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The subject of the work is a five-layered composite beam with clamped ends
subjected to a uniformly distributed load along its length. Two analytical models of
this beam are developed with consideration of the shear effect. The first model is
formulated on the basis of the classical zig-zag theory. Whereas, the second model is
developed using an individual nonlinear shear deformation theory with consideration
of the classical shear stress formula (called Zhuravsky shear stress). The system of
two differential equations of equilibrium for each beam model is obtained based
on the principle of stationary total potential energy. These systems of equations are
exactly analytically solved. The shear effect function and the maximum deflection are
determined for each of these two beam models. Detailed calculations are carried out
for exemplary beams of selected dimensionless sizes and material constants. The main
goal of the research is to develop two analytical models of this beam, determine the
shear effect function, the shear coefficient, and the maximum deflection in the elastic
range for each model, as well as to perform a comparative analysis.

1. Introduction

Sandwich structures are intensively refined and used in many constructions
in the 21st century. Carrera [1] presented a very insightful historical review of the
Zig-Zag theories used in the analysis of multilayer structures, including 138 refer-
ences. On the basis of this review, he distinguished three multilayer theories named:
Lekhnicki (LMT) initiated in 1935, Ambartsumian (AMT) initiated in 1958 and
Reissner (RMT) generalized in 1984. Huang [2] developed an analytical model of
a five-layer beam with two facings, two adhesive layers, and a core, taking into
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account the conditions of displacement continuity. Detailed calculations of an ex-
emplary beam subjected to three-point bending were performed analytically, FEM
numerically and taking into account the theory proposed by Allen (1969). Pollien
et al. [3] presented a process for producing functionally graded porous structures.
The produced five- and seven-layer beam samples were subjected to three-point
bending on the test stand. Hu et al. [4] conducted an analysis and evaluation of
various theories used in the modelling of layered composites. They considered the
following theories: classical laminate (CLT), first-order (FSDT) and high-order
(HOT) shear deformations, zig-zag, and a proposed unified kinematic formulation.
Comparative tests of exemplary beams with solution by the finite element method
were carried out. Reddy [5] characterized Euler-Bernoulli, Timoshenko beam the-
ories, classical plate theory, and first-order shear deformation plate theory, and
then reformulated these theories taking into account the non-local differential con-
stitutive relation of Eringen and the von Kármán non-linear strain. Chakrabarti et
al. [6] developed a new finite element model taking into account the higher-order
zig-zag theory (HOZT). Numerical calculations of exemplary composite beams
with different properties were performed in order to demonstrate the accuracy of
the developed element. Carrera et al. [7] presented many refined beam theories that
they developed taking into account Taylor polynomials, trigonometric series, expo-
nential, hyperbolic, and zig-zag functions. The results of exemplary calculations of
the described models are compared in terms of displacements, stresses, and degrees
of freedom. Magnucki et al. [8] developed an analytical model of a five-layer sand-
wich beam with two thin layers of glue and analyzed its three-point bending. The
results of the analytical tests of the sample beams were compared with the results
of the FEM numerical tests. Smyczyński and Magnucka-Blandzi [9] analyzed the
problem of dynamic stability of a simply supported five-layer sandwich beam. On
the basis of Hamilton’s principle, a system of three differential equations of motion
was determined. The unstable regions and equilibrium paths were determined for
the example beams.

Paczos et al. [10] studied five-layered trapezoidal beams in analytical, numeri-
cal (FEM), and experimental approaches. An analysis of the sensitivity of selected
geometrical parameters to their stiffness was carried out. Icardi and Sola [11] ana-
lyzed the bending of sandwich beams and rectangular slabs with different boundary
conditions using the equivalent single-layer zig-zag model. Magnucka-Blandzi et
al. [12] developed an analytical model of the untypical orthotropic seven-layered
beam and determined the critical load and the natural frequency. Detailed buck-
ling and vibration analysis for the example beams was performed analytically and
numerically by FEM. Vo et al. [13] analyzed the bending of composite and sand-
wich beams, taking into account the developed two-node beam elements with six
degrees of freedom. The influence of the position of the fibers on displacements
and stresses was investigated. Smyczyński and Magnucka-Blandzi [14] studied
analytically, numerically FEM, and experimentally a five-layer beam subjected to
three-point bending. Two analytical models of the beam were developed, taking into
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account the “broken line” theory and the non-linear theory. Detailed calculations
were carried out exemplary beams.

Zhai et al. [15] analyzed the natural vibrations of two five-layer composite sand-
wich plates with double-layer viscoelastic cores, taking into account the first-order
shear deformation theory. Pei et al. [16] presented a modified higher-order shear
deformation theory for FG beams and analytical bending studies of these simply
supported and cantilevered beams. Wang et al. [17] analytically studied the wave
propagation problem in porous beams with consideration of the Euler-Bernoulli
and Timoshenko beam theories. Wang et al. [18] numerically and experimentally
studied a laminated composite beam composed of 20 aluminium layers subjected
to impact loads. Garg and Chalak [19] developed a new higher-order zig-zag theory
for the analysis of laminated sandwich beams, which was included in the sample
studies using a three-node one-dimensional finite element with eight degrees of
freedom in a node. Magnucki et al. [20] analyzed the problems of bending, buck-
ling, and free vibration of a simply supported sandwich beam, taking into account
three models: classical “broken line”, nonlinear shear effect in the core, and non-
linear shear effect in the faces and the core. Magnucki [21] developed an individual
non-linear shear deformation theory of beams and studied in detail beams with the
homogeneous, sandwich and variable mechanical properties of beams subjected
to three-point bending. Magnucki and Magnucka-Blandzi [22] presented in detail
a refined shear deformation theory of an asymmetric sandwich beam taking into
account the classical shear stress formula.

