). = [ B*Brdx | |BB)+-— —L%Cm
Qx Q,
/BiBf)dz,
QZ
%ZIijk,lmO:‘/B;vB;Cdx/B;Bfndy
Qx Q,

72 0B 0B%

B*B — e ,

,/( k "(Z)+4sp oz 0z ) °
Q‘z
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3l/klm0=/( XBX
/B;Bf,dz,

72 0B an 4 BB d
48;1 dx Ox x/ jomey

Y

QZ
0B
1 __T y k y
lijk,mo — _28 /BxBJ BxB BZ dxdydz,
Q
0By
1 _ T y y
yZijk,lmo_ZS/BxB a_BxB Bzdxdde’
Q
gl T X(')Bj.} xpY DI
F3ijiimo = 55 | Bi —yBk(X)Bl B),BZdxdydz,
t
Tt = B"aBJyB"BxByBZd dyd
lljklmo_zg a xaydaz,
2 _ T y
yZ ijk,mo — _28 BxBxB B:dxdydz,
2 T N
y:sljk lmo__zg BXBXB mB5dxdydz,
Q
a3 72 an OB’ o mY oz
‘/lijk,lmoza o 6_3 B/ B;,B5dxdydz,
Q
3 T2 xéBy Y
a _ Z z
Jleklmo 48/1 /B a_B B B B dxdydz,
73 - OB% prBrB)BE dvdyd
3tjklm0_4s Ox xaydaz,
wherei:1,...,Nx,j=1,...,Ny,k_l N, Spanoverthe
trial space dimensions, and [ = 1,...,Ny, m=1,...,Ny, n =
1,..., N, span over the test space dlmensmns. The matrlces on

the right-hand side are multiplied by the solution vectors from
previous time step, so as the result on the right-hand side we have
a vectors %%Y”mo, %’%ﬂymo, and %%@731,",,, where
againl=1,...,N,,m=1,. N o=1,...N;. The alternating-
directions solver decomposes this system into the following three
one-dimensional systems with multiple right-hand-sides

AF| [
1
,!Z{zF;H—i = %%ejﬁz > (37)
1
%F;H—z %%yfﬁ
mi,lszj‘B;‘dx, %i,l:/BfB?’dx’
o Q 38
o BB} + v 9B} 9By d >
35,1—/( 4,3# Ox ax) X

Qx
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and the right-hand side vectors Z.7\; jx, BH S 2 jk»
R A S5 jx have been reordered into matrices with N, rows
and Ny N, columns, by ordering blocks of N, consecutive rows,
one after another. After solving the first one-dimensional system
with multiple right-hand sides we solve the second system

ﬂlG : Fl 2
1
932(;’”-2 = F2n+2 > 39)
n+l n+
BGTE| | F
2 OB OB
Brim= | BB+ —L2m gy,
1j,m /( jomT g 3) ay y

Prjm= [ BBy, Frym= [ BB
Q, Q,

We solve the third system with multiple right-hand sides

1
(g] EXVH-?

G
GE,™ | = |6, (40)
G

~\~ N\-— m\-—

n+
1
n+
. 2
%3Ezn+§ n+
3
‘Klk,O:/BiBf,dz ‘53k,0=/BiBf)dz,
Q. Q.

72 0B} OB%
%zk’o:/(BiBf, o o 6Z")dz.

We assign different material data to different B-splines used
for testing our equation. Since each test B-spline results in a
single equation in the global system of equations, we localize
this equation in the three systems with multiple right-hand sides.
Having the equations identified, we modify the material data in
the three systems of equations as processed by the alternating
directions solver. We modify material data € = &€, u = fi for test
B-spline “rst”, namely B, (x)B;(y)B;(z). the limitation of our
method is that we can only provide one value of the material
data coefficients for a single test function. Thus, the material
data coefficients are averaged with the distributions prescribed
by test functions. When we employ B-spline basis functions, as
they preserve the partition of unity property, the distributions of
material data averaged with overlapping B-spline test functions;
they sum up to one. To introduce the averaged material data
coeflicients € = €, u = [i, we perform the following changes.
In the first system, we extract the three equations (three rows)
for the three components of the electric field for row i = r, and
the suitable columns from the right-hand side Il =r,m = s,0 =1,
where we modify material data

Z /B (WBi e FI*2 = RA S 1y, (B1)
I=1,..., NxQ
Z / B, (x)Bfdx+F)" 1 = RH S 2t (42)
I=1,..., NXQ
7
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A2 B. OB*
Z / (B,F(X)B;(+ TA - 0B, (x) 98 ) dx
iy 44 O0x  Ox

I=1,...,

1 ~
Py 2 = RH S . (43)

31

The B .S 1512 BA-S 2rsty RA S s represent the right-
hand sides with material data parameters € = &, u = [i. The other
rows and columns in the first system remain unchanged.