The subject of the study is a clamped five-layered composite beam of length 𝐿,
width 𝑏, and total depth ℎ under a uniformly distributed load of intensity 𝑞 (Fig. 1).
The main goal of this paper is to elaborate two analytical models of this beam and
to conduct a comparative analysis of the calculation results obtained from both
beam models.

Fig. 1. Scheme of the five-layered composite beam and its cross-section

The variation of Young’s modulus in the depth direction of the five-layered
composite beam is shown in Fig. 2.

Thus, Young’s modulus in the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 ), middle
layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2) and lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2) is constant –
𝐸 𝑓 , and similarly in the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2) and lower core
(𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 ) is constant as well but has a different value – 𝐸𝑐, where:



30 Krzysztof MAGNUCKI

Fig. 2. Scheme of the variation of Young’s modulus in the depth direction of the beam

[ = 𝑦/ℎ – dimensionless coordinate, 𝜒 𝑓 = ℎ 𝑓 /ℎ, 𝜒𝑐 = ℎ𝑐/ℎ, 𝜒0 = ℎ0/ℎ – relative
thicknesses of the beam layers.

2. The first model of the five-layered composite beam

The deformation of a planar cross-section of the composite beam in accordance
with the zig-zag theory without the shear effect in the middle layer is shown in
Fig. 3.

Fig. 3. The scheme of a planar cross-section deformation – the zig-zag theory

The longitudinal displacements following Fig. 3 in successive layers are as
follows:

• the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 )

𝑢 (𝑢 𝑓 ) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

+ 𝜓 𝑓 (𝑥)
]
, (1)

• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

𝑢 (𝑢𝑐) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

−
(
[ + 1

2
𝜒0

)
𝜓 𝑓 (𝑥)
𝜒𝑐

]
, (2)
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• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

𝑢 (𝑚𝑙) (𝑥, [) = −ℎ[ d𝑣
d𝑥

, (3)

• the lower core (𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

𝑢 (𝑙𝑐) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

−
(
[ − 1

2
𝜒0

)
𝜓 𝑓 (𝑥)
𝜒𝑐

]
, (4)

• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

𝑢 (𝑙 𝑓 ) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝜓 𝑓 (𝑥)
]
, (5)

where: 𝑣(𝑥) – deflection, 𝜓 𝑓 (𝑥) = 𝑢 𝑓 (𝑥)/ℎ – dimensionless function of the shear
effect.

Therefore, the strains and stresses – Hooke’s law are as follows:
• the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 )

Y
(𝑢 𝑓 )
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 +
d𝜓 𝑓

d𝑥

]
, (6a)

𝛾
(𝑢 𝑓 )
𝑥𝑦 (𝑥, [) = 0, (6b)

𝜎
(𝑢 𝑓 )
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑢 𝑓 )
𝑥 (𝑥, [), (7a)

𝜏
(𝑢 𝑓 )
𝑥𝑦 (𝑥, [) = 0, (7b)

• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

Y
(𝑢𝑐)
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 −
(
[ + 1

2
𝜒0

)
1
𝜒𝑐

d𝜓 𝑓

d𝑥

]
, (8a)

𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [) =

𝜓 𝑓 (𝑥)
𝜒𝑐

, (8b)

𝜎
(𝑢𝑐)
𝑥 (𝑥, [) = 𝐸𝑐Y

(𝑢𝑐)
𝑥 (𝑥, [), (9a)

𝜏
(𝑢𝑐)
𝑥𝑦 (𝑥, [) = 𝐸𝑐

2 (1 + a𝑐)
𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [), (9b)

• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

Y
(𝑚𝑙)
𝑥 (𝑥, [) = −ℎ[ d2𝑣

d𝑥2 , (10a)

𝛾
(𝑚𝑙)
𝑥𝑦 (𝑥, [) = 0, (10b)
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𝜎
(𝑚𝑙)
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑚𝑙)
𝑥 (𝑥, [), (11a)

𝜏
(𝑚𝑙)
𝑥𝑦 (𝑥, [) = 0, (11b)

• the lower core (𝜒02 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

Y
(𝑙𝑐)
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 −
(
[ − 1

2
𝜒0

)
1
𝜒𝑐

d𝜓 𝑓

d𝑥

]
, (12a)

𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [) =

𝜓 𝑓 (𝑥)
𝜒𝑐

, (12b)

𝜎
(𝑙𝑐)
𝑥 (𝑥, [) = 𝐸𝑐Y

(𝑙𝑐)
𝑥 (𝑥, [), (13a)

𝜏
(𝑙𝑐)
𝑥𝑦 (𝑥, [) = 𝐸𝑐

2 (1 + a𝑐)
𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [), (13b)

• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

Y
(𝑙 𝑓 )
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 −
d𝜓 𝑓

d𝑥

]
, (14a)

𝛾
(𝑙 𝑓 )
𝑥𝑦 (𝑥, [) = 0, (14b)

𝜎
(𝑙 𝑓 )
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑙 𝑓 )
𝑥 (𝑥, [), (15a)

𝜏
(𝑙 𝑓 )
𝑥𝑦 (𝑥, [) = 0, (15b)

where a𝑐 – Poisson’s ratio of the cores.
The elastic strain energy is in the form

𝑈Y,𝛾 =
1
2
𝐸 𝑓 𝑏ℎ

𝐿∫
0

[
Φ

(𝑢 𝑓 )
Y,𝛾 (𝑥) +Φ

(𝑢𝑐)
Y,𝛾 (𝑥) +Φ

(𝑚𝑙)
Y,𝛾 (𝑥)

+ Φ
(𝑙𝑐)
Y,𝛾 (𝑥) +Φ

(𝑙 𝑓 )
Y,𝛾 (𝑥)

]
d𝑥, (16)

where:

Φ
(𝑢 𝑓 )
Y,𝛾 (𝑥) =

−1/2+𝜒 𝑓∫
−1/2

[
Y
(𝑢 𝑓 )
𝑥 (𝑥, [)

]2
d[, Φ

(𝑙 𝑓 )
Y,𝛾 (𝑥) =

1/2∫
1/2−𝜒 𝑓

[
Y
(𝑙 𝑓 )
𝑥 (𝑥, [)

]2
d[,

Φ
(𝑢𝑐)
Y,𝛾 (𝑥) = 𝑒𝑐

−𝜒0/2∫
−1/2+𝜒 𝑓

{[
Y
(𝑢𝑐)
𝑥 (𝑥, [)

]2
+ 1

2 (1 + a𝑐)

[
𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [)

]2
}

d[,

Φ
(𝑙𝑐)
Y,𝛾 (𝑥) = 𝑒𝑐

1/2−𝜒 𝑓∫
𝜒0/2

{[
Y
(𝑙𝑐)
𝑥 (𝑥, [)

]2
+ 1

2 (1 + a𝑐)

[
𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [)

]2
}

d[,
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Φ
(𝑚𝑙)
Y,𝛾 (𝑥) =

𝜒0/2∫
−𝜒0/2

[
Y
(𝑚𝑙)
𝑥 (𝑥, [)

]2
d[.

Substituting the expressions (6a), (6b), (8a), (8b), (10a), (10b), (12a), (12b),
(14a), (14b) for strains into the expressions (16), after integration one obtains

𝑈Y,𝛾 =
𝐸 𝑓 𝑏ℎ

3

24

𝐿∫
0

[
𝐶𝑣𝑣

(
d2𝑣

d𝑥2

)2

− 2𝐶𝑣𝜓

d2𝑣

d𝑥2
d𝜓 𝑓

d𝑥
+ 𝐶𝜓𝜓

( d𝜓 𝑓

d𝑥

)2

+ 𝐶𝜓

𝜓2
𝑓
(𝑥)
ℎ2

]
d𝑥, (17)

where dimensionless coefficients are expressed as:

𝐶𝑣𝑣 = 2
(
3 − 6𝜒 𝑓 + 4𝜒2

𝑓

)
𝜒 𝑓 + 𝑒𝑐

(
1 − 2𝜒 𝑓

)3 + (1 − 𝑒𝑐) 𝜒3
0 ,

𝐶𝑣𝜓 =
1
2

{
24

(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[
2
(
1 − 2𝜒 𝑓

)3 − 3
(
1 − 2𝜒 𝑓

)2
𝜒0 + 𝜒3

0

] 1
𝜒𝑐

}
,

𝐶𝜓𝜓 = 8
(
3𝜒 𝑓 + 𝑒𝑐𝜒𝑐

)
, 𝐶𝜓 =

12
1 + a𝑐

𝑒𝑐

𝜒𝑐
.

The work of the load

𝑊 =

𝐿∫
0

𝑞𝑣(𝑥)d𝑥. (18)

Based on the principle of stationary total potential energy 𝛿
(
𝑈Y,𝛾 −𝑊

)
= 0,

the system of two differential equations of equilibrium of this beam is obtained in
the following form:

𝐶𝑣𝑣

d4𝑣

d𝑥4 − 𝐶𝑣𝜓

d3𝜓 𝑓

d𝑥3 = 12
𝑞

𝐸 𝑓 𝑏ℎ
3 , (19)

𝐶𝑣𝜓

d3𝑣

d𝑥3 − 𝐶𝜓𝜓

d2𝜓 𝑓

d𝑥2 + 𝐶𝜓

𝜓 𝑓 (𝑥)
ℎ2 = 0. (20)

It may be easily noticed, that the equation (19) of this system is equivalent to the
second-order equation of the form

𝐶𝑣𝑣

d2𝑣

d𝑥2 − 𝐶𝑣𝜓

d𝜓 𝑓

d𝑥
= −12

𝑀𝑏 (𝑥)
𝐸 𝑓 𝑏ℎ

3 , (21)

where 𝑀𝑏 (𝑥) = −𝑀𝑜 + 1/2
(
𝐿𝑥 − 𝑥2

)
𝑞 – the bending moment (Fig. 4). Differ-

entiating the above equation (21) twice, with consideration of this expression for
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the bending moment, where 𝑑2𝑀𝑏/d𝑥2 = −𝑞, the equation (19) is obtained. This
problem of the equivalence of such two equations is presented, for example, in
paper [22].

Therefore, equations (21) and (20) are the governing equations of this beam
bending. These two equations are reduced to one equation in the form

d2𝜓 𝑓

db2 − (𝛼_)2𝜓 𝑓 (b) = −
𝐶𝑣𝜓

𝐶𝑣𝑣𝐶𝜓𝜓 − 𝐶2
𝑣𝜓

_2 𝑇 (b)
𝐸 𝑓 𝑏ℎ

, (22)

where: b = 𝑥/𝐿 – dimensionless coordinate, _ = 𝐿/ℎ – relative length of the beam,

𝛼 =

√︄
𝐶𝑣𝑣𝐶𝜓

𝐶𝑣𝑣𝐶𝜓𝜓 − 𝐶2
𝑣𝜓

– dimensionless coefficient and 𝑇 (b) – shear force.

The scheme of the end part of the beam with the load and reactions is shown
in Fig. 4.