Similarly, in the second system, we extract the equation for
row j=sand columns /[ =r,m=s,n=t

2 9B, (y) 0B;,
By(y)BY, + — 225 m
e

m=1,..., NyQy
n+t n+t
*Gl ’ rmt Fl ’ rst’ (44)
4l 4l
Z / BX (})Bi)ndy * G;l 2rml = F2n 2rsl‘ ’ (45)
m=1,..., NyQy
.l +1
S [romar ot -mt, e

and we modify the material data. The other rows and columns
remain unchanged. In the third system, we extract the equation
forrow k =tand columns [ =r,m=s,n=t

1 1
> / B(2)B3dz+Ex™2, =G . (4])
o=l1,..., NZQZ
A2
9B, (z) OB
Y [ (mosse g 2
4éniu 0z 0z
o=1,..., NZQ
1 1
sE™2, =G (48)
1
[Eimas e =6 @

and we modify the material data. The other rows and columns in
the third system remain unchanged. Similar modifications have
to be performed in other sub-steps.

4. NUMERICAL RESULTS

The goal of this section is to verify the correctness of our nu-
merical code. We first introduce a manufactured solution for the
Maxwell problem. Following [1], for Q = [0, 1]3, for e =1 and
u =1 we define

sin(kmy) sin(Anz) cos(Vk? +A27t)
0
0
O b
I S . >
75— sin(kmy) cos(Anz) sin(V? +A°7)

\/ﬁ cos(kmy) sin(Anz) sin(Va2 + 2nt)
L K |

1
U, (x,1) =

0
sin(kmx) sin(Anz) cos( V2 +A2nt)
0
sin(kmx) cos(Anz) sin(Vi2 + A2nt)
0

- \/ZKT/[Z cos(kmx) sin(Anz) sin(Vi? + A2nt)
L K ]

2
uk’,](xat) = A
Vi2+A2

0
0
sin(kmx) sin(Amy) cos(Vik2 +A2nt)
—ﬁ sin(kmx) cos(Any) sin( V2 +A2nt)

2K+/12 S(K.I)C) Sin(/bly) Sin( VK2+/127TI)
K
0

3
uy 2 (x,1) =

for k,A € N ,k,A+0.

Using these function, we can define manufactured solutions
for the non-stationary Maxwell problem. One of the solution for
k=1, =1 can be introduced as

ug(x,t) = yu{,l (x,1) +2)/ui1 (x, )+ 3)/14?’1 (x,1). (50)
Notice that u4 has six components, where the first three compo-
nents denote the electric field E and the last three components

denote the magnetic field H. The parameter v is selected in such
a way thats [[ua(x,0)||;2(q) = 1. In the code, we solve

a—E(t)lexH(t) tER, x€Q, (&1))
ot €
a—H(t)z—leE(t) teER, x€Q, (52)
ot u
diveE(1)=0 t€R, xeQ, (53)
divuH(1) =0 teZ, xeQ, (54)
E(tH)xn=0 teZ, x€Q, (55)
H(t) n=0 teZ, xe€iQ, (56)
E(x,0) =Eg(x) x€Q, (57)
H(x,0) =Hp(x) xeQ. (58)

The initial states Eg and Hy are selected using u4(x,0), the
permittivity € = 1, and the permeability p = 1.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. €149179, 2024
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Next, we introduce non-regular material data representing the
human head. In other words, we put the human head into this
electromagnetic field and observe the result. Our simulations are
based on digital data, the MRI scan with 29 two-dimensional
slices, each one with 532 times 565 pixels. Each pixel intensity
is a value from the range of [0, 255], and it is proportional to the
material (skull, skin, tissue, and air) normalized density. Exem-
plary slices of the human head from the MRI scan are presented
in Fig. 2. Next, according to the MRI scan data, we employ
material data changing on the skull, skin, tissue, and air. We
assume air (MRI scan data < 1), skin or brain (tissue in general)
(1 < approximation < 240), and skull (approximation > 240).
We enforce different material data using the method described
in this section. The material data in the Maxwell equations are
selected according to the tissue kind, following [16]. Namely,
we introduce & € {€a1r, éT1sSUE, éBONE} = {1.0,45.8,16.6} and
= {/jAIR,ﬁTlSSUEs/jBONE} = {10, 1.0, 10} The material data
£, (1 are defined as relative to the vacuum permittivity and perme-
ability of free space, namely € = £g(, where g9 = 8.854 X 10712,
and u = fiuo, where pg = 12.556 x 10~7. The permeability u, as
related to a magnetic field, is not sensitive to varying materials.
Thus, all its components are equal.