Fig. 4. Scheme of the end part of the beam with the load and reactions

Taking into account the above scheme, the shear force and the bending moment
in dimensionless coordinate b are as follows:

𝑇 (b) = 1
2
(1 − 2b) 𝑞𝐿, (23a)

𝑀𝑏 (b) =
1
2

(
b − b2 − 2�̄�𝑜

)
𝑞𝐿2, (23b)

where the dimensionless reaction moment �̄�𝑜 = 𝑀𝑜/𝑞𝐿2.
The solution of equation (22), with consideration of the expression (23a) for the

shear force and conditions 𝜓 𝑓 (0) = 0, 𝜓 𝑓 (1/2) = 0, is the following dimensionless
function

𝜓 𝑓 (b) = �̄� 𝑓 (b)
𝑞

𝐸 𝑓 𝑏
, (24)

where the relative dimensionless function of the shear effect

�̄� 𝑓 (b) = 6
{
1 − 2b − sinh [(1 − 2b)𝛼_/2]

sinh (𝛼_/2)

}
𝐶𝑣𝜓

𝐶𝑣𝑣𝐶𝜓

_. (25)

The equation (21) in dimensionless coordinate b, with consideration of the
expression (23b) for the bending moment, is as follows

𝐶𝑣𝑣

d2�̄�

db2 = 𝐶𝑣𝜓

d𝜓 𝑓

db
− 6

(
b − b2 − 2�̄�𝑜

)
_3 𝑞

𝐸 𝑓 𝑏
, (26)
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where �̄�(b) = 𝑣(b)/𝐿 – relative deflection.
Integrating this equation twice, taking into account the function (24) and the

following conditions d �̄�/d �̄�db
��
0 = 0, d �̄�/db

��
1/2 = 0, �̄�(0) = 0, the beam deflection

line was obtained of the form

�̄�(b) = �̃�(b) 𝑞

𝐸 𝑓 𝑏
, (27)

where:

�̃�(b) =
[
𝑓𝜓 (b) −

1
2

(
2b − b2 − 1

)
b2
]
_3

𝐶𝑣𝑣

, (28a)

𝑓𝜓 (b) = 6
{
b − b2 − cosh (𝛼_/2) − cosh [(1 − 2b)𝛼_/2]

𝛼_ sinh (𝛼_/2)

}
𝐶2
𝑣𝜓

𝐶𝑣𝑣𝐶𝜓

1
_2 , (28b)

and the dimensionless reaction moment �̄�𝑜 = 1/12.
Thus, the relative maximum deflection

�̄�max = �̄�

(
1
2

)
= �̃�max

𝑞

𝐸 𝑓 𝑏
, (29)

where dimensionless relative maximum deflection

�̃�max = �̃�

(
1
2

)
= (1 + 𝐶𝑠𝑒)

_3

32𝐶𝑣𝑣

, (30)

and the shear coefficient

𝐶𝑠𝑒 = 48
[
1 − 4

cosh (𝛼_/2)
𝛼_ sinh (𝛼_/2)

]
𝐶2
𝑣𝜓

𝐶𝑣𝑣𝐶𝜓

1
_2 , (31)

Exemplary calculations are carried out for three beam structures (S-1, S-2,
S-3) of the same mass for selected following dimensionless sizes: _ = 30, 𝜒 𝑓 =

(3/24, 2.5/24, 2/24), 𝜒𝑐 = 9/24, 𝜒0 = (0, 1/24, 2/24) and material constant
a𝑐 = 0.3, 𝑒𝑐 = 1/40. The results of the calculations of the values of shear coefficient
𝐶𝑠𝑒 (31), and maximum deflection �̃�max (30) are specified in Table 1.

Table 1. The values of shear coefficient 𝐶𝑠𝑒 and maximum deflection �̃�max – first model
Structure S-1 S-2 S-3

𝜒 𝑓 3/24 2.5/24 2/24
𝜒0 0 1/24 2/24
𝐶𝑠𝑒 0.2579 0.2179 0.1762
�̃�max 1803.0 1990.3 2274.5

The shear stresses (7), (11) and (15) in the upper face, middle layer, and
lower face are equal to zero. Whereas, the shear stresses (9) and (13) in the
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upper core
(
−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2

)
and lower core

(
𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓

)
with

consideration of the function (24) are the same as follows

𝜏
(𝑢𝑐)
𝑥𝑦 (b, [) = 𝜏

(𝑙𝑐)
𝑥𝑦 (b, [) = 𝜏

(𝑐)
𝑥𝑦 (b, [) 𝑞

𝑏
, (32)

where, the dimensionless shear stress

𝜏
(𝑐)
𝑥𝑦 (b, [) = 1

2(1 + a)
𝑒𝑐

𝜒𝑐
�̄� 𝑓 (b). (33)

Exemplary calculations are carried out for the beam of selected following dimen-
sionless sizes: _ = 30, 𝜒 𝑓 = 2/24, 𝜒𝑐 = 9/24, 𝜒0 = 2/24 and material constant
a𝑐 = 0.3, 𝑒𝑐 = 1/40. The results of the calculations – the graphs of the relative
dimensionless function of the shear effect (25) �̄� 𝑓 (b) and the dimensionless shear
stress (33) 𝜏 (𝑐)𝑥𝑦 (0.05, [) for b = 0.05 [�̄� 𝑓 (0.05) = 572.847], are shown in Fig. 5
and Fig. 6.

Fig. 5. Scheme of the end part of the beam with the load and reactions 𝜓 𝑓 (b)

Fig. 6. The graphs of the planar cross-section deformation and the dimensionless shear stress
𝜏
(𝑐)
𝑥𝑦 (0.05, [) for b = 0.05
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3. The second model of the five-layered composite beam

The deformation of a planar cross-section of the composite beam in accordance
with the nonlinear shear deformation theory is shown in Fig. 7.

Fig. 7. The scheme of a planar cross-section deformation – nonlinear shear deformation theory

The longitudinal displacements according to Fig. 7 and also the strains and
stresses in successive layers are as follows:

• the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 )

𝑢 (𝑢 𝑓 ) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝑓
(𝑢 𝑓 )
𝑑

([)𝜓 𝑓 (𝑥)
]
. (34)

Y
(𝑢 𝑓 )
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 − 𝑓
(𝑢 𝑓 )
𝑑

([)
d𝜓 𝑓

d𝑥

]
, (35a)

𝛾
(𝑢 𝑓 )
𝑥𝑦 (𝑥, [) =

d 𝑓
(𝑢 𝑓 )
𝑑

d[
𝜓 𝑓 (𝑥), (35b)

𝜎
(𝑢 𝑓 )
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑢 𝑓 )
𝑥 (𝑥, [), (36a)

𝜏
(𝑢 𝑓 )
𝑥𝑦 (𝑥, [) =

𝐸 𝑓

2
(
1 + a 𝑓

) 𝛾 (𝑢 𝑓 )
𝑥𝑦 (𝑥, [), (36b)

• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

𝑢 (𝑢𝑐) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝑓
(𝑢𝑐)
𝑑

([)𝜓 𝑓 (𝑥)
]
, (37)

Y
(𝑢𝑐)
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 − 𝑓
(𝑢𝑐)
𝑑

([)
d𝜓 𝑓

d𝑥

]
, (38a)

𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [) =

d 𝑓
(𝑢𝑐)
𝑑

d[
𝜓 𝑓 (𝑥), (38b)
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𝜎
(𝑢𝑐)
𝑥 (𝑥, [) = 𝐸𝑐Y

(𝑢 𝑓 )
𝑥 (𝑥, [), (39a)

𝜏
(𝑢𝑐)
𝑥𝑦 (𝑥, [) = 𝐸𝑐

2 (1 + a𝑐)
𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [), (39b)

• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

𝑢 (𝑚𝑙) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝑓
(𝑚𝑙)
𝑑

([)𝜓 𝑓 (𝑥)
]
, (40)

Y
(𝑚𝑙)
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 − 𝑓
(𝑚𝑙)
𝑑

([)
d𝜓 𝑓

d𝑥

]
, (41a)

𝛾
(𝑚𝑙)
𝑥𝑦 (𝑥, [) =

d 𝑓
(𝑚𝑙)
𝑑

d[
𝜓 𝑓 (𝑥), (41b)

𝜎
(𝑚𝑙)
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑚𝑙)
𝑥 (𝑥, [), (42a)

𝜏
(𝑚𝑙)
𝑥𝑦 (𝑥, [) =

𝐸 𝑓

2
(
1 + a 𝑓

) 𝛾 (𝑚𝑙)
𝑥𝑦 (𝑥, [), (42b)

• the lower core (𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

𝑢 (𝑙𝑐) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝑓
(𝑙𝑐)
𝑑

([)𝜓 𝑓 (𝑥)
]
, (43)

Y
(𝑙𝑐)
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 − 𝑓
(𝑙𝑐)
𝑑

([)
d𝜓 𝑓

d𝑥

]
, (44a)

𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [) =

d 𝑓
(𝑙𝑐)
𝑑

d[
𝜓 𝑓 (𝑥), (44b)

𝜎
(𝑙𝑐)
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑙𝑐)
𝑥 (𝑥, [), (45a)

𝜏
(𝑙𝑐)
𝑥𝑦 (𝑥, [) = 𝐸𝑐

2 (1 + a𝑐)
𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [), (45b)

• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

𝑢 (𝑙 𝑓 ) (𝑥, [) = −ℎ
[
[

d𝑣
d𝑥

− 𝑓
(𝑙 𝑓 )
𝑑

([)𝜓 𝑓 (𝑥)
]
, (46)

Y
(𝑙 𝑓 )
𝑥 (𝑥, [) = −ℎ

[
[

d2𝑣

d𝑥2 − 𝑓
(𝑙 𝑓 )
𝑑

([)
d𝜓 𝑓

d𝑥

]
, (47a)
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𝛾
(𝑙 𝑓 )
𝑥𝑦 (𝑥, [) =

d 𝑓
(𝑙 𝑓 )
𝑑

d[
𝜓 𝑓 (𝑥), (47b)

𝜎
(𝑙 𝑓 )
𝑥 (𝑥, [) = 𝐸 𝑓 Y

(𝑙 𝑓 )
𝑥 (𝑥, [), (48a)

𝜏
(𝑙 𝑓 )
𝑥𝑦 (𝑥, [) =

𝐸 𝑓

2
(
1 + a 𝑓

) 𝛾 (𝑙 𝑓 )
𝑥𝑦 (𝑥, [), (48b)

where: 𝑓 (𝑢 𝑓 )
𝑑

([), 𝑓 (𝑢𝑐)
𝑑

([), 𝑓 (𝑚𝑙)
𝑑

([), 𝑓 (𝑙𝑐)
𝑑

([), 𝑓 (𝑙 𝑓 )
𝑑

([) – unknown dimensionless
deformation functions, and a 𝑓 – Poisson’s ratio of the faces.

Taking into account the papers [21, 22] these functions are determined con-
sidering the classical shear stress formula in the following form

𝜏
(𝐶𝑙)
𝑥𝑦 (𝑥, 𝑦) = 𝑆𝑧 (𝑦)

𝑏(𝑦)
𝑇 (𝑥)
𝐽𝑧

, (49)

where: 𝑆𝑧 (𝑦) – the first moment of the cross-section area part, 𝑏(𝑦) – width of the
cross-section, 𝑇 (𝑥) – shear force, 𝐽𝑧 – inertia moment of the beam cross-section.

This formula, for a rectangular cross-section 𝑏(𝑦) = 𝑏 and in the dimensionless
coordinate [ = 𝑦/ℎ, is as follows

𝜏
(𝐶𝑙)
𝑥𝑦 (𝑥, [) = 𝑆𝑧 ([)

𝑇 (𝑥)
𝐽𝑧

ℎ2, (50)

where 𝑆𝑧 ([) – dimensionless first moment considering the variation of Young’s
modulus in the depth direction of the five-layered composite beam.