0[010

Fig. 2. Exemplary cross-sections of the MRI scans of the human head

We investigate now the obtained numerical results. In Fig. 3,
we present the snap shoot from the simulation — the configu-
ration of the electric and magnetic fields, obtained from this

Fig. 3. Electric (red) and magnetic (blue) vector fields, resulting from
the problem with manufactured solution

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. €149179, 2024
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Fig. 4. L2 norm error of electric (blue) and magnetic (orange) vector
fields resulting from the solution of the problem with manufactured
solution over the mesh with 16 X 16 x 16 elements, for the time interval
[0, 1], with number of time steps within [0, 1] interval varying from
80 (first row), 320 (second row), 640 (third row), and 1280 (last row)

manufactured solution. In Fig. 6 we present the percentage of
the relative L? norm error between the numerical and analytical
solutions computed for the entire time-interval of the simula-
tion, with different time steps, with 16 X 16 X 16 mesh. Namely,
we compute

Electric field L, error =

(59)

1
| Eexact (x,y,2:1) = E(x, y,2;1)| 2
100></ exact (X, Y y L2(Q) dr.
J “Eexact(xvy,Z;t)”Lz(Q)
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Fig. 5. H-curl norm error of electric (blue) and magnetic (orange) vector
fields resulting from the solution of the problem with manufactured
solution over the computational mesh with 16 X 16 X 16 elements, for
the time interval [0, 1], with number of time step varying from 80 (first
row), 320 (second row), 640 (third row), and 1280 (last row)

Magnetic field L, error =

(60)

1
100)(/ ”Hexact(X,y,Z;t)_H(X,y,Z;t)”LZ(Q) dr.
o ”Hexact(x’yaz;t)“Lz(Q)

In Fig. 7 we present the percentage of the relative H(curl) norm
error between the numerical and analytical solutions computed
for the entire time interval of the simulation, with different time
steps.

10

L error
10" 4

107" 4

Fig. 6. Percentage of the L? relative error between computed electric
(red) or magnetic (blue) vector fields, and the exact solution of the
manufactured problem
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./

LN Electric field £

T T
107" 1072
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Fig. 7. Percentage of the H(curl) relative error between computed
electric (red) or magnetic (blue) vector fields, and the exact solution of
the manufactured problem

Electric field H(curl) error =

(61)

1
Eexact(x,y,2:1) — E(x,y,7;1
IOOX/ | Eexact (X, y ) (x,y )”H(curl)(Q) dr,
. ”Eexact(xsy,z;t)”H(curl)(Q)

Magnetic field H(curl) error =

1
— 100 % / ”Hexact(xa Y, Z;t) - H(x’ Y, Z5 t) ”H(curl) (Q) dr. (62)
o | Hexact (x, Y, Z;t)”H(curl)(Q)
From these experiments, we can conclude that our time-
integration scheme, including the operator splitting, is second-
order accurate in time (one-order decrease of the time step size
results in two-order of magnitude lower error), and it provides
correct numerical solutions. Further increase in the accuracy
would require increasing of the spatial mesh dimensions.
In Fig. 4, we investigate the convergence of the solution mea-
sured in L? norm when we increase the number of time steps,

1 1 1
from 30" 0.0125, 320 = .0.003125, o0 = 0.0015625, and

1280 = 0.00078125. In other words, we decrease the time step
size, and observe the numerical accuracy. Similarly, in Figs. 5,

we investigate the convergence in the H — curl norm when in-
creasing the number of time steps (decreasing the time step size).
We can see that the numerical error becomes stable during the
entire simulation, and it does not grow with time steps more than
0.0002 for the L? norm and more than 0.015 for the H — curl
norm for the smallest time step size employed. We conclude that
the method is stable and convergent.
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Finally, we summarize the results of propagation of electro-
magnetic waves on the human head in Figs. 8-9. We can see the
interaction of the electromagnetic field with the human head, as
well as with the metallic handle, employed the keep the human
head stable during the MRI procedure.

Fig. 8. First row: x component of the electric vector field. Second row:
y component of the electric vector field. Third row: z component of the
electric vector field. Columns — cross section along OYZ plane, time
moments: 0, 0.25, 0.5, 0.75, 1.0s. 32 X 32 X 32, quadratic c! B-splines