Therefore, this moment for the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 ) is formu-
lated based on the following scheme (Fig. 8).

Fig. 8. The hatched area of the selected part of the upper face

Thus, the dimensionless first moment of the hatched area is in the form

𝑆
(𝑢 𝑓 )
𝑧 ([) = 1

2

(
1
4
− [2

)
. (51)
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Proceeding analogously for successive layers, the first moment is as follows:
• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

𝑆
(𝑢𝑐)
𝑧 ([) = 1

2

{(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− [2

]}
, (52)

• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

𝑆
(𝑚𝑙)
𝑧 ([) = 1

2

{(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− 1

4
𝜒2

0

]
+ 1

4
𝜒2

0 − [2

}
, (53)

• the lower core (𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

𝑆
(𝑙𝑐)
𝑧 ([) = 1

2

{(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− [2

]}
, (54)

• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

𝑆
(𝑙 𝑓 )
𝑧 ([) = 1

2

(
1
4
− [2

)
. (55)

Equating the shear stresses (36b), (39b), (42b), (45b), and (48b) to the classical
shear stress formula (50) with consideration of the dimensionless first moments
(51), (52), (53), (54) and (55) one obtains the unknown dimensionless deformation
functions in the following form:

• the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 )

𝑓
(𝑢 𝑓 )
𝑑

([) = 𝐶𝑢 𝑓 +
(
1 + a 𝑓

) (1
4
− 1

3
[2
)
[, (56)

• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

𝑓
(𝑢𝑐)
𝑑

([) = 𝐶𝑢𝑐 +
1 + a𝑐

𝑒𝑐

{(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[ (
1 − 𝜒 𝑓

)2 − 1
3
[2
]}

[, (57)

• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

𝑓
(𝑚𝑙)
𝑑

([) =
(
1 + a 𝑓

) {(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− 1

4
𝜒2

0

]
+ 1

4
𝜒2

0

−1
3
[2
}
[, (58)

• the lower core (𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

𝑓
(𝑙𝑐)
𝑑

([) = 𝐶𝑙𝑐 +
1 + a𝑐

𝑒𝑐

{(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[ (
1 − 𝜒 𝑓

)2 − 1
3
[2
]}

[, (59)
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• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

𝑓
(𝑙 𝑓 )
𝑑

([) = 𝐶𝑙 𝑓 +
(
1 + a 𝑓

) (1
4
− 1

3
[2
)
[, (60)

where:

𝐶𝑢𝑐 = −𝐶𝑙𝑐 =
1
2

[
1 + a𝑐

𝑒𝑐
𝐶𝑐1 −

(
1 + a 𝑓

)
𝐶𝑐2

]
𝜒0 ,

𝐶𝑐1 =
(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− 1

12
𝜒2

0

]
,

𝐶𝑐2 =
(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 𝑒𝑐

[(
1
2
− 𝜒 𝑓

)2
− 1

4
𝜒2

0

]
+ 1

6
𝜒2

0 ,

𝐶𝑐3 = 3
(
1 − 𝜒 𝑓

)
𝜒 𝑓 + 2𝑒𝑐

(
1
2
− 𝜒 𝑓

)2
,

𝐶𝑢 𝑓 = −𝐶𝑙 𝑓 = 𝐶𝑢𝑐 −
1
6

{
2

1 + a𝑐

𝑒𝑐
𝐶𝑐3 −

(
1 + a 𝑓

) [
1 + 2

(
1 − 𝜒 𝑓

)
𝜒 𝑓

]} (1
2
− 𝜒 𝑓

)
.

Importantly, the derived functions satisfy the continuity conditions between suc-
cessive layers.

The elastic strain energy is in the form

𝑈Y,𝛾 =
1
2
𝐸 𝑓 𝑏ℎ

𝐿∫
0

[
Θ

(𝑢 𝑓 )
Y,𝛾 (𝑥) + Θ

(𝑢𝑐)
Y,𝛾 (𝑥) + Θ

(𝑚𝑙)
Y,𝛾 (𝑥) + Θ

(𝑙𝑐)
Y,𝛾 (𝑥)

+Θ(𝑙 𝑓 )
Y,𝛾 (𝑥)

]
d𝑥, (61)

where:

Θ
(𝑢 𝑓 )
Y,𝛾 (𝑥) =

−1/2+𝜒 𝑓∫
−1/2

{[
Y
(𝑢 𝑓 )
𝑥 (𝑥, [)

]2
+ 1

2
(
1 + a 𝑓

) [𝛾 (𝑢 𝑓 )
𝑥𝑦 (𝑥, [)

]2
}

d[,

Θ
(𝑢𝑐)
Y,𝛾 (𝑥) = 𝑒𝑐

−𝜒0/2∫
−1/2+𝜒 𝑓

{[
Y
(𝑢𝑐)
𝑥 (𝑥, [)

]2
+ 1

2 (1 + a𝑐)

[
𝛾
(𝑢𝑐)
𝑥𝑦 (𝑥, [)

]2
}

d[,

Θ
(𝑚𝑙)
Y,𝛾 (𝑥) =

𝜒0/2∫
−𝜒0/2

{[
Y
(𝑚𝑙)
𝑥 (𝑥, [)

]2
+ 1

2
(
1 + a 𝑓

) [𝛾 (𝑚𝑙)
𝑥𝑦 (𝑥, [)

]2
}

d[,

Θ
(𝑙𝑐)
Y,𝛾 (𝑥) = 𝑒𝑐

1/2−𝜒 𝑓∫
𝜒0/2

{[
Y
(𝑙𝑐)
𝑥 (𝑥, [)

]2
+ 1

2 (1 + a𝑐)

[
𝛾
(𝑙𝑐)
𝑥𝑦 (𝑥, [)

]2
}

d[,
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Θ
(𝑙 𝑓 )
Y,𝛾 (𝑥) =

1/2∫
1/2−𝜒 𝑓

{[
Y
(𝑙 𝑓 )
𝑥 (𝑥, [)

]2
+ 1

2
(
1 + a 𝑓

) [𝛾 (𝑙 𝑓 )
𝑥𝑦 (𝑥, [)

]2
}

d[.

Substituting the expressions (35), (38), (41), (44), (47) for strains into the
expressions (61), after integration one obtains

𝑈Y,𝛾 =
𝐸 𝑓 𝑏ℎ

3

24

𝐿∫
0

[
𝐶𝑣𝑣

(
d2𝑣

d𝑥2

)2

− 2𝐶𝑣𝜓

d2𝑣

d𝑥2
d𝜓 𝑓

d𝑥
+ 𝐶𝜓𝜓

( d𝜓 𝑓

d𝑥

)2

+ 𝐶𝜓

𝜓2
𝑓
(𝑥)
ℎ2

]
d𝑥, (62)

where dimensionless coefficients

𝐶𝑣𝑣 = 2
(
3 − 6𝜒 𝑓 + 4𝜒2

𝑓

)
𝜒 𝑓 + 𝑒𝑐

(
1 − 2𝜒 𝑓

)3 + (1 − 𝑒𝑐) 𝜒3
0 ,

𝐶𝑣𝜓 = 12
[
𝐽
(𝑢 𝑓 )
𝑣𝜓

+ 𝑒𝑐𝐽
(𝑢𝑐)
𝑣𝜓

+ 𝐽
(𝑚𝑙)
𝑣𝜓

+ 𝑒𝑐𝐽
(𝑙𝑐)
𝑣𝜓

+ 𝐽
(𝑙 𝑓 )
𝑣𝜓

]
,

𝐶𝜓𝜓 = 12
[
𝐽
(𝑢 𝑓 )
𝜓𝜓

+ 𝑒𝑐𝐽
(𝑢𝑐)
𝜓𝜓

+ 𝐽
(𝑚𝑙)
𝜓𝜓

+ 𝑒𝑐𝐽
(𝑙𝑐)
𝜓𝜓

+ 𝐽
(𝑙 𝑓 )
𝜓𝜓

]
,

𝐶𝜓 = 24
[(

1+a 𝑓

)
𝐽
(𝑢 𝑓 )
𝜓

+ 1+a𝑐
𝑒𝑐

𝐽
(𝑢𝑐)
𝜓

+
(
1+a 𝑓

)
𝐽
(𝑚𝑙)
𝜓

+ 1+a𝑐
𝑒𝑐

𝐽
(𝑙𝑐)
𝜓

+
(
1+a 𝑓

)
𝐽
(𝑙 𝑓 )
𝜓

]
,

𝐽
(𝑢 𝑓 )
𝑣𝜓

=

−1/2+𝜒 𝑓∫
−1/2

[ 𝑓
(𝑢 𝑓 )
𝑑

([)d[, 𝐽
(𝑢𝑐)
𝑣𝜓

=

−𝜒0/2∫
−1/2+𝜒 𝑓

[ 𝑓
(𝑢𝑐)
𝑑

([)d[, 𝐽
(𝑚𝑙)
𝑣𝜓

=

𝜒0/2∫
−𝜒0/2

[ 𝑓
(𝑚𝑙)
𝑑

([)d[,

𝐽
(𝑙𝑐)
𝑣𝜓

=

1/2−𝜒 𝑓∫
𝜒0/2

[ 𝑓
(𝑙𝑐)
𝑑

([)d[, 𝐽
(𝑙 𝑓 )
𝑣𝜓

=

1/2∫
1/2−𝜒 𝑓

[ 𝑓
(𝑙 𝑓 )
𝑑

([)d[, 𝐽
(𝑢 𝑓 )
𝜓𝜓

=

−1/2+𝜒 𝑓∫
−1/2

[
𝑓
(𝑢 𝑓 )
𝑑

([)
]2

d[,

𝐽
(𝑢𝑐)
𝜓𝜓

=

−𝜒0/2∫
−1/2+𝜒 𝑓

[
𝑓
(𝑢𝑐)
𝑑

([)
]2

d[, 𝐽
(𝑚𝑙)
𝜓𝜓

=

𝜒0/2∫
−𝜒0/2

[
𝑓
(𝑚𝑙)
𝑑

([)
]2

d[, 𝐽
(𝑙𝑐)
𝜓𝜓

=

1/2−𝜒 𝑓∫
𝜒0/2

[
𝑓
(𝑙𝑐)
𝑑

([)
]2

d[,

𝐽
(𝑙 𝑓 )
𝜓𝜓

=

1/2∫
1/2−𝜒 𝑓

[
𝑓
(𝑙 𝑓 )
𝑑

([)
]2

d[, 𝐽
(𝑢 𝑓 )
𝜓
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−1/2+𝜒 𝑓∫
−1/2

[
𝑆
(𝑢 𝑓 )
𝑧 ([)

]2
d[, 𝐽

(𝑢𝑐)
𝜓

=

−𝜒0/2∫
−1/2+𝜒 𝑓

[
𝑆
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d[,
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𝐽
(𝑚𝑙)
𝜓

=

𝜒0/2∫
−𝜒0/2

[
𝑆
(𝑚𝑙)
𝑧 ([)

]2
d[, 𝐽

(𝑙𝑐)
𝜓

=

1/2−𝜒 𝑓∫
𝜒0/2

[
𝑆
(𝑙𝑐)
𝑧 ([)

]2
d[, 𝐽

(𝑙 𝑓 )
𝜓

=

1/2∫
1/2−𝜒 𝑓

[
𝑆
(𝑙 𝑓 )
𝑧 ([)

]2!
d[.