Fig. 9. First row: x component of the magnetic vector field. Second row:

y component of the magnetic vector field. Third row: z component of

the magnetic vector field. Columns — cross section along OYZ plane,

time moments: 0, 0.25, 0.5, 0.75, 1.0's. 32 x 32 x 32, quadratic c!
B-splines

5. SCALABILITY OF THE PARALLEL SHARED-MEMORY
CODE

In this section, we present the measurements of the execution
time of the parallel shared-memory code for non-stationary
Maxwell simulations with non-constant material data. We im-
plemented our method in [15] framework. The experiments were
performed on a Linux workstation equipped with AMD Ryzen 9
3900X processor with 12 physical cores and a total of 24 vir-
tual cores, with 64 GB of RAM. We run the measurements for
linear, quadratic, and cubic B-splines for 8 x 8 X 8, 32 x32x 32,
and 128 x 128 x 128 elements. The execution times are summa-
rized in Tables 1-3. We verify now a linear computational cost
for different numbers of processors and orders of B-splines. We
measure the time per element, measured in nano-seconds per el-
ement, where we increase the number of elements. We perform
these measurements for one core and for 24 cores. We can see

Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 3, p. €149179, 2024

from Fig. 10-11 that the execution time per element remains
constant when we increase the mesh from 8 X8 x 8 =512 to
128 x 128 x 128 = 2097152 elements. We conclude that our
code delivers a linear computational cost. We also measure
the speedup for computational grids of size 32 X 32x 32 and
128 % 128 x 128, and we summarize the experiments in Tables 2—
4. In Tables 2 and 4, we can observe that speedup grows beyond
the number of physical cores. As it is true, please note that after
reaching 12 cores, speedup growth is slightly flatter. The main
reason is that Hyper-threading (HT) technology is more mature
than several years ago. Also, the type of workload considered
in this paper benefits from HT. Hyper-threading allows a sin-
gle physical core to execute multiple threads simultaneously.
The physical core can only execute one instruction at a time. HT

Table 1
Execution time (time [s]) over the 32 X 32 X 32 mesh, with linear (p = 1),
quadratic (p = 2), and cubic (p = 3) B-splines, with number of cores
varying from 1 to 24

# cores P1 P2 pP3
1 6.02 65.05 358.18
2 3.11 33.24 183.03
4 1.59 16.81 92.27
8 0.85 8.79 48.68
12 0.58 6.00 33.04
16 0.51 4.96 26.38
24 0.38 3.59 19.54
Table 2

Speedup over the 32 x 32 x 32 mesh, with linear (p = 1), quadratic
(p =2), and cubic (p = 3) B-splines, with number of cores varying

from 1 to 24
# cores P1 P2 P3
1 1 1 1
2 1.93 1.95 1.95
4 3.77 3.86 3.88
8 7.06 7.39 7.35
12 10.28 10.83 10.83
16 11.72 13.10 13.57
24 15.66 18.07 18.32
[ns] per element
10000000 p3
—p2
1000000
—pl
100000
83 1673 3273 643 12873
# elements

Fig. 10. Time [ns] per element. Number of elements from 8 x 8§ X8 =
512 to 128 x 128 x 128 =2097 152 elements. Measurements for linear
(p = 1), quadratic (p = 2), cubic (p = 3) B-splines, with 1 core
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allows the CPU core to switch between multiple threads quickly.
This is highly beneficial when one thread waits for data from
RAM or another resource. The core can switch to another thread
that is ready to execute. Please note that the speedup achieved
by Hyper-threading depends on the nature of the workload.

Table 3
Execution time [s] over 128 x 128 x 128 mesh, linear (p = 1), quadratic
(p =2), and cubic (p = 3) B-splines, # cores from 1 to 24

# cores P1 P2 P3
1 395.21 4152.44 22935.37
2 203.69 2113.76 11830.60
4 104.10 1082.28 5987.16
8 55.06 566.83 3151.49
12 38.07 383.91 2133.77
16 34.28 330.98 1810.17
24 25.75 238.18 1275.99
Table 4

Speedup over 128 x 128 x 128 mesh, with linear (p = 1), quadratic
(p =2), and cubic (p = 3) B-splines, # cores from 1 to 24

# cores Pi P2 p3
1 1 1 1
2 1.94 1.96 1.93
4 3.79 3.83 3.83
8 7.17 7.32 7.27
12 10.38 10.81 10.74
16 11.52 12.54 12.67
24 15.34 17.43 17.97

[ns] per element

1000000
p3
100000 —p2
10000 —p1
8"3 1673 3203 6473 12873
# elements

Fig. 11. Time [ns] per element. Number of elements from 8 x 8 X 8 =
512 to 128 x 128 x 128 =2097 152 elements. Measurements for linear
(p = 1), quadratic (p = 2), cubic (p = 3) B-splines, with 24 cores

6. CONCLUSIONS

We show that it is possible to vary material data in non-stationary
Maxwell simulations, preserving the linear computational cost
of the direction splitting solver. In our method we can vary the
material data with test functions. We test the method using the
model Maxwell problem formulation and we put the non-regular
material data obtained from the MRI scan.
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