Thus, based on the principle of stationary total potential energy 𝛿(𝑈Y,𝛾 −𝑊) = 0,
with consideration of the expression (18) and after a simple transformation, the
system of two differential equations governing the bending of this beam is obtained
in the following form:

𝐶𝑣𝑣

d2𝑣

d𝑥2 − 𝐶𝑣𝜓

d𝜓 𝑓

d𝑥
= −12

𝑀𝑏 (𝑥)
𝐸 𝑓 𝑏ℎ

3 , (63)

𝐶𝑣𝜓

d3𝑣

d𝑥3 − 𝐶𝜓𝜓

d2𝜓 𝑓

d𝑥2 + 𝐶𝜓

𝜓 𝑓 (𝑥)
ℎ2 = 0. (64)

The form of these equations is identical to those in the first beam model.
Therefore, taking into account the solution of this system in the first model was
written:

a) the relative dimensionless function of the shear effect

�̄� 𝑓 (b) = 6
{
1 − 2b − sinh [(1 − 2b) 𝛼_/2]

sinh (𝛼_/2)

}
𝐶𝑣𝜓

𝐶𝑣𝑣𝐶𝜓

_, (65)

b) the shear coefficient

𝐶𝑠𝑒 = 48
[
1 − 4

cosh (𝛼_/2)
𝛼_ sinh (𝛼_/2)

]
𝐶2
𝑣𝜓

𝐶𝑣𝑣𝐶𝜓

1
_2 , (66)

c) the dimensionless relative maximum deflection

�̃�max = �̃�

(
1
2

)
= (1 + 𝐶𝑠𝑒)

_3

32𝐶𝑣𝑣

. (67)

Exemplary calculations are carried out for the same three beam structures as
in the first model, i.e. dimensionless sizes: _ = 30, 𝜒 𝑓 = (3/24, 2.5/24, 2/24),
𝜒𝑐 = 9/24, 𝜒0 = (0, 1/24, 2/24) and material constant a𝑐 = 0.3, a 𝑓 = 0.33,
𝑒𝑐 = 1/40. The results of the calculations of the values of shear coefficient 𝐶𝑠𝑒

(66), and maximum deflection �̃�max (67) are specified in Table 2.
Moreover, the dimensionless shear stresses in successive layers are as follows
• the upper face (−1/2 ≤ [ ≤ −1/2 + 𝜒 𝑓 )

𝜏
(𝑢 𝑓 )
𝑥𝑦 (𝑥, [) = 𝑆

(𝑢 𝑓 )
𝑧 ([)𝜓 𝑓 (𝑥), (68)
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Table 2. The values of shear coefficient 𝐶𝑠𝑒 and maximum deflection �̃�max – second model

Structure S-1 S-2 S-3

𝜒 𝑓 3/24 2.5/24 2/24

𝜒0 0 1/24 2/24

𝐶𝑠𝑒 0.2588 0.2191 0.1776

�̃�max 1804.3 1992.3 2277.4

• the upper core (−1/2 + 𝜒 𝑓 ≤ [ ≤ −𝜒0/2)

𝜏
(𝑢𝑐)
𝑥𝑦 (𝑥, [) = 𝑆

(𝑢𝑐)
𝑧 ([)𝜓 𝑓 (𝑥), (69)

• the middle layer (−𝜒0/2 ≤ [ ≤ 𝜒0/2)

𝜏
(𝑚𝑙)
𝑥𝑦 (𝑥, [) = 𝑆

(𝑚𝑙)
𝑧 ([)𝜓 𝑓 (𝑥), (70)

• the lower core (𝜒0/2 ≤ [ ≤ 1/2 − 𝜒 𝑓 )

𝜏
(𝑙𝑐)
𝑥𝑦 (𝑥, [) = 𝑆

(𝑙𝑐)
𝑧 ([)𝜓 𝑓 (𝑥), (71)

• the lower face (1/2 − 𝜒 𝑓 ≤ [ ≤ 1/2)

𝜏
(𝑙 𝑓 )
𝑥𝑦 (𝑥, [) = 𝑆

(𝑙 𝑓 )
𝑧 ([)𝜓 𝑓 (𝑥). (72)

Exemplary calculations are carried out for the beam of the selected following
dimensionless sizes: _ = 30, 𝜒 𝑓 = 2/24, 𝜒𝑐 = 9/24, 𝜒0 = 2/24 and material
constant a𝑐 = 0.3, 𝑒𝑐 = 1/40. The results of the calculations – the graphs of the
relative dimensionless function of the shear effect (65) �̄� 𝑓 (b) and the dimensionless
shear stresses (68)–(72) for b = 0.05 [�̄� 𝑓 (0.05) = 372.389], are shown in Fig. 9
and Fig. 10.

Fig. 9. The graph of the relative dimensionless function of the shear effect 𝜓 𝑓 (b)
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Fig. 10. The graphs of the planar cross-section deformation and the dimensionless shear stress
𝜏
(𝑐)
𝑥𝑦 (0.05, [) for b = 0.05

4. Conclusions

1. The values of the shear coefficient 𝐶𝑠𝑒 and the dimensionless relative max-
imum deflection �̃�max determined in both models (Table 1 and Table 2)
differ slightly, these differences are less than 1%,

2. The shear stress distributions in the cross-section of the tested beam de-
termined in both models differ significantly (Fig. 6, Fig. 10), while the
difference between the maximum values of these stresses is small and
amounts to 2.2%,

3. The second model of the beam refines the shear effect in the beam.
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